
Evolution of Web Applications with
Aspect-Oriented Design Patterns

Michal Bebjak1, Valentino Vranić1, and Peter Dolog2

1 Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technology

Slovak University of Technology,
Ilkovičova 3, 84216 Bratislava 4, Slovakia

bebjak02@student.fiit.stuba.sk, vranic@fiit.stuba.sk

2 Department of Computer Science
Aalborg University

Fredrik Bajers Vej 7, building E, DK-9220 Aalborg EAST, Denmark
dolog@cs.aau.dk

Abstract. It is more convenient to talk about changes in a domain-
specific way than to formulate them at the programming construct level
or—even worse—purely lexical level. Using aspect-oriented programming,
changes can be modularized and made reapplicable. In this paper, se-
lected change types in web applications are analyzed. They are expressed
in terms of general change types which, in turn, are implemented us-
ing aspect-oriented programming. Some of general change types match
aspect-oriented design patterns or their combinations.

1 Introduction

Changes are inseparable part of software evolution. Changes take place in the
process of development as well as during software maintenance. Huge costs and
low speed of implementation are characteristic to change implementation. Often,
change implementation implies a redesign of the whole application. The necessity
of improving the software adaptability is fairly evident.

Changes are usually specified as alterations of the base application behavior.
Sometimes, we need to revert a change, which would be best done if it was
expressed in a pluggable way. Another benefit of change pluggability is apparent
if it has to be reapplied. However, it is impossible to have a change implemented
to fit any context, but it would be sufficiently helpful if a change could be
extracted and applied to another version of the same base application. Such a
pluggability can be achieved by representing changes as aspects [5]. Some changes
appear as real crosscutting concerns in the sense of affecting many places in the
code, which is yet another reason for expressing them as aspects.

This would be especially useful in the customization of web applications.
Typically, a general web application is adapted to a certain context by a series
of changes. With arrival of a new version of the base application all these changes

have to be applied to it. In many occasions, the difference between the new and
the old application does not affect the structure of changes.

A successful application of aspect-oriented programming requires a struc-
tured base application. Well structured web applications are usually based on the
Model-View-Controller (MVC) pattern with three distinguishable layers: model
layer, presentation layer, and persistence layer.

The rest of the paper is organized as follows. Section 2 establishes a scenario
of changes in the process of adapting affiliate tracking software used throughout
the paper. Section 3 proposes aspect-oriented program schemes and patterns
that can be used to realize these changes. Section 4 identifies several interesting
change types in this scenario applicable to the whole range of web applications.
Section 5 envisions an aspect-oriented change realization framework and puts
the identified change types into the context of it. Section 6 discusses related
work. Section 7 presents conclusions and directions of further work.

2 Adapting Affiliate Tracking Software: A Change
Scenario

To illustrate our approach, we will employ a scenario of a web application
throughout the rest of the paper which undergoes a lively evolution: affiliate
tracking software. Affiliate tracking software is used to support the so-called
affiliate marketing [6], a method of advertising web businesses (merchants) at
third party web sites. The owners of the advertising web sites are called af-
filiates. They are being rewarded for each visitor, subscriber, sale, and so on.
Therefore, the main functions of such affiliate tracking software is to maintain
affiliates, compensation schemes for affiliates, and integration of the advertising
campaigns and associated scripts with the affiliates web sites.

In a simplified schema of affiliate marketing a customer visits an affiliate’s
page which refers him to the merchant page. When he buys something from the
merchant, the provision is given to the affiliate who referred the sale. A general
affiliate tracking software enables to manage affiliates, track sales referred by
these affiliates, and compute provisions for referred sales. It is also able to send
notifications about new sales, signed up affiliates, etc.

Suppose such a general affiliate tracking software is bought by a merchant
who runs an online music shop. The general affiliate software has to be adapted
through a series of changes. We assume the affiliate tracking software is prepared
to the integration with the shopping cart. One of the changes of the affiliate
tracking software is adding a backup SMTP server to ensure delivery of the
news, new marketing methods, etc., to the users.

The merchant wants to integrate the affiliate tracking software with the third
party newsletter which he uses. Every affiliate should be a member of the newslet-
ter. When selling music, it is important for him to know a genre of the music
which is promoted by his affiliates. We need to add the genre field to the generic
affiliate signup form and his profile screen to acquire the information about the
genre to be promoted at different affiliate web sites. To display it, we need to

modify the affiliate table of the merchant panel so it displays genre in a new
column. The marketing is managed by several co-workers with different roles.
Therefore, the database of the tracking software has to be updated with an ad-
ministrator account with limited permissions. A limited administrator should
not be able to decline or delete affiliates, nor modify campaigns and banners.

3 Aspect-Oriented Change Representation

In the AspectJ style of aspect-oriented programming, the crosscutting concerns
are captured in units called aspects. Aspects may contain fields and methods
much the same way the usual Java classes do, but what makes possible for them
to affect other code are genuine aspect-oriented constructs, namely: pointcuts,
which specify the places in the code to be affected, advices, which implement
the additional behavior before, after, or instead of the captured join point3, and
inter-type declarations, which enable introduction of new members into existing
types, as well as introduction of compile warnings and errors.

