
Datastores for Argumentation Data

Simon Wells1[0000−0003−4512−7868]

Edinburgh Napier University, Edinburgh, United Kingdom.
s.wells@napier.ac.uk

http://www.simonwells.org

Abstract. This paper introduces SADFace, a simple argument descrip-
tion format, and ArgDB, a datastore for managing datasets of SADface
documents, in the wider context of a nascent effort to develop an Open
Argumentation platform.

Keywords: Argumentation Datasets · Argumentation Tools · Argu-
mentation Software · Open Source Software · Open Development Plat-
forms.

1 Introduction

In recent years, there has been a gentle turn towards a more data-driven ap-
proach to argumentation research and whilst research in argumentation theory
has always been rooted in real world practise, studying examples of actual argu-
mentative behaviour amongst people, the increasing use of digital machinery to
process and engage in argument is leading to the creation of, and exploitation of,
ever larger argumentative datasets. A problem arises when a software developer
begins to develop tools that are aimed at exploiting, facilitating, capturing, or
analysing online argumentation; they often have to start from scratch, building
on the published research output. This is the traditional mode of exploitation
of research findings, but it represents an opportunity whereby, if a little more
effort is made to enable the development of public argumentation systems, then
a variety of rich sources of argumentative data might be created which can in
turn be utilised in more data-intensive argumentation research such as Argument
Mining[5]. This paper reports on an ongoing and open-ended effort to provide a
set of free, open-source, and open-development, tools, libraries, and formats that
can underpin future generations of digital argumentation software. The core of
the system reported here is a format for describing argument data and a data-
store for holding that data. These are introduced in the context of argument
analysis, using the MonkeyPuzzle tool, but actually form core technologies for
the Open Argumentation PLatform (OAPL)1 [14].

Whilst much argumentation software has been developed over the years, sup-
porting a wide range of argumentation-related tasks (including Araucaria [9],
Arvina [4], Carneades [3], Rationale [1] to name but a few), considerably less

1 http://www.openargumentation.org

CMNA’20 - F. Grasso, N. Green, J. Schneider, S. Wells (Eds) - 8th September 2020

Copyright c©2020 for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

32 S. Wells

effort has gone into producing a sustainable eco-system of tools that can work
together, can support a distinct and identifiable set of argumentation-oriented
workflows, and which can bring applied argumentation theory out of the lab and
into the wider software and computational communities. Some efforts have oc-
curred to promote some cohesion between software, most notably the Argument
Interchange Format (AIF)[2], however this hasn’t seen the kind of community
uptake and tooling provision that is necessary for it to fulfill a role as the inter-
face to argument data for the wider software community. Rather, the AIF has
arguably developed into a useful and powerful theoretical and ontological model
but lacks the ease of use and immediacy that characterises many tools, especially
in the Web arena, that see significant and wide-spread uptake. An example of
this occurring in data representation would be comparing the power and exten-
sibility, and consequent challenge to ease of use, of RDF and XML languages
and technologies, versus JSON which has arguably become the standard for data
interchange on the Web.

It is important to note that whilst proposals are made herein for particular
tools to achieve specific aims, e.g. SADFace to describe structured argument
and ArgDB to store those structures, this is not meant to occur in an exclusive
fashion. An ideal outcome is that there is a healthy ecosystem of inter-operable
argumentation software, featuring a multitude of ways to achieve the various
goals that a developer or researcher might set and that it is easy for any one,
or even for all, of the tools in a given toolchain to be exchanged for alterna-
tives. There is some healthy development in this area, particularly in the tooling
around ArgDown2 [11] and the continued development of the Carneades argu-
mentation system. This work differs in somewhat to each of these, aiming to
provide a more comprehensive set of tools than ArgDown, and providing a less
integrated and more flexible toolset than Carneades, but coexisting with each.
The remainder of this paper is structured as follows: In sections 2 and 3 the un-
derpinning technologies, SADFace and ArgDB, respectively for this architecture,
are introduced. In section 4 a brief overview of an argument analysis pipeline is
explored. Finally, in section 5, some directions for future work, and the wider
context of an open argumentation platform, are discussed.

