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Abstract—The article presents a new approach to the 

problem of searching for cluster centers, based on minimizing 

differentiable estimates of the average value, insensitive to 

outliers. It is at the level of the initial mathematical 

formulation of the problem to lay the stability of the solution 

with respect to outliers in the data. The search for cluster 

centers is carried out using the Mahalanobis distance. The 

proposed algorithm is based on an iterative reweighting 

scheme. At each step, the problem of searching for cluster 

centers based on an algorithm with weights of examples is 

solved. The weights of the examples correspond to the values of 

the partial derivatives of a function that estimates the average 

value and is insensitive to outliers. The weights obtained in this 

way suppress the effect of emissions. 
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I. INTRODUCTION  

The problem of searching for cluster centers has been in 
the field of attention of researchers for many years [1], [2], 
[3]. 

The classical method for searching for centers and 
covariance matrices of clusters can be based on solving the 
following minimization problem: 

𝐜1
∗, … , 𝐜𝐾

∗ = arg min
𝐜1,…,𝐜𝐾

1

𝑁
∑ min

𝑗=1,…,𝐾
𝑑(𝐱𝑘; 𝐜𝑗 , 𝐒𝑗)

𝑁

𝑘=1

       (1) 

where 𝐜1, … , 𝐜𝐾 are cluster centers, 𝐒1, … , 𝐒𝐾 are covariance 
matrices, 

𝑑(𝐱; 𝐜, 𝐒) = ln|𝐒| + (𝐱 − 𝐜)′𝐒−1(𝐱 − 𝐜) 

is the square of the Mahalanobis distance with the covariance 
matrix 𝐒 between the points 𝐱 and 𝐜. 

This statement of the problem is based on the assumption 
that the points of the 𝑗-th cluster obey a multidimensional 
normal distribution with a density 

𝑝(𝐱; 𝐜, 𝐒) ∝
1

√|𝐒|
𝑒−

1
2
(𝐱−𝐜)′𝐒−1(𝐱−𝐜), 

an arbitrary point 𝐱 refers to the cluster with the number 

𝑗(𝐱) = arg max
𝑗=1,…,𝐾

𝑝(𝐱; 𝐜𝑗 , 𝐒𝑗). 

The problem (1) is reduced to solving systems of 
equations 

{
 
 

 
 𝐜𝑗 =

1

|𝐈𝑗|
∑ 𝐱𝑘
𝑘∈𝐈𝑗

𝐒𝑗 =
1

|𝐈𝑗|
∑(𝐱𝑘
𝑘∈𝐈𝑗

− 𝐜𝑗)
′(𝐱𝑘 − 𝐜𝑗),

          (2) 

where 𝐈𝑗 ⊂ {1,… , 𝑁} are indices of points falling into the 𝑗-
th cluster. 

The following iterative procedure underlies the extended 
k-means algorithm: 

{
 
 

 
 𝐜𝑗,𝑡+1 =

1

|𝐈𝑗,𝑡|
∑ 𝐱𝑘
𝑘∈𝐈𝑗,𝑡

𝐒𝑗,𝑡+1 =
1

|𝐈𝑗,𝑡|
∑ (𝐱𝑘 − 𝐜𝑗,𝑡)

′(𝐱𝑘 − 𝐜𝑗,𝑡)

𝑘∈𝐈𝑗,𝑡

,

        (3) 

where 𝐈𝑗,𝑡 are indices of points falling into the 𝑗-th cluster at 

the 𝑡-th step. Initial values of cluster centers 𝐜1,0, … , 𝐜𝐾,0 and 

covariance matrices 𝐒1,0, … , 𝐒𝐾,0 are set before the iteration 

procedure (3). 

A significant distortion of the results of the algorithm 
may appear if the empirical distribution {𝐷(𝐱1), … , 𝐷(𝐱𝑁)}, 
where 

𝐷(𝐱) = 𝐷(𝐱; 𝐜1, … , 𝐜𝐾; 𝐒1, … , 𝐒𝐾) = min
𝑗=1,…,𝐾

𝑑(𝐱; 𝐜𝑗 , 𝐒𝑗) 

contains oitliers. 

