
Using Object Variants to Support
Context-Aware Interactions

Michael Grossniklaus and Moira C. Norrie

Institute for Information Systems, ETH Zurich
CH-8092 Zurich, Switzerland

{grossniklaus,norrie}@inf.ethz.ch

Abstract We discuss the need to extend general models and systems
for context-awareness to include adaptation of interactions to context.
Our approach was motivated by our experiences of developing mobile
applications based on novel modes of interaction. We describe how we
were able to support context-aware interactions using an object-oriented
framework that we had already developed to support context-aware web
applications.

1 Introduction

Context-awareness in web engineering involves the adaptation of applications
to user situations. At the level of models and frameworks to support web en-
gineering, several generic approaches have been proposed to allow application
developers to determine what notions of context and adaptation are relevant
to specific applications. General models and mechanisms have therefore been
developed that can cater for various forms of adaptation that correspond to per-
sonalisation, internationalisation, multi-channel access, location-awareness etc.
Furthermore, for full generality, it should be possible to adapt any aspect of a
web application, including content, structure and presentation.

However, one aspect that has received relatively little attention is the need to
adapt interaction processes to context and how existing models and mechanisms
can be generalised to support this. Our experiences have shown that supporting
mobile and ubiquitous applications often involves working with new modes of
interaction resulting from the characteristics of the different devices used. The
nature of these devices is such that the linearity of traditional web-based trans-
actions may be lost and input data may be assembled from various sources and in
different orders rather than being specified in a single step. This also means that
users need to be carefully guided through the interaction so that they are aware
of the current interaction state. An important factor here is that users can be
supplied with context-dependent help information according to the interaction
state.

In this paper, we describe how we were able to exploit an object-oriented
framework that was developed to support context-aware web engineering to sup-
port context-aware interactions. We begin in Sect. 2 with a discussion of related

2 M. Grossniklaus et al.

work and a motivation of our approach. Sect. 3 presents the main features of
the object-oriented framework and how it supports context-awareness through a
notion of multi-variant objects. In Sect. 4, we show how the mechanisms used to
supported context-awareness in our framework could be used to support context-
aware interactions. Section 5 provides a general discussion of the approach and
directions of future work. Concluding remarks are given in Sect. 6.

2 Background

The need for context-awareness is well documented in the field of web engineer-
ing. Its impact can be witnessed in several model-based approaches and a few
implementation platforms recently proposed. For example, the Web Modelling
Language (WebML) [1] has been extended with primitives that allow adaptive
and context-aware sites to be modelled [2]. To manage context information,
the data model is extended with a context model that is specific to the devel-
oped application. To gather context information, two additional units—Get URL

Parameter and Get Data—have been introduced. The first unit retrieves con-
text information sent to the server by the client device encoded in the URL.
The second unit extracts context information according to the context model
from the database on the server. Each page that is considered to be context-
dependent is associated in the model with a context cloud that contains the
adaptation operation chains. These operation chains can be built from the stan-
dard WebML operation units as well as from units that have been introduced to
model conditional or switch statements in the specification of workflows. When a
context-aware page is requested, the corresponding operation chain is executed
and the content of the page adapted accordingly. However, in order to adapt
the content itself, the context-dependent entities in the data model have to be
associated with entities representing the relevant context dimensions. Depend-
ing on the complexity of the application, this can lead to a very cumbersome
data model that is no longer true to the orthogonal notion of context. Apart
from such content adaptation, it is also possible to adapt the navigation and
the presentation. The newly introduced Change Site View unit can be used to
forward a client from one site view to another, whereas the Change Style unit
adapts the web site in terms of colours and font properties. Another extensions
to WebML allows reactive web applications [3] to be specified. The proposed
approach uses the Web Behaviour Model (WBM) in combination with WebML
to form a high-level Event-Condition-Action (ECA) paradigm. WBM uses the
notion of timed finite state automatons to specify scripts that track the users’
navigation on the web site. When a WBM script reaches an accepting state, the
condition it represents is fulfilled and the corresponding actions in the form of
a WebML operation chain are executed as soon as the associated event occurs.
Based on this graphical ECA paradigm, applications such as profiling to infer
a user’s interests or updating specific values within the user model as well as
adapting to this information can be specified and implemented automatically
based on an intuitive model.