2 SADFace

The Simple Argument Description Format (SADFace) is a JSON3 language for
describing and sharing structured argument data. JSON is a lightweight data
interchange format that is generally considered to be more human-readable than
competitor formats like XML or RDF. This means that SADFace can easily be
manipulated by a person using a plain-text editor. However, to do so misses out
on the additional tooling that supports the SADFace language. In the remainder
of this section, we will give an overview of the SADFace language in section 2.1
before describing the supporting tools and library implementations in section 2.2,

2 https://argdown.org/
3 https://www.json.org/json-en.html

Datastores for Argumentation Data 33

before briefly discussing the role of SADFace in relation to the AIF in section 2.3.
Detailed information regarding SADFace is available from the Git repository4.

2.1 SADFace Language

SADFace is a simple JSON based Argument description format, software li-
brary, and supporting tools to enable developers and researchers to describe
arguments, capturing content and associated metadata, and to then easily reuse
their data. The goal is to make it as easy as possible to incorporate argument
data into modern software. There are a number of argument description and
markup languages, for example, the Argument Markup Language (AML) and
the Argument Interchange Format (AIF). Both have their advantages and dis-
advantages, AML is a simple tree-based format, but is challenging to parse,
and requires an XML toolchain, something that is falling out of favour amongst
main-stream web toolchains. AIF on the other hand provides an excellent, ex-
tensible high-level ontology for representing arguments, dialogues, schemes, and
many peripherally related concepts. However with AIF that flexibility has the
price of opaque terminology and complexity, both in terms of underlying model
and in terms of the required RDF and XML toolchains. Where both of these
formats fail is in the documentation, support, and maturity of libraries for users
who want to work with them. It is a big, perhaps prohibitive, requirement for
a developer to start their adoption of a format by first having to write a parser
or library for it. A more preferable set of circumstances is for the developer to
be able to merely import a pre-made and tested library for their chosen lan-
guage. SADFace seeks to address some perceivable drawbacks of other formats.
It has a simple underlying but extensible model that is compatible with core
AIF concepts, clear extension points for domain specific analysis and represen-
tation tasks, tooling to support import from other formats, e.g. AML and AIF,
an open source canonical implementation maintained in a public Git repository,
documentation, supporting tools for creation, editing, and manipulation, liberal
(GPL3) licensing, and an open development model in which anyone is free to
contribute enhancements or to fork their own development branch. A developer
should be able to adopt SADFace and start describing arguments or using those
descriptions, really easily. Parsing a SADFace document into a Javascript ap-
plication should not require any special tools, it is just JSON. The structure of
the format has been designed to align with a straightforward model of argument
structure, defined in such a way as to align with most of the intuitions that an
everyday understanding of argument will include, whilst still supporting more
advanced features.

In SADFace, arguments are constructed from statements (or strings) that
capture a “claim”. These statements are called “Argument Atoms”, or just
“atoms”. A simple argument is a collection of such atoms that are linked to-
gether. For a simple argument one of the atoms is a conclusion, and the other
atoms in that argument are premises. The exact way that premises support a

4 https://github.com/Open-Argumentation/SADFace

34 S. Wells

conclusion is captured by the idea of argumentation schemes[12]. An argumen-
tation scheme describes a stereotypical pattern of argumentative reasoning, so
different arguments can be categorised into different types. In SADFace atom
nodes are not directly linked to each other but are linked via an “Argumenta-
tion Scheme Node”, or “scheme” node. Whilst we often characterise arguments
in terms of a directed graph, with the premises leading to a conclusion, which in
turn might act as a premise in a further argument, with some other conclusion,
SADFace edges are bi-directional, enabling a programmer to move through the
argument graph easily in either direction. A SADFace document contains a set
of nodes, a set of edges, and metadata. Edges are simple, they have an ID so
that the instance of the edge can be uniquely identified from all other edges,
and they also have a source and a target. The source and target in an edge are
both IDs of nodes, i.e. the ID of the node that this edge goes from, the source
ID, and the ID of the node that this edge goes to, the target ID. Nodes are
slightly more complicated, currently there are two types of node, atom nodes
and scheme nodes. Atoms and schemes are connected using the aforementioned
edges. Metadata captures data associated with the document, who analysed,
when this happened, a title, additional notes, etc. An optional element of SAD-
Face is the resources section which records all of the sources that the argument
has been analysed from. This enables a single SADFace document to reference
multiple underlying originating sources of content and opens the way for an
analysis to capture an entire target domain, rather than a single source text.
An example SADFace document is shown in Fig. 1. An important aspect of the
SADFace design is the defined extension points so that end-users add their own
metadata, to suit their own problem domain, in namespaced sections (where the
“core” namespace is reserved for SADFace usage) to which they can add their
own metadata. Such sections are referred to as ‘regulated’ sections. Additionally,
the validation methods provided in the SADFace libraries work on the following
two principles: firstly, the required sections must be present but additional sec-
tion will be ignored, and secondly, all required sections and all regulated sections
must be correctly formed.

