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ABSTRACT
With the popularity of social networks, large scale user-generated
data is accumulated online. Possible misappropriation of these data
may arise severe personal privacy problems. In this paper, we pro-
pose an image transformation method that protects images against
scene classifier by exploiting the knowledge of adversarial examples.
At the same time, our method maintains the perceptual faithfulness
of protected images by leveraging color variance.

1 INTRODUCTION
Modern machine learning algorithms are able to extract privacy
sensitive information from user-generated multimedia data that
is available online, such as geo-location [1, 4]. The objective of
the Pixel Privacy Task of MediaEval 2019 [5] is to find solutions
that could protect privacy-sensitive information in images against
scene classifier, and at the same time keep or increase the visual
appeal of these adversarial images. The provided test-dataset is a
subset of the Places365-Standard dataset [11]. This paper proposes
a method to create adversarial examples by perturbing the pixels
in the image based on color variation, which is better aligned with
human perception.

2 RELATEDWORK
Neural network-based algorithms have weaknesses that make them
susceptible to adversarial examples [2]. By perturbing specific pixels
in the image, the resulting outcome of the network can be changed
without a substantial change to the image. The knowledge of ad-
versarial examples can also be applied to protect privacy sensitive
information. PIRE [6] is an iterative method to generate adversarial
images, but it does not consider the human noticeability of these
perturbed pixels. One solution to this problem is to consider the
human perception of these perturbations. [7] suggests that perturb-
ing pixels in low variance regions (i.e. white walls or blue skies) is
more noticeable than perturbing pixels in high variance regions (i.e.
a brick wall). In [7] this is implemented by calculating the standard
deviation around a pixel based on its intensity (greyscale value).
However, in this case, the color-specific information is discarded.
The CV-PIRE method [9] suggests an approach that takes the hu-
man perception of colors into account, using high and low color
variance regions.
Pixel color variance can be calculated by using CIEDE2000 [8] dif-
ference between a specific pixel and the surrounding pixels. The
CIEDE2000 algorithm gives a better numerical distance between
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Original image
0.804 -> swimming_pool/outdoor
0.094 -> swimming_pool/indoor

Color variations Top1 with L1
0.369 -> swimming_pool/indoor
0.363 -> swimming_pool/outdoor

Top1 without L1
0.295 -> swimming_pool/indoor
0.259 -> swimming_pool/outdoor

Top5 with L1
0.429 -> carrousel
0.276 -> water_park

Top 5 without L1
0.562 -> carrousel
0.270 -> amusement_park

Figure 1: Example of the protected images that meet differ-
ent protective conditions. Top 2 predicted labels and proba-
bilities are listed below each example.

two colors based on human perception than for example the Eu-
clidean distance. A Gaussian distribution can be used to weight
the contribution of the surrounding pixels in order to smooth the
color variance between two neighboring pixels. Pixels further away
contribute less to the total color difference.

3 APPROACH
In this section, we describe our perturbation-based protection algo-
rithm in detail. In particular, we discuss the construction of model
loss, hyper-parameter selection and training details.

3.1 Protection by perturbation
Pixel values of images can be perturbed in a certain way to influence
the predicted label by the threat model when generating adversarial
examples. Given the ground truth label, we could optimize the per-
turbations iteratively until the predicted class meets our adversarial
condition (i.e. fall out of top 2 or top 5). To minimize the noticeabil-
ity of the perturbations, we include a threshold that determines the
maximum perturbation of one pixel. If we set the same threshold for
every pixel in the image we may get very noticeable perturbations
in low color variance regions, while the perturbations in high color
variance regions are less noticeable. In our method, we follow the
threshold method [9] in which CIEDE2000-based color variation is
used to generate threshold map (e.g., second figure of top row in
Figure 1).
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Algorithm 1: Color Variance based perturbations
Input: Image imд with ground truth label c0; Color variance

matrix cV ; Classification model f ; Threshold
multiplierm; Weight of L1-loss α ; Maximum iterations
T ; Cross-entropy loss function lce and protection
condition;

Output: Generated adversarial example image;
Set the final per pixel threshold matrix;
pT =m · cV ;
Set the initial random perturbations and iteration counter;
v = random(−0.01, 0.01) ∗ pT ;
t = 0;
while t < T do

loдits = f ((imд +v).clamp(0, 1));
if condition is met then

return imд +v ;

loss = −1 · lce (loдits,c0)︸           ︷︷           ︸
Cross-entropy loss

+ α ·
| |v | |1
| |pT | |1︸  ︷︷  ︸

L1 norm loss

;