II. THE CLASSIC METHOD OF OVERCOMING THE EFFECTS OF 

OUTLIERS  

The classical method for solving the problem of 
emissions is based on the replacement of the function 
𝑑(𝐱; 𝐜, 𝐒) with 

𝑑𝜚(𝐱; 𝐜, 𝐒) = ln|𝐒| + 𝜚((𝐱 − 𝐜)′𝐒−1(𝐱 − 𝐜)), 

where 𝜚(𝑟) is a function to suppress the effects of outliers. It 
corresponds to the probability distribution of points with 
density 

𝑝(𝐱; 𝐜, 𝐒) ∝
1

√|𝐒|
𝑒−

1
2
𝜚((𝐱−𝐜)′𝐒−1(𝐱−𝐜))

 

The optimization task has the form: 

𝐜1
∗, … , 𝐜𝐾

∗ = arg min
𝐜1,…,𝐜𝐾

1

𝑁
∑𝐷𝜚

𝑁

𝑘=1

(𝐱𝑘),              (4) 

where 
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𝐷𝜚(𝐱) = 𝐷𝜚(𝐱; 𝐜1, … , 𝐜𝐾; 𝐒1, … , 𝐒𝐾) = min
𝑗=1,…,𝐾

𝑑𝜚(𝐱; 𝐜𝑗 , 𝐒𝑗) 

The 𝜚 function is introduced in order to achieve a relative 
decrease in the large values of the square of the Mahalanobis 

function. An example is the function 𝜚(𝑟) = 𝐻(√𝑟), where 
𝐻 is the Huber function: 

𝐻(𝑟) = {

1

2
𝑟2, if   𝑟 ≤ 𝑐

𝑟𝑐 −
1

2
𝑐2, if   𝑟 < 𝑐.

 

Along with the Huber function, you can also use the 

function 𝑆(𝑟) = √𝑐2 + 𝑟2 − 𝑐 , which, unlike it, has a 

continuous 2nd-order derivative. 

The problem (4) can be reduced to solving a system of 
equations: 

{
 
 

 
 𝐜𝑗 =

1

𝑉𝑗
∑𝑣𝑘𝐱𝑘,

𝑘∈𝐈𝑗

           𝑉𝑗 = ∑ 𝑣𝑘
𝑘∈𝐈𝑗

𝐒𝑗 =
1

𝑉𝑗
∑𝑣𝑘(𝐱𝑘 − 𝐜𝑗)

′(𝐱𝑘 − 𝐜𝑗),

𝑘∈𝐈𝑗

 

      (5) 

where 𝑣𝑘 = 𝜓(𝐷𝜚(𝐱𝑘)), 𝜓(𝑟) = 𝜚
′(𝑟). 

For the solution to be unique, it is necessary that 𝜚′(𝑟) be 
non-decreasing. But it follows from this that it is enough to 

make outliers of the order 
1

𝑛+1
-th part of the set of points in 

order to break the robustness of such a method [4]. 
Nevertheless, if the matrices 𝐒1, … , 𝐒𝐾  are given, then the 
problem of finding the centers 𝐜1, … , 𝐜𝐾  is robust. The loss of 
robustness is precisely connected with the evaluation of the 
matrices 𝐒1, … , 𝐒𝐾. 

A fairly comprehensive overview of other methods can 
be found in [5], [6]. 

III. THE PRINCIPLE OF MINIMIZING DIFFERENTIABLE 

AVERAGES, INSENSITIVE TO OUTLIERS  

In this paper, we propose a new approach based on 
replacing the arithmetic mean in (1) with a robust 
differentiable mean estimate of 𝖬{𝑧1, … , 𝑧𝑁}, which will be 
insensitive to outliers. Such a replacement will allow, at the 
level of the mathematical formulation of the problem, to lay 
the foundation for the stability of the solution of the problem. 
This is precisely the novelty of the proposed approach. Since 
the empirical distribution of the squares of the distances of 
the Mahalanobis from the points to the center of the nearest 
cluster may contain outliers, so the arithmetic mean value 
turns out to be distorted. As a consequence of this, the 
positions of the centers of the clusters may be displaced. The 
use of an outliers-insensitive average estimate can avoid 
distortion. 

The differentiability of the estimate of the average value, 
insensitive to outliers, allows the use of gradient 
minimization algorithms to search for cluster centers. 