Context-Aware Interactions 3

The Hera methodology [4] is a model-driven approach that integrates con-
cepts from adaptive hypermedia systems with technologies from the semantic
web. Faithful to its background of adaptive hypermedia systems, the specifica-
tion of adaptation has always been an integral part of the Hera methodology [5].
Hera distinguishes between static design-time adaptation called adaptability and
dynamic run-time adaptation called adaptivity. The design artefacts of all three
models used in the development process can be adapted by annotating them
with appearance conditions. Depending on whether the condition specifies an
adaptability or adaptivity rule, they are evaluated during the generation step or
at run-time. If a condition evaluates to true, the corresponding artefact will be
presented to the user, otherwise it is omitted. Thus, alternatives can be specified
using a set of mutually exclusive appearance conditions. Similar to the approach
taken by WebML, web sites that have been designed with Hera are implemented
by using the conceptual models to configure a run-time environment. The Hera
Presentation Generator (HPG) [6] is an example of such a platform that com-
bines the data stored as RDF with the models represented in RDFS to generate
an adapted presentation according to user preferences as well as device capabil-
ities. The presentation compiled by the Hera presentation generator is rendered
as a set of static documents that contain the mark-up and the content for one
particular class of clients. Hence, with this approach, it is only possible to im-
plement appearance conditions that express design-time adaptability. More re-
cently, an alternative implementation platform for Hera has been proposed based
on the AMACONT [7] project. Based on a layered component-based XML doc-
ument format [8], reusable elements of a web site can be defined at different
levels of granularity. The document components that encapsulate adaptive con-
tent, navigation and presentation are then composed through aggregation and
interlinkage into adaptive web applications. The proposed document format has
three abstraction levels—media components, content unit components and doc-
ument components—mirroring the iterative development process of most web
sites. Adaptation is realised by allowing components of all granularities to have
variants. A variant of a component specifies an arbitrarily complex selection
condition as part of the metadata in its header. The decision as to whether a
component is presented to the user is made by the XSLT stylesheet that gener-
ates the presentation according to the current context. AMACONT’s publishing
process is based on a pipeline that iteratively applies transformations to a set
of input documents to obtain the fully rendered output documents. Through
the caching of partial results, intermediate steps can be reused multiple times
leading to improved performance.

In UML-based Web Engineering (UWE) [9], adaptation is based on the Mu-
nich Reference Model [10] for adaptive hypermedia applications. The architec-
ture and concepts of this reference model are based entirely on the previously
discussed Dexter and AHAM reference models. However, while Dexter has been
specified in Z without a graphical representation and AHAM has so far only
been defined informally, the Munich Reference Model being written in UML
offers both a graphical representation and a formal specification using the Ob-

4 M. Grossniklaus et al.

ject Constraint Language (OCL). The model uses the same layering as Dexter—
within-component, storage and run-time layers—and partitions the storage layer
in the same way as AHAM into a domain, user and adaptation model. In con-
trast to the existing models, the Munich Reference Model distinguishes three
forms of rule-based adaptation instead of two. To match the three layers of the
UWE methodology, these forms of adaptation are adaptive content, adaptive
links and adaptive presentation. A shortcoming of this rule-based approach is
that the rules exist outside the model and thus have no graphical representa-
tion. A possible solution to this problem has been proposed through the use of
aspects-oriented modelling techniques [11]. As adaptation logic is orthogonal to
the basic application logic, the cross-cutting nature of aspects provides a promis-
ing solution for separating the two. By introducing the concept of aspects, the
UWE metamodel has been extended to support adaptive navigation capabili-
ties such as adaptive link hiding, adaptive link annotation and adaptive link
generation.

So far, we have looked at the most influential conceptual models for web engi-
neering and in some cases their proprietary implementation platform. Apart from
those, general technologies to support context-awareness and adaptation haven
been developed. An example of such a solution is the web authoring language In-
tensional HTML (IHTML) [12]. Based on version control mechanisms, IHTML
supports web pages that have different variants and adapts them to a user-
defined context. The concepts proposed by IHTML were later generalised to form
the basis for the definition of Multidimensional XML (MXML) [13] which in turn
provided the foundation for Multidimensional Semistructured Data (MSSD) [14].
Similar to semi-structured data that is often modelled using the Object Ex-
change Model (OEM), MSSD is represented in terms of a graph model that
extends OEM with multidimensional nodes and context edges. In the resulting
Multidimensional Object Exchange Model (OEM), multidimensional nodes cap-
ture entities that have multiple variants by grouping the nodes representing the
facets. These variants are connected to the multidimensional node using context
edges. In contrast to the conventional edges used in OEM, the label of a context
edge specifies in which context the variant pointed to is appropriate. Using these
specifiers, a MOEM graph can be reduced to a corresponding OEM graph for
a given context. Based on this graph representation, a Multidimensional Query
Language (MQL) [15] has been defined that allows the specification of context
conditions at the level of the language. Thus, it can be used to formulate queries
that process data across different contexts.