These constructs enable to affect a method with a code to be executed before,
after, or instead of it, which may be successfully used to implement any kind of
Method Substitution change (not presented here due to space limitations). Here
we will present two other aspect-oriented program schemes that can be used to
realize some common changes in web application. Such schemes may actually
be recognized as aspect-oriented design patterns, but it is not the intent of this
paper to explore this issue in detail.

3.1 Class Exchange

Sometimes, a class has to be exchanged with another one either in the whole
application, or in a part of it. This may be achieved by employing the Cuckoo’s
Egg design pattern [8]. A general code scheme is as follows:

public aspect ExchangeClass {
public pointcut exhangedClassConstructor(): call(ExchangedClass.new(..);
Object around(): exhangedClassConstructor() { return getExchangingObject();}
ExchangeObject getExchangingObject() {

if (. . .)
new ExchangingClass();

else
proceed();

}
}

The exhangedClassConstructor() is a pointcut that captures the ExchangedClass
constructor calls using the call() primitive pointcut. The around advice cap-
tures these calls and prevents the ExchangedClass instance from being created.
Instead, it calls the getExchangingObject() method which implements the ex-
change logic. ExchangingClass has to be a subtype of ExchangedClass.
3 Join points represent well-defined places in the program execution.

The example above sketches the case in which we need to allow the construc-
tion of the original class instance under some circumstances. A more complicated
case would involve several exchanging classes each of which would be appropriate
under different conditions. This conditional logic could be implemented in the
getExchangingObject() method or—if location based—by appropriate pointcuts.

3.2 Perform an Action After an Event

We often need to perform some action after an event, such as sending a noti-
fication, unlocking product download for user after sale, displaying some user
interface control, performing some business logic, etc. Since events are actually
represented by method calls, the desired action can be implemented in an after
advice:

public aspect AdditionalReturnValueProcessing {
pointcut methodCallsPointcut(TargetClass t, int a): . . .;
after(/∗ captured arguments ∗/): methodCallsPointcut(/∗ captured arguments ∗/) {

performAction(/∗ captured arguments ∗/);
}
private void performAction(/∗ arguments ∗/) { /∗ action logic ∗/ }

}

4 Changes in Web Applications

The changes which are required by our scenario include integration changes,
grid display changes, input form changes, user rights management changes, user
interface adaptation, and resource backup. These changes are applicable to the
whole range of web applications. Here we will discuss three selected changes and
their realization.

4.1 Integration Changes

Web applications often have to be integrated with other systems (usually other
web applications). Integration with a newsletter in our scenario is a typical
example of one way integration. When an affiliate signs up to the affiliate tracking
software, we want to sign him up to a newsletter, too. When the affiliate account
is deleted, he should be removed from the newsletter, too.

The essence of this integration type is one way notification: only the integrat-
ing application notifies the integrated application of relevant events. In our case,
such events are the affiliate signup and affiliate account deletion. A user can be
signed up or signed out from the newsletter by posting his e-mail and name to
the one of the newsletter scripts. Such an integration corresponds to the Perform
an Action After an Event change (see Sect. 3.2). In the after advice we will make
a post to the newsletter sign up/sign out script and pass it the e-mail address
and name of the newly signed up or deleted affiliate. We can seamlessly combine
multiple one way integrations to integrate a system with several systems.

Introducing a two way integration can be seen as two one way integration
changes: one applied to each system. A typical example of such a change is data
synchronization (e.g., synchronization of user accounts) across multiple systems.
When the user changes his profile in one of the systems, these changes should be
visible in all of them. For example, we may want to have a forum for affiliates. To
make it convenient to affiliates, user accounts of the forum and affiliate tracking
system should be synchronized.

4.2 Introducing User Rights Management

Many web applications don’t implement user rights management. If the web ap-
plication is structured appropriately, it should be possible to specify user rights
upon the individual objects and their methods, which is a precondition for ap-
plying aspect-oriented programming.

User rights management can be implemented as a Border Control design
pattern [8]. According to our scenario, we have to create a restricted adminis-
trator account that will prevent the administrator from modifying campaigns
and banners and decline/delete affiliates. All the methods for campaigns and
banners are located in the campaigns and banners packages. The appropriate
region specification will be as follows:

pointcut prohibitedRegion(): (within(application.Proxy) && call(void ∗.∗(..)))
|| (within(application.campaigns.+) && call(void ∗.∗(..)))
|| within(application.banners.+)
|| call(void Affiliate.decline(..)) || call(void Affiliate.delete(..));

}

Subsequently, we have to create an around advice which will check whether
the user has rights to access the specified region. This can be implemented using
the Method Substitution change applied to the pointcut specified above.