Thus, in terms of outliers, it is proposed to search for 
𝐜1
∗, … , 𝐜𝐾

∗  and 𝐒1
∗, … , 𝐒𝐾

∗ , minimizing the functional 

𝒬(𝐜1, . . . , 𝐜𝐾; 𝐒1, . . . , 𝐒𝐾) =

𝖬{𝐷1(𝐜1, . . . , 𝐜𝐾; 𝐒1, . . . , 𝐒𝐾), … , 𝐷𝑁(𝐜1, . . . , 𝐜𝐾; 𝐒1, . . . , 𝐒𝐾)},
 

where 

𝐷𝑘(𝐜1, . . . , 𝐜𝐾; 𝐒1, . . . , 𝐒𝐾) = 𝐷(𝐱𝑘; 𝐜1, . . . , 𝐜𝐾; 𝐒1, . . . , 𝐒𝐾). 

Due to differentiability of 𝖬{𝑧1, … , 𝑧𝑁}  the desired 
centers 𝐜1

∗, … , 𝐜𝐾
∗  and the matrices 𝐒1

∗, … , 𝐒𝐾
∗  are the solutions 

of the system of nonlinear equations:  

{
 
 
 

 
 
 
𝑧𝑘 = 𝐷𝑘(𝐜1, … , 𝐜𝐾; 𝐒1, … , 𝐒𝐾), 𝑘 = 1,… , 𝑁

𝐯 = ∇𝖬{𝑧1, … , 𝑧𝑁}  

𝐜𝑗 =
1

𝑉𝑗
∑𝑣𝑘
𝑘∈𝐈𝑗

𝐱𝑘, 𝑗 = 1, … , 𝐾

𝐒𝑗 =
1

𝑉𝑗
∑𝑣𝑘
𝑘∈𝐈𝑗

(𝐱𝑘 − 𝐜𝑗)
′(𝐱𝑘 − 𝐜𝑗), 𝑗 = 1,… , 𝐾

       (6) 

The vector of sample weights 𝐯 for 𝐜𝑗 = 𝐜𝑗
∗ and 𝐒𝑗 = 𝐒𝑗

∗ 

can also be used as an estimate of the significance of points. 
Since 𝑣1 +⋯+ 𝑣𝑁 = 1, the outliers will correspond to the 
points with the lowest values of the weights. 

Stability with respect to outliers is achieved due to the 
fact that the weights of the points corresponding to outliers 
are significantly less than the weights of the points that are 
not outliers. It is also important that the point weight 
decreases as the absolute value of the difference between 𝑧‾ =
∇𝖬{𝑧1, … , 𝑧𝑁} and 𝑧𝑘 increases. Such properties are a natural 
consequence of the robustness of mean estimates. 

IV. OUTLIERS INSENSITIVE AVERAGE ESTIMATES 

Such estimates can be constructed in at least two ways. 

The first method is based on the approximation of the 
median based on the 𝖬-mean [7], [8]: 

𝖬𝜌{𝑧1, … , 𝑧𝑁} = arg min
𝑢
∑𝜌

𝑁

𝑘=1

(𝑧𝑘 − 𝑢), 

where 𝜌 is twice differentiable strictly convex function with 
a minimum at zero. The 𝖬-mean defined in this way has 
partial derivatives: 

𝜕𝖬𝜌

𝜕𝑧𝑘
=

𝜌′′(𝑧𝑘 − 𝑧‾𝜌)

𝜌′′(𝑧1 − 𝑧‾𝜌) + ⋯+ 𝜌
′′(𝑧𝑁 − 𝑧‾𝜌)

, 

where 𝑧‾𝜌 = 𝖬𝜌{𝑧1, … , 𝑧𝑁}. 

For example, if you take the function 𝜌(𝑟) = √𝜀2 + 𝑟2 −
𝜀, then for sufficiently small values 𝜀 > 0, you can get an 
approximate and smoothed version of the median. Choosing 
a sufficiently small value of 𝜀, we can ensure that the value 
𝜕𝖬𝜌/𝜕𝑧𝑘 is negligible for those values 𝑧𝑘 that are far from 

the average value 𝑧‾𝜌. 