2.2 SADFace Implementation & Tooling

There are currently two library implementations supporting SADFace, a Python
3 and a JavaScript implementation which are developed primarily to provide na-
tive library APIs within their respective languages. The JavaScript implementa-
tion is intended to enable web apps, running in the browser, or hosted in Node.JS,
to read, write, and verify SADFace documents. The Python implementation is
more mature than the JavaScript implementation and provides supporting tools
for interacting with SADFace documents beyond merely creating and updating
them. For example, the Python implementation additionally support upgrading
and downgrading versions of SADFace as the format develops, enhanced valida-
tion, pretty-printing, as well as import and export to other formats like AML,
AIF, and Dot/GraphViz. In addition to use as a library, the Python implemen-
tation has other modes of usage including a scriptable command line interface

Datastores for Argumentation Data 35

{"edges": [

{

"id": "3df54ae1-fa41-4ac7-85d5-4badee39215b",

"source_id": "70447169-9264-41dc-b8e9-50523f8368c1",

"target_id": "ae3f0c7f-9f69-4cab-9db3-3b9c46f56e09"

},

...

],

"metadata": {

"core": {

"analyst_email": "siwells@gmail.com",

"analyst_name": "Simon Wells",

"created": "2019-04-22T23:52:30",

"description": "An example SADFace document showing an argument

analysis of the Hangback cycle safety campaign from the

STCD corpora.",

"edited": "2019-04-22T23:52:30",

"id": "42e56df7-4074-40d8-8ea1-4fca5321dd31",

"notes": "This is incomplete because the analysis in Pangbourne

\& Wells (2018) has much more argumenative content.",

"title": "Hangback Example",

"version": "0.2"

}

},

"nodes": [

{

"id": "ae3f0c7f-9f69-4cab-9db3-3b9c46f56e09",

"metadata": {},

"sources": [],

"text": "The ’Hang Back’ campaign video should not have been

published, and should be withdrawn.",

"type": "atom"

},

...

],

"resources": []}

Fig. 1. A simple example of a SADFace document that illustrates the four main blocks
that comprise a SADFace document; the edge set, the nodes set, the resources set, and
the metadata. To conserve space, multiple edge and nodes instances have been elided
and replaced with

36 S. Wells

that exposes most core API functions from the SADFace library. This is use-
ful for incorporating SADFace within a pipeline or shell script, for example, to
take an AML document, convert it to SADFace, then to export the resulting
file to a DOT representation and pipe it to GraphViz, ultimately yielding an
image file for visualisation. Furthermore, there is a Read-Evaluate-Print-Loop
(REPL) that enables users to interactively construct and manipulate SADFace
documents from within a text oriented shell interface.

2.3 SADFace & The Argument Interchange Format

The question, ‘why not just use the AIF?’ is appropriate and will now be ad-
dressed. AIF is an excellent, general-purpose, upper ontology for representing
and describing argumentation concepts in an extensible fashion. The AIF has
enabled argumentation researchers to distinguish a variety of argument-related
concepts and to describe those concepts in technical detail sufficient for computa-
tional exploitation. For example, describing concepts related to Argumentation
Schemes [7], Dialogue [10], and social interaction [6]. However, whilst theoret-
ical extensions to the AIF have continued to develop, and the AIF provides a
useful lingua franca for effective communication and understanding between re-
searchers, this has not been matched by uptake amongst software developers in
subsequent years, despite some effort to present a cohesive online presence5. For
example, whilst the web has developed into a de facto environment for discussion,
the infrastructure for exploiting and reusing the content of those discussions, has
not kept pace. The AIF does not have a canonical implementation, for exam-
ple, a software library, that enables developers to exploit the rich theoretical
knowledge captured therein. SADFace has been developed to be consistent with
AIF design principles, such as the graph based core structure and restriction
on edges carrying data, but a key design decision was to be consistent, under-
standable, and build around a small, solid extensible core that is reified in a
canonical software implementation, and which is in turn underpinned by testing
and documentation.