A general and extensible architecture that supports context-aware data ac-
cess is proposed in [16]. Their approach is based on the concepts of profiles and
configurations. Context is represented as a collection of profiles that each specify
one aspect of the context such as the user, the device etc. Each profile contains
a set of dimensions that capture certain characteristics and are associated to
context values over attributes. Profiles are expressed according to the General
Profile Model (GPM) [17] that provides a graphical notation and is general
enough to capture a wide variety of formats currently in use to transmit context

Context-Aware Interactions 5

information as well as transforming from one format to another [18]. While such
profiles describe the context in which a request has been issued to the web in-
formation system, configurations express how the response should be generated.
A configuration has three parts that match the general architecture of web in-
formation systems in terms of content, structure and presentation. The content
part of the configuration is represented by a query formulated in relational al-
gebra. The definition of the structure part is expressed using WebML to define
the hypertext. Finally, the presentation part is specified using the notion of a
logical stylesheet which unifies languages such as Cascading Stylesheets (CSS).
Configurations are stored in a repository on the server side and matched to the
profiles submitted by the client as part of its request. The matching is done
based on adaptation rules consisting of a parametrised profile, a condition and
a parametrised configuration [19]. The profile allows parameters instead of val-
ues to be used that are then assigned the values specified in the client profile.
The condition constrains the values that are valid for the rule to be applied by
formulating a logical expression over the parameters. Finally, the configuration
includes the parameters value to adapt the content delivery. During the match-
ing process, the client profile is compared to the adaptation rules. If the client
profile matches the parametrised profile of the rule and the specified values fulfil
the condition, the parametrised configuration is instantiated and applied.

3 Multi-Variant Objects

As presented in the previous section, most model-based approaches offer at least
some support for context-aware web engineering. Some solutions even offer an
integrated implementation platform tailored to the capabilities and requirements
of the respective model. Most approaches, however, rely on standard components
such as application servers, content management systems or relational databases
to implement the modelled specifications. Unfortunately, as we will see, these
implementation platforms do not provide native support for context-awareness.
Therefore, this functionality has often to be implemented over and over again
leading to poor reuse of code and maintainability. In this section, we will present
multi-variant objects as an enabling concept for context-aware query processing
in information systems.

Multi-variant objects have been specified within the framework of an object-
oriented database management system developed at our institute. As this data-
base management system is built on the concepts defined by the OM [20] model,
we have decided to define our model as an extension of OM. OM is a rich and
flexible object-oriented data model that features multiple instantiation, multi-
ple inheritance and a bidirectional association concept. This model was chosen
as, due to its generality, it is possible to use it to implement other conceptual
models such as the Entity-Relationship (ER) model or the Resource Description
Framework (RDF). Further, the feature of multiple instantiation, i.e. the ability
of a single object to have multiple instances that exist on different paths along
the inheritance graph, is something that is of frequent use in the domain of web

6 M. Grossniklaus et al.

engineering. Imagine, for instance, a content management system that manages
users who have certain roles in the administration of the web site. Based on
these user roles, the types of the objects themselves will vary as they include
different attributes and methods. In most object-oriented systems, this is usually
modelled by defining the abstract concept of a user and then using inheritance
to define concrete subtypes of this user. Most of these systems however do not
provide a solution for the requirement that a user object needs to have two or
more of these subtypes at the same time, whereas in reality users can have any
number of roles, as someone can be, for example, both a site administrator and
a content editor. In OM, the feature of multiple instantiation can be used to
cater for exactly this kind of situation.

(1:1) (1:1)

(1:*)

(1:1)(1:*)

(1:*)

(1:*)(1:*) (1:1)

(1:*)

(0:*)

(1:*)

(0:*)

(1:1)(0:*)

(0:*)

(0:*)
(1:*)

(1:1)

object

Objects

instance

Instances

HasVariants

type

Types

ObjectTypes Variant
Types

attribute

Attributes

HasAttribute

Defines WithValue

value

Values

variant

Variants

(1:1)
Has

Revisions
revision

Revisions
(1:1)

HasInstance

Revision
Types

Instance
Type

(0:*) (0:*)

(1:1)
HasProperty

property

Properties

(1:1)

Latest
Revision

(1:1)