Smoothed variant of 𝛼-quantile can be built based on the 
function 

𝜌𝛼(𝑟) = {

𝛼𝜌(𝑟), if  𝑟 > 0
1

2
(𝛼𝜌(0+) + (1 − 𝛼)𝜌(0+)), if  𝑟 = 0

(1 − 𝛼)𝜌(𝑟), if  𝑟 < 0,

    (7) 

where 𝜌(𝑟) is a function for smoothed variant of median. 

The second method is based on the use of a censored 
arithmetic mean, in which the threshold value is estimated 
using a smoothed version of the 𝛼-quantile: 
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𝖶𝖬𝜌,𝛼{𝑧1, … , 𝑧𝑁} =
1

𝑁
∑min

𝑁

𝑘=1

{𝑧𝑘 , 𝑧‾𝜌𝛼}.         (8) 

Partial derivatives are of the form: 

𝜕𝖶𝖬𝜌𝛼

𝜕𝑧𝑘
=

{
 
 

 
 1

𝑁
+
𝑚

𝑁

𝜕𝖬𝜌𝛼
𝜕𝑧𝑘

, if   𝑧𝑘 < 𝑧‾𝜌𝛼

𝑚

𝑁

𝜕𝖬𝜌𝛼
𝜕𝑧𝑘

, if   𝑧𝑘 ≥ 𝑧‾𝜌𝛼 ,

 

where 𝑚 is equal to the number of 𝑧𝑘 ≥ 𝑧‾𝜌𝛼. In both cases 
𝜕𝖬

𝜕𝑧𝑘
≥ 0 and 

𝜕𝖬

𝜕𝑧1
+⋯+

𝜕𝖬

𝜕𝑧𝑁
= 1. 

The third method takes a different approach to censoring 
values. Let’s define a truncated version of a quadratic 
function: 

𝑟𝑐
2 = {

𝑟2, if   |𝑟| ≤ 𝑐

𝑐2, if   |𝑟| > 𝑐.
 

With its help we define 

𝑧̃𝛼 = 𝖳𝖬𝜌𝛼{𝑧1, … , 𝑧𝑁} = 

=arg min
𝑢
{ ∑ (𝑧𝑘 −

|𝑧𝑘−𝑢|≤𝑐‾𝛼

𝑢)2 + ∑ 𝑐‾𝛼
2

|𝑧𝑘−𝑢|>𝑐‾𝛼

}, 

where 𝑐‾𝛼
2 = 𝖬𝜌𝛼{𝑣1, … , 𝑣𝑁}, 𝑣𝑘 = (𝑧𝑘 − 𝑢)

2. 

From the definition we get a recurrence relation for 
calculating 𝑧̃𝛼: 

𝑢𝑡+1 = ∑ (
1

𝑁
+
𝑚

𝑁

𝜕𝖬𝜌𝛼
𝜕𝑣𝑘,𝑡

) 𝑧𝑘
|𝑧𝑘−𝑢𝑡|≤𝑐‾𝛼,𝑡

+ ∑
𝑚

𝑁

𝜕𝖬𝜌𝛼
𝜕𝑣𝑘,𝑡

𝑧𝑘
|𝑧𝑘−𝑢𝑡|>𝑐‾𝛼,𝑡

, 

where 𝑐‾𝛼,𝑡
2 = 𝖬𝜌𝛼{𝑣1,𝑡 , … , 𝑣𝑁,𝑡}, 𝑣𝑘,𝑡 = (𝑧𝑘 − 𝑢𝑡)

2 , 𝑚 is the 

number of values 𝑧𝑘: |𝑧𝑘 − 𝑢𝑡| > 𝑐‾𝛼,𝑡. 

In the limit, we obtain the weighted arithmetic mean: 

𝑧̃𝛼 =∑𝑣𝑘

𝑁

𝑘=1

𝑧𝑘 , 

where 

𝑣𝑘 =

{
 
 

 
 1

𝑁
+
𝑚

𝑁

𝜕𝖬𝜌𝛼
𝜕𝑣𝑘

, if    |𝑧𝑘 − 𝑧̃𝛼| ≤ 𝑐‾𝛼

𝑚

𝑁

𝜕𝖬𝜌𝛼
𝜕𝑣𝑘

, if    |𝑧𝑘 − 𝑧̃𝛼| > 𝑐‾𝛼 ,

 

and 𝑐‾𝛼
2 = 𝖬𝜌𝛼{𝑣1, … , 𝑣𝑁}, 𝑣𝑘 = (𝑧𝑘 − 𝑧̃𝛼)

2, 𝑚 is the number 

of values 𝑧𝑘: |𝑧𝑘 − 𝑧̃𝛼| > 𝑐‾𝛼 . Note that 

∑𝑣𝑘

𝑁

𝑘=1

= 1. 