4.3 Introducing a Resource Backup

As specified in our scenario, we would like to have a backup SMTP server for
sending notifications. Each time the affiliate tracking software needs to send
a notification, it creates an instance of the SMTPServer class which handles
the connection to the SMTP server and sends an e-mail. The change to be
implemented will ensure employing the backup server if the connection to the
primary server fails. This change can be implemented straightforwardly as a
Class Exchange (see Sect. 3.1)

5 Aspect-Oriented Change Realization Framework

The previous two sections have demonstrated how aspect-oriented programming
can be used in the evolution of web applications. Change realizations we have
proposed actually cover a broad range of changes independent of the application

domain. Each change realization is accompanied by its own specification. On the
other hand, the initial description of the changes to be applied in our scenario
is application specific. With respect to its specification, each application specific
change can be seen as a specialization of some generally applicable change. This
is depicted in Fig. 1 in which a general change with two specializations is pre-
sented. However, the realization of such a change is application specific. Thus, we
determine the generally applicable change whose specialization our application
specific change is and adapt its realization scheme.

Fig. 1. General and specific changes with realization.

When planning changes, it is more convenient to think in a domain specific
manner than to cope with programming language specific issues directly. In
other words, it is much easier to select a change specified in an application
specific manner than to decide for one of the generally applicable changes. For
example, in our scenario, an introduction of a backup SMTP server was needed.
This is easily identified as a resource backup, which subsequently brings us to
the realization in the form of the Class Exchange.

6 Related Work

Various researchers have concentrated on the notion of evolution from automatic
adaptation point of view. Evolutionary actions which are applied when partic-
ular events occur have been introduced [9]. The actions usually affect content
presentation and navigation. Similarly, active rules have been proposed for adap-
tive web applications with the focus on evolution [4]. However, we see evolution
as changes of the base application introduced in a specific context. We use aspect
orientation to modularize the changes and reapply them when needed.

Our work is based on early work on aspect-oriented change management [5].
We argue that this approach is applicable in wider context if supported by a ver-
sion model for aspect dependency management [10] and with appropriate aspect
model that enables to control aspect recursion and stratification [1]. Aspect-
oriented programming community explored several specific issues in software
evolution such as database schema evolution with aspects [7] or aspect-oriented
extensions of business processes and web services with crosscutting concerns of
reliability, security, and transactions [3]. However, we are not aware of any work
aiming specifically at capturing changes by aspects in web applications.

7 Conclusions and Further Work

We have proposed an approach to web application evolution in which changes
are represented by aspect-oriented design patterns and program schemes. We
identified several change types that occur in web applications as evolution or
customization steps and discussed selected ones along with their realization. We
also envisioned an aspect-oriented change realization framework.

To support the process of change selection, the catalogue of changes is needed
in which the generalization-specialization relationships between change types
would be explicitly established. We plan to search for further change types and
their realizations. It is also necessary to explore change interactions and evaluate
the approach practically.

Acknowledgements The work was supported by the Scientific Grant Agency
of Slovak Republic (VEGA) grant No. VG 1/3102/06 and Science and Technol-
ogy Assistance Agency of Slovak Republic contract No. APVT-20-007104.

References

[1] E. Bodden, F. Forster, and F. Steimann. Avoiding infinite recursion with stratified
aspects. In Robert Hirschfeld et al., editors, Proc. of NODe 2006, LNI P-88, pages
49–64, Erfurt, Germany, September 2006. GI.

[2] S. Casteleyn et al. Considering additional adaptation concerns in the design of
web applications. In Proc. of 4th Int. Conf. on Adaptive Hypermedia and Adaptive
Web-Based Systems (AH2006), LNCS 4018, Dublin, Ireland, June 2006. Springer.

[3] A. Charfi et al. Reliable, secure, and transacted web service compositions with
ao4bpel. In 4th IEEE European Conf. on Web Services (ECOWS 2006), pages
23–34, Zürich, Switzerland, December 2006. IEEE Computer Society.

[4] F. Daniel, M. Matera, and G. Pozzi. Combining conceptual modeling and active
rules for the design of adaptive web applications. In Workshop Proc. of 6th Int.
Conf. on Web Engineering (ICWE 2006), New York, NY, USA, 2006. ACM Press.

[5] P. Dolog, V. Vranić, and M. Bieliková. Representing change by aspect. ACM
SIGPLAN Notices, 36(12):77–83, December 2001.

[6] S. Goldschmidt, S. Junghagen, and U. Harris. Strategic Affiliate Marketing. Ed-
ward Elgar Publishing, 2003.

[7] R. Green and A. Rashid. An aspect-oriented framework for schema evolution in
object-oriented databases. In Proc. of the Workshop on Aspects, Components and
Patterns for Infrastructure Software (in conjunction with AOSD 2002), Enschede,
Netherlands, April 2002.

[8] R. Miles. AspectJ Cookbook. O’Reilly, 2004.
[9] F. Molina-Ortiz, N. Medina-Medina, and L. Garćıa-Cabrera. An author tool based

on SEM-HP for the creation and evolution of adaptive hypermedia systems. In
Workshop Proc. of 6th Int. Conf. on Web Engineering (ICWE 2006), New York,
NY, USA, 2006. ACM Press.

[10] E. Pulvermüller, A. Speck, and J. O. Coplien. A version model for aspect depen-
dency management. In Proc. of 3rd Int. Conf. on Generative and Component-
Based Software Engineering (GCSE 2001), LNCS 2186, pages 70–79, Erfurt, Ger-
many, September 2001. Springer.

