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Abstract—The tools of diffraction optics allow to implement 

in optics a wide range of mathematical functions useful for 

various applications. The orthogonal bases are of particular 

interest as they are optimal in terms of representation and 

transmission of optical information. The scientific school of 

Professor Viktor A. Soifer, Academician of the Russian 

Academy of Sciences, pays considerable attention to addressing 

the problems in this area. The following problems have been 

solved successfully: optical multiplexing - demultiplexing of 

various laser beams for modal compaction of communication 

channels, numerical and optical implementation of the 

Karhunen-Loeve expansion for the investigation of the stability 

of vortex beams propagation in a medium with random 

fluctuations, and the use of eigenfunctions of bounded optical 

systems for signal transmission with less distortion. The results 

achieved in the development of new optical devices can serve as 

the basis for the advanced information technologies.  

Keywords—diffraction optics, mathematical functions, 

orthogonal bases, optical information, scientific school, laser 

beam, Karhunen-Loeve expansion, vortex beams  

 

I. INTRODUCTION 

In information theory, the optimal representation of a 

certain signal [1–2] means choosing an orthogonal basis with 

the minimal number of coefficients of expansion by the basis 

functions. In optical applications, special attention is paid to 

the bases representing the solution of a differential or 

integral operator of propagation through a specific optical 

medium or system. As a rule, these are laser radiation 

modes. In addition, the bases that are optimal in terms of the 

presentation and transmission of optical information are of 

particular interest. For example, the Karhunen-Loeve basis, 

which provides the minimum number of expansion terms in 

the representation of a random signal, as well as 

eigenfunctions of bounded optical systems, the matching 

with which ensures the transmission of a signal with less 

distortion. Such complex basis functions, which sometimes 

even have no analytical representation, can be implemented 

in optics only by using the tools of diffraction optics. The 

scientific school of Professor Viktor A. Soifer, Academician 

of the Russian Academy of Sciences made a great 

contribution to the development of theoretical foundations 

and methods of diffraction optics. This article provides a 

brief overview of the achievements of the scientific school 

related to the formation and analysis of optical signals based 

on optimal orthogonal bases.     

II. LASER RADIATION MODES 

The plane wave basis is well known in optics, its 

spectrum can be generated in the focal plane of a lens. Along 

with the plane waves, expansion in conical waves is used 

often, these waves also correspond to the eigenfunctions of 

optical fibers with a constant refractive index, i.e. to Bessel 

modes. However, it is not so easy to perform optical 

expansion by the basis of conical waves. A zero-order Bessel 

beam can be formed using a glass cone (refractive axicon) 

[3], but the generation of high-order Bessel modes required 

the development of fundamentally different optical elements, 

which can be referred to with the concept of “Bessel optics” 

[4]. Hermite-Gaussian modes and Laguerre-Gaussian modes, 

which are the eigenfunctions of gradient media, are used 

widely in the theory of resonators, gradient waveguides, and 

paraxial optical systems [5]. When analyzing wavefront 

aberrations, the Zernike basis is used [6]. Generation, as well 

as optical decomposition by such bases, became possible 

only after the development of diffractive optical elements 

(DOEs). In the works of A.M. Prokhorov, I.N. Sisakyan, 

V.A. Soifer et al. [4, 7–10] it was proposed to synthesize 

optical elements - “modans” that generate and select 

individual laser radiation modes. A similar statement of the 

problem was contained in the article A.W. Lohmann, G.K. 

Grau et al. [11] published a year after the publication of 

M.A. Golub, A.M. Prokhorov, I.N. Sisakyan and V.A. Soifer 

[6]. These pioneering works were developed further at the 

scientific school of Professor Viktor A. Soifer, Academician 

of the Russian Academy of Sciences [12]. 

The group of Prof. V.V. Kotlyar calculated, and then 

produced in collaboration with Prof. S.N. Khonina and the 

group of Prof. J. Turunen (University of Joensuu, Finland) 

the DOEs that enable the formation of multimode laser 

beams with the pre-defined self-reproduction properties [13–

18]. 

III. KARHUNEN-LOEVE BASIS 

In addition to the bases listed above, other optimal bases 

are known that have no analytical representation. They are 

usually associated with additional conditions or restrictions 

imposed on optical systems or the optical signal. 

In the statistical approach to the description of signals, 

the optimal basis for representing particular realizations of 

random signals is the Karhunen-Loeve basis (KL) [19], in 

which the error rate averaged over the ensemble of 

implementations is minimal. That is, the KL expansion 

provides the minimum number of terms among all possible 

expansions in the representation of a random signal for a 

given mean square error [20]. This property is relevant for 

various applications: from recognition problems to the 

problem of increasing the stability of optical signal 

transmission under atmospheric turbulence [21–26].  

At the beginning of the 1990s, the problem of calculating 

the KL basis for the exponential cosine correlation function 

[27] was successfully solved at the Image Processing 
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Systems Institute of Russian Academy of Sciences (IPSI 

RAS), and then the possibility of its optical realization was 

studied [28, 29] in order to form decorrelated criteria of 

optical signals. In recognition of these results V.A. Soifer 

and S.N. Khonina received the First Prize of the German 

Society for the Advancement of Applied Informatics for the 

best scientific work in the field of image processing and 

pattern recognition in 1993. 