In this situation the system of equations (6) should be 
rewrited as follow 

{
  
 

  
 
𝑧𝑘 = 𝐷𝑘(𝐜1, … , 𝐜𝐾; 𝐒1, … , 𝐒𝐾), 𝑘 = 1,… , 𝑁

𝐜𝑗 =
1

𝑉𝑗
∑𝑣𝑘𝐱𝑘
𝑘∈𝐈𝑗

, 𝑗 = 1, … , 𝐾

𝐒𝑗 =
1

𝑉𝑗
∑𝑣𝑘
𝑘∈𝐈𝑗

(𝐱𝑘 − 𝐜𝑗)
′(𝐱𝑘 − 𝐜𝑗), 𝑗 = 1,… , 𝐾,

 

where 

𝐺𝑗 = ∑ 𝛾𝑘
𝑘∈𝐈𝑗

. 

V. THE ALGORITHM 

To search 𝐜1
∗, … , 𝐜𝐾

∗  and 𝐒1
∗, … , 𝐒𝐾

∗  we apply an iterative 
scheme that corresponds to the analog of the Jacobi method 
for solving the system of nonlinear equations (6). 

The initial positions of the centers are selected in some 
way, for example: 

{
𝐜𝑗,0 =

1

𝑁
∑𝐱𝑘

𝑁

𝑘=1

𝐒𝑗,0 = 𝐄
𝑛×𝑛,

 

where 𝐄𝑛×𝑛 is identity matrix 𝑛 × 𝑛. 

1) At the 𝑡-th step, two equations are successively solved: 

А) For each 𝑗 = 1,… , 𝐾 , the following vector 
equation is first solved to find 𝐜𝑗,𝑡+1: 

𝐜𝑗 =
1

𝑉𝑗
∑𝑣𝑘
𝑘∈𝐈𝑗

𝐱𝑘, 

where 𝑧𝑘 = 𝐷𝑘(𝐜1, … , 𝐜𝐾; 𝐒1,𝑡 , … , 𝐒𝐾,𝑡). 

B) Then, for each 𝑗 = 1,… , 𝐾, the following vector 
equation is solved to find 𝐒𝑗,𝑡+1: 

𝐒𝑗 =
1

𝑉𝑗
∑𝑣𝑘
𝑘∈𝐈𝑗

(𝐱𝑘 − 𝐜𝑗,𝑡+1)
′(𝐱𝑘 − 𝐜𝑗,𝑡+1), 

where  𝑧𝑘 = 𝐷𝑘(𝐜1,𝑡+1, … , 𝐜𝐾,𝑡+1; 𝐒1, … , 𝐒𝐾). 

2) Step 1 is repeated until 𝑡 < 𝑇 (maximum number of 

iterations) or the sequence {𝒬(𝐜𝑡,1, … , 𝐜𝑡,𝐾; 𝐒𝑡,1, … , 𝐒𝑡,𝐾)} 
will not concentrate around its condensation point. 

The sets of point indices 𝐈1, … , 𝐈𝐾  corresponding to the 
partition into clusters are found before solving systems of 
equations. An additional condition |𝐒| = 1 is usually added 
to prevent singularity of the covariance matrices. Scale factor 
𝜎 = |𝐒| can then be estimated using the 𝖲-estimator [9]. 

The first equation in the system has the form: 

𝐜 = 𝐹(𝐜). 

To solve it, you can use the iterative procedure: 

𝐜𝑡+1 = (1 − ℎ)𝐜𝑡 + ℎ𝐹(𝐜𝑡), 

where 0 ≤ ℎ ≤ 1. The second equation has a similar form: 

𝐒 = 𝐺(𝐒). 

To solve it, you can use a similar iterative procedure: 

𝐒𝑡+1 = (1 − ℎ)𝐒𝑡 + ℎ𝐺(𝐒𝑡). 