Update the perturbations with an optimizer;
v = arдmin

v
loss;

Clip and round to stay within threshold and image
relevance boundaries;

v =
round (clip(v,−pT ,pT )·255)

255 ;
t = t + 1;

Failed to generate an adversarial example inT iterations;
return False ;

3.2 Color variance-based approach
Algorithm 1 demonstrates how the adversarial examples are gen-
erated. Here cV is the pixel color variance matrix for the image, f
the classification model, in our case a ResNet-50 [3] classifier,m
threshold multiplier that determines how big the actual threshold
is relative to the color variance,T the maximum iterations, α the
weight of the L1-norm loss in the total loss function and condition
the adversarial condition which will later be discussed.
Using the color variance matrix cV as in [9], we define the per pixel
threshold that represents the maximum perturbation per pixel. The
initial perturbations are randomly set based on this pixel threshold.
We update the perturbations until the condition is met or the maxi-
mum amount of iterations is reached. Iteratively calculate the logits
of the image with perturbations, the clamping is done such that
image stays within the valid image range. If the condition is met
based on the logits then we have a successfully adversarial example
and we stop the loop. If not, we calculate the loss, this consists
of the cross-entropy loss lce , where the goal is to minimize loss
function given the ground truth label, and the L1 norm loss, which
minimizes the total amount of perturbations. The perturbations
are updated by back-propagation to minimize this loss. Finally, the
updated perturbations are clipped to make sure they stay within
the pixel value range of image and rounded such that the perturba-
tions would remain when saved in a uint8 image format. If it is not

Table 1: Evaluation results for five submitted runs.

Top-1
acc. (%)

Top-5
acc. (%)

Aesthetics
score. SSIM

Original 1.00 1.00 4.64 1.00
Top1-L1 0.00 0.99 4.63 0.9994
Top1-L1-50 0.00 0.93 4.62 0.9992
Top1-noL1 0.00 0.52 4.61 0.9975
Top5-L1 0.00 0.00 4.65 0.9614
Top5-noL1 0.00 0.00 4.81 0.8955

possible to meet the condition within the maximum interactions
we return False .

4 SUBMISSION RESULTS AND ANALYSIS
We submitted five runs for the Pixel Privacy task: Top1 with L1-
norm (Top1-L1), Top1 with L1-norm and a 50 percent relative dif-
ference in prediction confidence compared to the top1 label (Top1-
L1-50), Top1 without the L1-norm (Top1-noL1), Top5 with L1-norm
(Top5-L1) and Top5 without the L1-norm (Top5-noL1). We noticed
two potential flaws in the top1 with L1-norm, first average differ-
ence in the confidence between the ground-truth label and the new
top1 label is often small and the new top1 label is often similar
to the ground-truth label, this can also been seen in Figure 1. To
counter these potential weaknesses we included the Top1-L1-50
run to increase the distance in confidence and the Top5-L1 and
Top5-noL1 runs, that make sure the ground-truth label is not in the
top5. We included the Top2-noL1 and Top5-noL1 runs since these
need less computational resources.
Table 1 presents the results of the different conditions. As can be
observed, all the adversarial images achieved their goal of top-1 or
top-5. Following the official evaluation rule, Top5-noL1 achieves
the best result. We also include the Structural similarity (SSIM) [10]
score, this measures the perceptual difference between the original
image and its adversarial counterpart, this could be interperted as
how faithfull the adversarial image is to the original.

5 DISCUSSION AND OUTLOOK
The perturbations of especially the Top1 are small, as can also been
seen in the SSIM score. This could cause the robustness of the ad-
versarial images under image transformations such as compression
or filters to be weak.
As can been seen in Table 1 there is a clear difference between
the aesthetics score and SSIM. SSIM score could represent how
noticeable the perturbations are, where in the Top1-L1 the pertur-
bations are least to barely noticeable and the Top5-noL1 have the
most noticeable perturbations. However, the aesthetics score is the
highest on Top5-noL1, which could mean that the locations where
the perturbations take place in our method are creating somewhat
of an adversarial example to the aesthetics score method.
Further research could look at possible conditions where all the
top predictions would be of a different scenes that are not closely
related to the ground-truth scene. To increase the usability of this
approach in practice, the robustness of protected images should
be improved. Data augmentation of original image and ensemble
training against different threat models can be considered in the
future.
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