Default
Variant

Figure 1: Conceptual data model of an object

Therefore, in the original OM model, an object is represented by a number of
instances—one for every type of which the object is an instance. All instances of
an object share the same object identifier but are distinguishable based on the
type of which they are an instance. For the purpose of multi-variant objects, we
have broken this relationship between the object and its instances and introduced
the additional concept of a variant. As shown in the conceptual data model
represented in Fig. 1, in the extended OM model, an object is associated with a
number of variants which in turn are each linked to a set of revisions. Finally, each
revision is connected to the set of instances containing the actual data. As can
be seen from the figure, our model supports two versioning dimensions. Variants
are intended to enable context-aware query processing while revisions support
the tracking of the development process. However, for the scope of this paper we
will focus on variants exclusively and neglect the presence of revisional versions
in the model. Note that all versions of an object still share the same object
identifier tying them together as a single conceptual unit. As in the traditional
OM model, objects can be instantiated with multiple types and therefore both
objects and variants can be related to any number of types. A variant of an object
is identified by the set of properties associated with it. Any variant can have an

Context-Aware Interactions 7

arbitrary number of properties, each consisting of a name and a value. Finally,
instances are still identified based on their type. Hence they can only be linked
to exactly one of the types to which the object is related. Further, instances are
associated with values and thus contain the actual data of an object.

Before presenting how context-dependent queries are evaluated by our sys-
tem, it is necessary to briefly introduce the notion and representation of context
that we are using. In the setting of our context-aware information system, con-
text information is regarded as optional information that is used by the system
for augmenting the result of a query rather than specifying it. As a consequence,
such a system also needs a well defined default behaviour that can serve as a fall-
back in the absence of context information. In our approach, context information
is gathered outside the information system by the client application. Therefore,
it is necessary that client applications can influence the context information that
is used during query processing by the information system. To support this, a
common context representation that is shared by both components is required.
Since several frameworks for context gathering, management and augmentation
already exist, our intention was to provide a representation that is as general as
possible. Acknowledging the fact that each application has its own understand-
ing of context, this representation is based on the concept of a context space S
that defines the names of the context dimensions that occur in an application.
Each context dimension name can be associated with a value to form a context
value c = 〈name, value〉. Then, a context C(S) is a set of context values for
the dimensions specified by S. Finally, a context space denoted by C?(S) is a
special context that contains exactly one value for every context dimension of
S. While contexts are used to describe in which situation a particular variant
of an object is appropriate, the current context state of the system governs how
context-dependent queries are evaluated.

Context-aware queries over these multi-variant objects are evaluated using
the matching algorithm shown in Fig. 2 to select the appropriate variants when-
ever objects are accessed by the query processor. The algorithm takes an object
o and the current context state of the system C?(S) as inputs. First it retrieves
all variants of o that are linked to it through the HasVariants association. After
building the context state of each variant from the properties that are associ-
ated to it through HasProperty , the algorithm applies a scoring function fs to this
variant context state that returns a value measuring how appropriate the vari-
ant is in the current context. It then returns the variant of o that has obtained
the highest score smax. However, if the highest score is below a certain thresh-
old smin or if there are multiple variants with that score, the default variant is
returned.

Similar to context dimensions, the concrete definition of the scoring function
depends on the requirements of a context-aware application. Our system there-
fore allows the default scoring function to be substituted with an application-
specific function. As it is not possible to discuss all issues involved in designing
such a scoring function in the scope of this paper, we refrain from going into

8 M. Grossniklaus et al.

match(o, C?(S))
1 V0 ← rng(HasVariants dr({o}))
2 V1 ← V0 ∝ (x→ (x× rng(HasProperty dr({x}))))
3 V2 ← V1 ∝ (x→ (dom(x)× fs(C?(S), rng(x))))
4 smax ← max(rng(V2))
5 V3 ← V2 % (x→ rng(x) = smax)
6 if |V3| = 1 ∧ smax ≥ smin

7 then v ← V3 nth 1
8 else v ← rng(DefaultVariant dr({o})) nth 1
9 return v

Figure 2: Matching algorithm

further detail. Nevertheless, we will give an intuitive understanding of its effect
by means of examples in the next section.

4 Context-Aware Interactions

Based on the concept of multi-variant objects, we implemented a context-aware
content management system that was used as the server component of a mobile
tourist information system. The tourist information system was designed to assist
visitors to the city of Edinburgh during the art festivals held each year during the
month of August. A coarse overview of the architecture of the so-called EdFest
system [21,22] is shown in Fig. 3. The range of clients that are supported by
our system is shown on the left-hand side of the figure. Apart from traditional
clients that are based on desktop PCs and PDAs, EdFest introduced a novel
interaction channel based on interactive paper [23]. Our context-aware content
management system is shown on the right-hand side of the figure. It consists
of a web server that handles the communication with the clients, a server that
manages publishing metadata [24,25] and an application database that stores the
content of the EdFest application database. While the kiosk and PDA clients
are implemented using standard HTML, the paper client actually consists of two
publishing channels. The paper publisher [26] channel is used at design time to
author and print the interactive documents from the content managed by the
application database. The paper client channel is then active at run-time when
the system is used by the tourists and is responsible for delivering additional
information about festival venues and events by using voice feedback when the
users interact with the digital pen on the interactive documents.