Data Science 

VI International Conference on "Information Technology and Nanotechnology" (ITNT-2020)  196 

VI. EXAMPLES 

A. IRIS dataset 

Consider the relatively simple and classic IRIS dataset (3 
classes, 4 attributes, 150 items). Here we use data in 
projection on 1st and 2nd principial components. As a rule, it 
is used for classification tasks. Here we will try to identify 
classes using clustering, using the Mahalanobis distance 
instead of Euclidean. Figure 1 shows the results of clustering 
using the robust algorithm proposed here and the classical 
algorithm. The result of clustering using the robust algorithm 
(both using 𝖶𝖬𝜌𝛼  and 𝖳𝖬𝜌𝛼 , 𝜀 = 0.001, 𝛼 = 0.96) differs 

from the given classification only at 3 points out of 150. The 
result of clustering using the classical algorithm differs from 
the given classification in no less than 6 points out of 150. 
For comparison, the classic kmeans with Euclidean distance 
differs from the given classification at 17 points out of 150. 
This simple example shows that the application of the 
proposed robust approach to clustering based on a realistic 
set of features can allow us to construct a partition that 
differs slightly from a given classification. 

 
Fig. 1. IRIS: Robust vs. regular algorithm. White markers correspond to 
samples with the correct classes, black markers correspond to the wrong 
classes. 
 

B. Wine dataset 

Consider another classic WINE dataset (3 classes, 13 
attributes, 178 items). As a rule, it is also used for 
classification tasks. Here we will also try to identify classes 
using clustering, using the Mahalanobis distance instead of 
Euclidean. The result of clustering using the robust algorithm 
(both using 𝖶𝖬𝜌𝛼  and 𝖳𝖬𝜌𝛼 , 𝜀 = 0.001, 𝛼 = 0.97) differs 

from the given classification only at 3–4 points out of 178. 
The result of clustering using the classical algorithm differs 
from the given classification in no less than 6–7 points out of 
178. This simple example shows that the application of the 
proposed robust approach to clustering based on a realistic 
set of features can allow us to construct a partition that 
differs slightly from a given classification. 

C. S1–S4 datasets 

Cosider datasets S1–S4 for clustering from . They 
contain 5000 points, 15 clusters. In Fig. 2–5 presents the 
results of clustering for sets S1–S4, respectively. On each 
figure, on the left side there is the result of the robust 
algorithm, and on the right side there is the classical one. 
During the training, a robust mean estimate was used with 
𝖳𝖬𝜌𝛼 , 𝜀 = 0.001, 𝛼 = 0.96 − 0.97, ℎ = 0.95. It is easy to 

see that the robust algorithm allows one to find more 
adequate positions of the centers of clusters and the shape of 
the variance matrices. 

 
Fig. 2. S1: The results of robust and classical algorithms. 

 
Fig. 3. S2: The results of robust and classical algorithms. 

 
Fig. 4. S3: The results of robust and classical algorithms. 

 
Fig. 5. S4: The results of robust and classical algorithms. 

VII. CONCLUSION 

In this paper, we considered a new variant of the k-means 
algorithm, in which the Mahalanobis distance was used 
instead of the Euclidean distance. The proposed new 
approach to constructing a robust version of k-means 
algorithm with the Mahalanobis distance bases on 
minimizing robust differentiable estimates of the mean. Its 
fundamental resistance ability to strong distortions in data 
was shown compared with the classical k-means algorithm. 
This is due to the fact that the robust average estimates used 
in the work limit the influence on the search for the position 
of the centers of clusters of points that are located at 
relatively large distances from them. The differentiability of 
the estimate of the average value, insensitive to outliers, 
allows the use of gradient minimization algorithms to search 
for cluster centers. Differentiability made it possible to 
construct an algorithm based on the iterative reweighting 
method, so that at each step the centers of the clusters are 
searched within the framework of the classical k-means with 
sample weights. Taking into account the shape of the 
covariance matrix significantly enhance the result. It should 
also be noted that the result of the robust algorithm is not 
completely stable. However, with a suitable choice of 
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parameters 𝛼 and ℎ, it can be achieved that in most starts of 
the training procedure, an adequate result can be obtained. 
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