3 ArgDB

The Argument Database (ArgDB) is a datastore and supporting software for col-
lecting, manipulating, interacting with, and reusing, analysed and structured ar-
gumentation data described using the SADFace format. More specifically, ArgDB
is a set of Python tools for creating, managing, and searching multiple datasets
of SADFace documents. Python was selected because it is a mature language
that is widely used and is particularly prevalent in server-side Web development,
in data science, and in modern, data-driven AI research. As a result the use of
Python should reduce the barrier to entry for adoption of ArgDB in those areas.
The idea is that those using argumentative data may need to keep some datasets

5 http://www.argumentinterchange.org/

Datastores for Argumentation Data 37

separate from others, for example, if working on different funded projects, or be-
cause of the nature of the data requires heightened security or privacy steps to be
taken such as when working with private, personal, medical, or legal argument
data. A core design decision is support for multiple, separate databases that can
all be managed from a single ArgDB instance. This enables a user to store cohe-
sive datasets separate from each other, if collating everything together is undesir-
able, or else to mix argument documents together as required by their own goals.
Technically, ArgDB provides a set of argumentation task oriented interfaces to
a pre-existing, underlying database technology. Presently this technology is the
Apache CouchDB6 a JSON document store that provides map-reduce based
indexing and search capabilities together with an HTTP/JSON API and repli-
cation and synchronisation capabilities. Whilst there are other datastores that
provide an overlapping set of features which might have sufficed for present pur-
poses, out-of-the-box CouchDB provides all of the functionality necessary for the
current ArgDB, as well as a pathway towards future features. For example, one
very desirable feature would be to enable researchers and groups to easily share
and replicate argumentative datasets, a feature that can be built into ArgDB
by exploiting CouchDB’s existing replication and synchronisation features. De-
tailed information regarding SADFace installation and usage is available from
the project’s Git repository7.

3.1 ArgDB Interfaces

The ArgDB tools are implemented in Python 3, support a variety of ways to in-
teract with the ArgDB, and are designed to support the construction of a variety
of workflows. Current interfaces include an application programming interface, a
command line interface (CLI), a read-evaluate-print loop (REPL), and a graph-
ical user interface (GUI). A single Python implementation hosts the core of the
ArgDB functionality, which provides an API for interacting with the underlying
CouchDB software. This API is intended for integration of ArgDB functionality
within end-users own software applications. This API is also used by the CLI,
REPL, and GUI interfaces to access ArgDB functionality. The CLI provides a
scribtable interface, enabling single command line invocations, or more exten-
sive scripts to create and delete databases, to verify, add, update, and delete,
SADFace documents within those databases, and to search the contents of the
stored documents, either withing a single database or across multiple databases.
The GUI utilises a web view facilitated by the Python PyWebView8 project.
This enables an interface based upon the core web technologies, HTML, CSS,
and JavaScript to be provided, in a cross-platform fashion, to multiple operating
systems. The web view provides an interface to the native installed web browser
and enables the ArgDB GUI to appear as a local graphical application. The cur-
rent GUI interface is shown in Fig. 2 and is currently, primarily, focussed upon
exposing the search facility to users.

6 https://couchdb.apache.org/
7 https://github.com/Open-Argumentation/ArgDB
8 https://pywebview.flowrl.com/

38 S. Wells

Fig. 2. The GUI for ArgDB displaying the search box in the center above a drop-down
widget for restricting search to a specific SADFace document key, for example, analyst
ID, scheme name, or date range.

4 Case Study: Using MonkeyPuzzle to construct a
persistent collection of analysed argumentative data

In order to demonstrate ArgDB in earnest requires a source of argumenta-
tion data. The easiest method is to generate newly analysed arguments, rep-
resent these analyses using SADFace, and to store the result in ArgDB. This
is merely one of the core workflows that is currently supported but is not the
end-goal9. MonkeyPuzzle [15] is a browser-based, open-source, argument analy-
sis web-interface. It currently runs either standalone or hosted on a web server.
Basic interaction is in the style familiar from Araucaria, text is selected from a
resource pane and used to create a new node in the diagram. Nodes are then
linked together via scheme nodes to construct arguments in which the arrow
directed out from a scheme indicates a conclusion, and arrows directed towards
a scheme indicate premises. Users can load an argumentative text into Monkey-
Puzzle and analyse it in the fashion of Rationale or Araucaria. The analysed
argument can be exported to a SADFace document using the JavaScript SAD-
Face library and imported into an ArgDB database. This structured argument
document can then be retrieved, updated, or deleted from the resulting dataset
but is persisted ready for retrieval in other contexts.

9 See the future work described in section 5 for an indication of the kinds of workflows
that are in active development

Datastores for Argumentation Data 39

Fig. 3. The user interface of MonkeyPuzzle displaying a demo argument analysis.