Of the four publishing channels, the paper and PDA client are mobile and
have thus been integrated with the platform shown at the centre of the figure
that manages various aspects of context. A range of sensors gather location,
weather and network availability information that is then managed in a dedicated
context database [27]. Context information is sent from the client to the server
by encoding it in the requests sent to the content management server. This is
one of the tasks of the client controller component. It acts as a transparent

Context-Aware Interactions 9

PDA Client

Paper Client

Paper Publisher

Client Server

GPS
Sensor

Weather
Sensor

WLAN
Sensor

Client
Controller Web

Server

Kiosk Client

Metadata
Server

Context
Database

Application
Data Server

Figure 3: Overview of the EdFest architecture

proxy that intercepts requests and appends the current context state stored in
the context database. Another task of this component is to act as a server on
the client side, enabling the server to issue call-back requests to the client and
thus allowing proactive behaviour to be implemented.

In this paper, we do not go into further details of the functionality offered by
the EdFest system. A comprehensive description of the design and implemen-
tation of the system can be found in [28]. We instead focus on one particular
functionality that demonstrates the need for context-aware interactions. The
functionality we have chosen is the reservation process that allows tickets to be
booked interactively. To understand what context-aware interactions are, Fig. 4
compares the interaction process of the prototype kiosk interface to the process
on the paper client. At the top, Fig. 4(a) and (b) show the two different graph-
ical user interfaces. The kiosk interface offers an HTML form with text fields in
which the required information can be entered by the user. If all information has
been entered, the data is sent to the server by clicking the submit button. With
the paper client, the reservation process is quite different. Instead of entering all
information and submitting the form with all data at once, a request is sent to
the server for each parameter. The reason for this behaviour is that, in contrast
to the web-based user interface, the tourist needs to be guided through the pro-
cess by constant voice feedback. Also, this feedback serves as a confirmation of
the data entered that could not be perceived by the user otherwise. Therefore, to
book a ticket with the paper client, the tourist has to first start the reservation
process by pointing to the icon labelled “Start reservation”. The system then
instructs them to select the event for which they want to book tickets. This is
done by selecting the event with the digital pen in a separate brochure listing
all events. After an event has been selected, the number of tickets and the date
are set in much the same way. The server checks if the booking is valid and,
if so, sends a voice prompt to the client instructing the tourist to confirm the
reservation by clicking on the icon labelled “reserve”. At the bottom, Fig. 4(c)

10 M. Grossniklaus et al.

(a) Kiosk interface

Booking

Start reservation

reserve

Number of tickets

(b) Paper interface

?anchor=setReservation

?anchor=setReservation&id=309&event=o747
&date=2005-08-24&tickets=3&confirmed=true

Kiosk
Client

Content
Server

(c) Kiosk interaction

?anchor=setReservation

?anchor=setReservation&id=309

?anchor=setReservation&id=309&event=o747

?anchor=setReservation&id=309&event=o747
&date=2005-08-24

?anchor=setReservation&id=309&event=o747
&date=2005-08-24&tickets=3

?anchor=setReservation&id=309&event=o747
&date=2005-08-24&tickets=3&confirmed=true

Paper
Client

Content
Server

(d) Paper interaction

Figure 4: Comparison of the reservation process on different clients

and (d) illustrate the communication pattern that results from reserving tickets
using the kiosk and paper client, respectively. As can be seen in the figure, ac-
cessing the reservation process from the kiosk client results in two request and
response pairs where the first retrieves the empty form and the second uploads
all values to the server for processing. The picture in the case of the paper client
is quite different as each data value required to process the reservation request
is sent to the server encoded in an individual request. Additionally, the already
selected values have to be managed in a session on the client and retransmitted
with every request.

Implementing the server-side application logic that handles the reservation
process across multiple channels is a difficult task if the interaction patterns of
the different channels are as heterogeneous as in the given example. In the EdFest
system, our solution was inspired by the method dispatching strategies found in
object-oriented programming languages. Many object-oriented languages allow

Context-Aware Interactions 11

methods to be overloaded, i.e. support the definition of multiple versions of the
same method with different sets of arguments. At run-time, they select the so-
called most specific method from the set of applicable methods based on the
number and type of arguments given by the caller of the method. In its basic
nature, virtual method dispatching is not unlike selecting the best matching vari-
ant of an object. All that has to be done to simulate method dispatching based
on multi-variant objects is to define an object type that represents operations
and treat the parameters specified by the client as context values.