It becomes more and more urgent to tackle the issues 

related to the transmission of an optical signal over 

significant distances in free space, use of optical radiation 

for sensing the Earth’s surface, determining environmental 

parameters, location and navigation [30–32]. The use of 

optical radiation for these applications requires to take into 

account the effect of atmospheric turbulence [33–35]. 

Therefore, a lot of efforts are aimed at finding the possibility 

to overcome the negative impact of turbulence of the 

medium. An overview of the current situation in this area 

can be found in the joint publication of the researchers from 

IPSI RAS, Samara University and University of Miami [36]. 

Also, at the initiative of Academician V.A. Soifer, numerical 

and experimental studies were performed on the resistance 

of vortex beams to random fluctuations of the optical 

medium [37–42]. 

In order to analyze the ability of certain beams to 

maintain information stability (for example, the orbital 

angular momentum) under the influence of random 

fluctuations of the optical medium, numerical simulation or 

laboratory experiments with turbulence simulators are used, 

including diffusers, scattering screens and turbulence cells 

[43–44]. The synthesis of such a simulator of turbulence can 

be implemented using the KL expansion for the given 

correlation operators based on a search for the 

eigenfunctions of these operators [45–46]. 

IV. THE BASIS OF PROLATE SPHEROIDAL 

WAVE FUNCTIONS 

When analyzing and compensating the atmospheric 

distortions, not only the KL expansion, but also the basis of 

prolate spheroidal wave functions (PSWFs) is used [47]. 

According to the Fourier transform theory, a signal cannot 

be sharply bounded both in the object domain and in the 

spatial frequency band, but by using the PSWFs it is possible 

to provide the best field concentration in the object and 

spatial-frequency domains simultaneously [48–49]. PSWFs 

are also used in various applications: in the theory of antenna 

synthesis, in image-based reconstruction of objects, for 

superresolution, in the theory of resonators, in digital 

filtering [50–55]. At the beginning of 2000s, under the 

direction of V.A. Soifer a new stable method was developed 

at IPSI RAS for calculating the eigenvalues of the zero-order 

PSWFs for arbitrary parameter values [56], as well as for 

approximating the eigenfunctions by finite series [57–58]. 

Later, on the basis of the developed algorithms, the 

possibilities of applying the PSWF basis to the problems of 

forming non-diffraction beams [59–60] and increasing the 

resolution of imaging systems [61] were investigated. 

V. COMMUNICATION MODES 

The basis of spheroidal functions is closely related to the 

concept of communication modes [62–63], which are the 

eigenfunctions of some optical propagation operator. In 

particular, the communication modes in the Cartesian 

coordinate system for a finite (space-limited) Fourier 

transform correspond to prolate angular spheroidal functions. 

Spheroidal functions are also eigenfunctions for a two-lens 

system, in which an additional restriction appears in the 

plane of the spatial spectrum [48–49]. 

Another attractive feature of the communication mode 

method is that it simplifies free space diffraction to ordinary 

mathematical multiplication, thereby making it an interesting 

tool for propagating waves and synthesizing fields [64]. To 

implement this approach, methods of calculating DOEs 

correlated with PSWFs [65] were used at IPSI RAS. The 

possibility of optical generation of an arbitrary superposition 

of spheroidal functions allows to form optical fields passing 

through the corresponding optical systems without distortion 

[66–68]. 

The theory of communication modes (or eigenfunctions 

of optical operators) is applicable to arbitrary optical systems 

and electromagnetic waves [69–74]. 

A particular type of optical system is optical fiber. The 

current level of use of optical fiber for transmitting 

information over time and frequency channels tends to the 

limit of bandwidth. An additional increase in the number of 

information channels is possible on the mode division 

multiplexing (MDM) [10, 75]. This technology includes the 

transmission of information in various transverse modes on a 

single physical medium - optical fiber. The transmitted 

information can be contained in the mode structure and in 

the energy component carried by each mode in the laser 

beam individually. Moreover, multiplexing based on vortex 

beams associated with the orbital angular momentum is of 

the greatest interest [76–78]. For mode channel multiplexing 

based on the orbital angular momentum in real (bounded) 

fibers, it becomes necessary to calculate vortex 

eigenfunctions [78]. The propagation of an optical signal 

through multi-lens optical systems and gradient waveguides 

is well described by the fractional Fourier transform [79–84]. 

Spatial constraint inevitably leads to the necessity to 

consider spatially bounded propagation operators and 

calculate the corresponding eigenfunctions to simulate the 

propagation of an optical signal [85–86]. This approach 

allows both to understand the nature of optical signal 

distortions, and to form an approximation of the initial signal 

through decomposition by eigenfunctions of the lens system 

by analogy with the PSWFs. When forming such an 

approximation, a compromise can be observed between the 

accuracy of the approximation and the ability to transmit 

signal without distortion. 

VI. CONCLUSION 

Modern computing resources provide the possibility to 

calculate the eigenfunctions of fairly complex operators, 

including those describing near-field optics and scanning 

optical systems [87–88], thus the diffraction optics tools 

allow to implement these complex expansions in optics. In 

this area, the academic school of Academician V.A. Soifer 

has been at the level of world priorities for several decades 

[10, 89–93], creating new optical devices and forming 

advanced information technologies on this basis [94–97].  
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