5 Conclusions & Future Work

To conclude, we have presented two technologies, SADFace and ArgDB, that
work together to provide a data storage platform for structured argumentation
data. One strand of future work will involve continuing to enhance the core
SADFace technology whilst exposing any new functionality via ArgDB. A sec-
ond strand of work places these two technologies at the core of a wider ‘Open
Argumentation PLatform’ (OAPL). This is a nascent effort to stimulate the
development of a set of open source argumentation technologies that (1) work
together to provide a coherent set of argument oriented toolchains and work-
flows (to support (a) automated reasoning using the ALIAS tool and library
[16], (b) argument mining [13], and (c) dialogical interaction based upon the
Dialogue Game Description Language (DGDL) [17]), (2) can form the basis of
new research directions, (3) have a long-term, open development plan, and (4)
which can be integrated more easily into the wider world of computing, perhaps
to help fulfill some of the promise of an Argument Web[8].

References

1. ter Berg, T., van Gelder, T., Patterson, F., Teppema, S.: Critical Thinking: Rea-
soning and Communicating with Rationale. CreateSpace Independent Publishing
Platform (2013)

40 S. Wells

2. Chesnevar, C., McGinnis, J., Modgil, S., Rahwan, I., Reed, C., Simari, G., South,
M., Vreeswijk, G., Willmott, S.: Towards an Argument Interchange Format. Knowl-
edge Engineering Review 21(4), 293–316 (2006)

3. Gordon, T.F.: Visualizing Carneades Argument Graphs. Law, Probability and Risk
6(1–4), 109–117 (2007)

4. Lawrence, J., Bex, F., Reed, C.: Dialogues on the Argument Web: Mixed Initiative
Argumentation with Arvina. In: Proceedings of the 4th International Conference
on Computational Models of Argument (COMMA 2012). pp. 513–514. IOS Press,
Vienna (2012)

5. Lawrence, J., Reed, C.: Argument Mining: A Survey. Computational Linguistics
45(4), 765–818 (2019)

6. Lawrence, J., Snaith, M., Konat, B., Budzynska, K., Reed, C.: Debating Tech-
nology for Dialogical Argument: Sensemaking, Engagement, and Analytics. ACM
Transactions on Internet Technologies 17(3), 1–23 (2017)

7. Rahwan, I., Banihashemi, B., Reed, C., Walton, D., Abdallah, S.: Representing
and Classifying Arguments on the Semantic Web. The Knowledge Engineering
Review. 26(4), 487–511 (2010)

8. Rahwan, I., Zablith, F., Reed, C.: Laying the Foundations for a World Wide Ar-
gument Web. Artificial Intelligence 171, 897–921 (2007)

9. Reed, C., Rowe, G.: Araucaria: Software for Puzzles in Argument Diagramming
and XML. Tech. rep., University Of Dundee (2001)

10. Reed, C., Wells, S., Rowe, G.W.A., Devereux, J.: Aif+: Dialogue in the Argu-
ment Interchange Format. In: Proceedings of the 2nd International Conference on
Computational Models of Argument (COMMA 2008) (2008)

11. Voigt, C.: Argdown and the Stacked Masonry Layout: Two User Interfaces for Non-
Expert Users. In: Proceedings of the 2014 conference on Computational Models of
Argument: Proceedings of COMMA 2014. pp. 483–484. IOS Press, Amsterdam
(2014)

12. Walton, D.N.: Argumentation Schemes for Presumptive Reasoning. Lawrence Erl-
baum Associates (1996)

13. Wells, S.: Argument Mining: Was Ist Das? In: Proceedings of the 14th International
Workshop on Computational Models of Natural Argument (CMNA14) (2014)

14. Wells, S.: The Open Argumentation PLatform (oapl). In: Proceedings of the 8th
International Conference on Computational Models of Argument (COMMA 2020)
(2017)

15. Wells, S., Douglas, J.: Monkeypuzzle: Towards Next Generation, Free & Open-
Source, Argument Analysis Tools. In: Proceedings of the 17th International Work-
shop on Computational Models of Natural Argument (CMNA17) (2017)

16. Wells, S., La Greca, R.: Introducing ALIAS. In: Proceedings of the 15th Inter-
national Workshop on Computational Models of Natural Argument (CMNA15)
(2015)

17. Wells, S., Reed, C.: A Domain Specific Language for Describing Diverse Systems
of Dialogue. Journal of Applied Logic 10(4), 309–329 (2012)