Figure 5 gives a graphical representation of the multi-variant method object
that was created to handle the setReservation process. As shown, for each con-
text state that occurs in the process shown in Figure 4(d), a variant of the object
is defined. As the context values that will be sent by the client cannot be known
beforehand, the context states describing the variants use the value +∗ which
indicates that a value for the corresponding context dimension has to be set but
the actual value is not important. The default variant is responsible for starting
the reservation process by generating a reservation number and initiates a ses-
sion on the client. All other variants of the object extract the provided context
data, update the application database accordingly and send back a response that
guides the visitor to the next step, except for variant o369@5[5] that informs
the tourists that they have completed the reservation process successfully.

setReservation

<id, +*>
<event, +*>

o369@0[0] o369@1[1]

<id, +*>

o369@2[2]

<id, +*>
<event, +*>
<date, +*>

o369@3[3] o369@4[4] o369@5[5]

<id, +*>
<event, +*>
<date, +*>
<tickets, +*>

<id, +*>
<event, +*>
<date, +*>
<tickets, +*>
<confirmed, true>

Figure 5: The setReservation object

The kiosk reservation process only needs to access the default variant and
the variant shown on the far right in the figure. In the case of the paper client,
however, the reservation process runs through all variants of the objects before
completing. An interesting aspect of implementing such processes is the way in
which errors made by the user are handled. Interacting with the paper client, it
is impossible to cause an error by entering incorrect values into the reservation
process as all data is chosen from the pre-authored paper documents. The tourist
can, however, deviate from the process by prematurely selecting parameters that
will only be gathered in a later step. In this case, the value will nevertheless be
stored in the client’s session but the response will be the same as before, asking
the tourist to select the value corresponding to the current step. When this value
is finally selected by the user, all steps that have been executed out of order are

12 M. Grossniklaus et al.

skipped automatically as those values have already been stored in the session on
the client.

While a tourist cannot deviate from the defined process in the web interface,
it is possible to enter arbitrary values as well as to leave out certain parameters
altogether. Hence, the system has to be able to additionally cope with these
errors. The logic to check whether the form has been completed correctly by the
user could be implemented on the client-side using embedded scripts. However,
this solution is not generally possible on all required delivery channels as scripting
capabilities, if present at all, vary substantially. Our approach to implementing
process functionality based on an object with multiple variants is already able to
handle cases where the tourist has failed to specify a required value. Even if they
are not required in situations where the tourist fills in the form correctly, in the
case of an error, the additional variants defined for the interactive paper process
can be used for error handling in the kiosk interface. An omitted parameter will
lead to the selection of one of these intermediate variants which will be rendered
for the client as a form where the missing parameter is highlighted. Although
context matching can provide a solution to missing values, it is not capable
of addressing the problem of handling errors caused by incorrect data. To also
implement this functionality, traditional parsing and error handling technique
have to be applied.

5 Discussion

Using the ticket reservation process available in the EdFest system as an ex-
ample, we have argued that interactive paper not only affects the way in which
content is accessed and delivered but also the nature of information interaction.
In EdFest, this problem was solved by creating context-aware operations that
were realised based on multi-variant objects. Apart from the aspects already
discussed, the interaction processes implemented for the interactive paper client
have additional interesting characteristics. Looking back at the communication
pattern between client and server given in Figure 4(d), a similarity to modern
web applications can be observed. In order to prevent page reloads and provide
immediate feedback to the user, many web sites nowadays use a technique called
Asynchronous JavaScript and XML (AJAX). As indicated by its name, AJAX
is a combination of existing technologies that are used together to provide more
interactive web pages. In AJAX, a web page uses client-side scripting to connect
to a server and to transmit values without reloading the whole page. At the time
of opening the connection, a response handler is registered that will be invoked
as soon as the request has been processed. Using JavaScript, the response han-
dler can then update the web page asynchronously by accessing the Document
Object Model (DOM) of the mark-up used to render the current page. Web
applications based on AJAX communicate with the server at a finer level of
granularity that is not unlike the interaction processes encountered on the paper
client. The solution presented here to handle such processes could therefore form

Context-Aware Interactions 13

the basis for integrating delivery channels that support AJAX with those that
do not.

The use of context in this implementation raises an interesting question. We
must ask ourselves whether it is sensible to apply the same mechanisms not only
to data but also to programs. We have conducted preliminary research into this
direction with the implementation of a prototype language that supports multi-
variant programming [29]. The language is an extension of Prolog that allows
predicate implementations to be defined for a given context state. The current
context state of the system is managed by library predicates that allow context
values to be set and removed. Before a context-aware Prolog program can be
executed, it needs to be loaded by a special parser that replaces all predicate
calls in the program with a call to a dispatching predicate that takes context into
consideration. Experiences gained from a set of example programs have shown
that the approach has its merits even though writing context-aware programs can
be quite challenging, especially if context-dependent predicates are allowed to
modify the context state. Naturally, our prototype implementation suffers from
a few limitations and problems such as poor performance. Also, it is still unclear
how to combine context-dependent predicate invocation with the backtracking
mechanism of Prolog. Nevertheless, we believe that the potential benefits of this
approach outweigh these challenges and will therefore continue to investigate the
application of our version model to programming languages.

6 Conclusions

In this paper we have motivated the need for implementation platforms that
allow context-aware applications to be implemented in a flexible and elegant
way. Our approach proposes to extend information systems with the concept
of multi-variant objects that form the basis for context-aware query processing.
Based on this concept, we have implemented a context-aware content manage-
ment system that has since been used to implement several web-based systems.
The most ambitious system implemented so far is a mobile tourist information
system targeted at visitors to the Edinburgh art festivals. Apart from traditional
client devices, this EdFest system also supports a mobile paper-based client. In
contrast to supporting conventional delivery channels where it is sufficient to
adapt the content, structure and presentation, a paper-based interface also re-
quires that the interaction process is adapted. As an example, we have discussed
the implementation of the reservation process based on the EdFest interactive
paper documents. In order to address the situation that the paper client re-
quires a different communication pattern than traditional browser-based clients,
we have created context-dependent interaction processes. Technically, these in-
teraction processes were realised through different implementation variants of
the database macro implementing the corresponding application logic. In this
setting, context has been used to dispatch the request made by the client to the
desired implementation similar to object-oriented programming languages that

14 M. Grossniklaus et al.

dispatch a call to an overloaded method dispatching based on the parameters
provided by the caller.

References

1. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: De-
signing Data-Intensive Web Applications. The Morgan Kaufmann Series in Data
Management Systems. Morgan Kaufmann Publishers Inc. (2002)

2. Ceri, S., Daniel, F., Matera, M., Facca, F.M.: Model-driven Development of
Context-Aware Web Applications. ACM Transactions on Internet Technology 7(2)
(2007)

3. Ceri, S., Daniel, F., Facca, F.M.: Modeling Web Applications Reacting to User
Behaviors. Computer Networks 50(10) (2006) 1533–1546

4. Houben, G.J., Barna, P., Frăsincar, F., Vdovják, R.: Hera: Development of Se-
mantic Web Information Systems. In: Proceedings of International Conference on
Web Engineering, July 14-18, 2003, Oviedo, Spain. (2003) 529–538

5. Barna, P., Houben, G.J., Frăsincar, F.: Specification of Adaptive Behavior Us-
ing a General-Purpose Design Methodology for Dynamic Web Applications. In:
Proceedings of Adaptive Hypermedia and Adaptive Web-Based Systems, August
24-26, 2004, Eindhoven, The Netherlands. (2004) 283–286

6. Frăsincar, F., Houben, G.J., Barna, P.: Hera Presentation Generator. In: Special
Interest Tracks and Posters of International Conference on World Wide Web, May
10-14, 2005, Chiba, Japan. (2005) 952–953

7. Fiala, Z., Hinz, M., Houben, G.J., Frăsincar, F.: Design and Implementation of
Component-based Adaptive Web Presentations. In: Proceedings of Symposium on
Applied Computing, March 14-17, 2004, Nicosia, Cyprus. (2004) 1698–1704

8. Fiala, Z., Hinz, M., Meissner, K., Wehner, F.: A Component-based Approach for
Adaptive, Dynamic Web Documents. Journal of Web Engineering 2(1-2) (2003)
58–73

9. Koch, N.: Software Engineering for Adaptive Hypermedia System. PhD thesis,
Ludwig-Maximilians-University Munich, Munich, Germany (2000)

10. Koch, N., Wirsing, M.: The Munich Reference Model for Adaptive Hypermedia
Applications. In: Proceedings of International Conference on Adaptive Hypermedia
and Adaptive Web-Based Systems, May 29-31, Malaga, Spain. (2002) 213–222

11. Baumeister, H., Knapp, A., Koch, N., Zhang, G.: Modelling Adaptivity with As-
pects. In: Proceedings of International Conference on Web Engineering, July 27-29,
2005, Sydney, Australia. (2005) 406–416

12. Wadge, W.W., Brown, G., Schraefel, M.C., Yildirim, T.: Intensional HTML. In:
Proceedings of International Workshop on Principles of Digital Document Process-
ing, March 29-30, 1998, Saint Malo, France. (1998) 128–139

13. Stavrakas, Y., Gergatsoulis, M., Rondogiannis, P.: Multidimensional XML. In:
Proceedings of International Workshop on Distributed Communities on the Web,
June 19-21, 2000, Quebec City, Canada. (2000) 100–109

14. Stavrakas, Y., Gergatsoulis, M.: Multidimensional Semistructured Data: Repre-
senting Context-Dependent Information on the Web. In: Proceedings of Inter-
national Conference on Advanced Information Systems Engineering, May 27-31,
2002, Toronto, Canada. (2002) 183–199

Context-Aware Interactions 15

15. Stavrakas, Y., Pristouris, K., Efandis, A., Sellis, T.: Implementing a Query Lan-
guage for Context-Dependent Semistructured Data. In: Proceedings of East-
European Conference on Advances in Databases and Information Systems, Septem-
ber 22-25, 2004, Budapest, Hungary. (2004) 173–188

16. De Virgilio, R., Torlone, R.: A General Methodology for Context-Aware Data
Access. In: Proceedings of ACM International Workshop on Data Engineering for
Wireless and Mobile Access, June 12, 2005, Baltimore, MD, USA. (2005) 9–15

17. De Virgilio, R., Torlone, R.: Management of Heterogeneous Profiles in Context-
Aware Adaptive Information System. In: Proceedings of On the Move to Mean-
ingful Internet Systems Workshops, October 31-November 4, 2005, Agia Napa,
Cyprus. (2005) 132–141

18. De Virgilio, R., Torlone, R.: Modeling Heterogeneous Context Information in
Adaptive Web Based Applications. In: Proceedings of the International Conference
on Web Engineering, July 11-14, 2006, Palo Alto CA, USA. (2006) 56–63

19. De Virgilio, R., Torlone, R., Houben, G.J.: A Rule-based Approach to Content
Delivery Adaptation in Web Information Systems. In: Proceedings of the Inter-
national Conference on Mobile Data Management, May 9-13, 2006, Nara, Japan.
(2006) 21–24

20. Norrie, M.C.: An Extended Entity-Relationship Approach to Data Management
in Object-Oriented Systems. In: Proceedings of International Conference on the
Entity-Relationship Approach, Arlington, TX, USA. (1994) 390–401

21. Belotti, R., Decurtins, C., Norrie, M.C., Signer, B., Vukelja, L.: Experimental Plat-
form for Mobile Information Systems. In: Proceedings of International Conference
on Mobile Computing and Networking, August 28-September 2, 2005, Cologne,
Germany. (2005) 258–269

22. Signer, B., Norrie, M.C., Grossniklaus, M., Belotti, R., Decurtins, C., Weibel, N.:
Paper-Based Mobile Access to Databases. In: Demonstration Proceedings of ACM
SIGMOD International Conference on Management of Data, June 27-29, Chicago,
IL, USA. (2006) 763–765

23. Signer, B.: Fundamental Concepts for Interactive Paper and Cross-Media Informa-
tion Spaces. PhD thesis, Eidgenössische Technische Hochschule, Zurich, Switzer-
land (2006)

24. Grossniklaus, M., Norrie, M.C.: Information Concepts for Content Management.
In: Proceedings of International Workshop on Data Semantics and Web Infor-
mation Systems, December 11, 2002, Singapore, Republic of Singapore. (2002)
150–159

25. Belotti, R., Decurtins, C., Grossniklaus, M., Norrie, M.C., Palinginis, A.: Interplay
of Content and Context. Journal of Web Engineering 4(1) (2005) 57–78

26. Norrie, M.C., Signer, B., Weibel, N.: Print-n-Link: Weaving the Paper Web. In:
Proceedings of the ACM Symposium on Document Engineering, October 10-13,
2006, Amsterdam, The Netherlands. (2006) 34–43

27. Belotti, R., Decurtins, C., Grossniklaus, M., Norrie, M.C., Palinginis, A.: Modelling
Context for Information Environments. In: Proceedings of International Workshop
on Ubiquitous Mobile Information and Collaboration Systems, June 7-8, 2004,
Riga, Latvia. (2004) 43–56

28. Signer, B., Grossniklaus, M., Norrie, M.C.: Interactive Paper as a Mobile Client
for a Multi-Channel Web Information System. To appear in World Wide Web
Journal (2007)

29. Schwarzentrub, B.: Multi-Variant Programming. Semester project, Institute for
Information Systems, ETH Zurich (2006)

