CEUR-WS.org/Vol-2672/paper_8.pdf

74 Baumann and Heinrich / A Python Script for Abstract Dialectical Frameworks

A Python Script for Abstract Dialectical
Frameworks

Ringo BAUMANNE Maximilian HEINRICH®
& {baumann, mheinrich}@informatik.uni-leipzig.de

Abstract. We introduce a Python script for an easy and intuitive cal-
culation of semantics of Abstract Dialectical Frameworks (ADFs) with
arbitrary acceptance conditions. In addition, the script enables the eval-
uation of so-called single-node formulae with the help of Kleene’s three-
valued logic. The experimental results show that we achieve an enor-
mous computational gain in this case.

Keywords. Abstract Dialectical Frameworks, Computation, Semantics

1. Introduction

Abstract Dialectical Frameworks (ADFs) are a powerful tool in the realm of
Knowledge Representation. However calculating ADFs semantics without assis-
tence is an effortful task which might complicate research or practical application.
In order to facilitate the use of ADFs this paper presents a script for an easy cal-
culation of various ADF semantics. The user just specifies the nodes with their ac-
ceptance conditions and the desired semantics. If the acceptance functions match
the class of single-node formulae one may use Kleene’s three-valued logic [I]. The
experimental results show that we achieve an enormous computational gain in
this case. We start with a short introduction on ADFs, followed by the presen-
tation of the actual script. At the end we report on a test case generator and
our experimental studies. The script, the test case generator as well as additional
data can be found at https://github.com/kmax-tech/ADF.

2. A Brief Overview on ADFs

Abstract Dialectical Frameworks [2] are a generalization of classical Dung-style
Argumentation Frameworks [3] providing more fine-grained modeling capabilities
like collective attacks or single support. This expressiveness is achieved via adding
acceptance functions (in terms of propositional formulae) to each argument.

Definition 1. An ADF is a tuple D = (S,®) where S is a set of arguments
(statements, nodes) and ® = {ps | s € S} is a set of propositional formulae.

Copyright (© 2020 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).

https://github.com/kmax-tech/ADF

Baumann and Heinrich / A Python Script for Abstract Dialectical Frameworks 75

For a given ADF we consider three-valued interpretation v : S +— {t,f,u} as
well as two-valued interpretation v’ : S — {t,f}. The possible three truth values
can be ordered via the so-called information order <;. The value u (unknown)
represents the <;-least element and is thus the value with the lowest amount
of information. The <;-incomparable values t (true) and f (false) contain more
information than u, i.e. u <; t and u <; f. We lift the information order to
arbitrary interpretations v and w via v <; w if v(s) <; w(s) for each node
s € S. Essential for the understanding of ADFs is the so-called gamma operator.
For a given three-valued interpretation v the operator considers any two-valued
completion w of it and returns the consensus of these completions via the meet
operator M;. We have, tM; f = u and ur; t = un; f = u. The interpretation u
maps any node to u and thus represents the least information interpretation.

Definition 2. Given an ADF D = (S, ®). We define I'p : VP — VP as
Tp(v): S+ {t,f u} with s — N{w(ps) | w € [v)2}.

Based on the gamma operator several semantics o can be defined. The fol-
lowing well-known representatives, namely admissible, complete, preferred and
grounded semantics specify their o-interpretations as certain (pre)fixpoints of T'p.

Definition 3. Given an ADF D = (S, ®) and v € V?.

v € adm(D) iff v <; Tp(v),

v e cmp(D) iff v=Tp(v),

v € prf(D) iff v is <;-mazimal in cmp(D) and
v € grd(D) iff v is <;-least in cmp(D).

= oo =

Example 1. Consider the following situation. It is the middle of the night and one
wants to get home (h) as quickly as possible. The only two possibilities to get there
are either taking the bus (b) or walking (w). Unluckily, it is not known whether the
bus will really run tonight. On the other hand it is important to get a little bit of
sleep that night (s), which is only possible if the faster connection with the bus is
used. In addition walking is only a preferable option if it is not raining (r), which
is luckily the case. The scenario can be formally modeled in the following ADF
D= ({bh,r,s,w},{pp = wAb,¢p, =wVb,. = L, ds =hAb,py, = 1 A—b}).

L -rA=-b -—wAb

wVb hAD

Figure 1. A Knowledge Base for “getting home”

76 Baumann and Heinrich / A Python Script for Abstract Dialectical Frameworks
3. A Python Script for ADFs

In order to use the script one has to edit the variables nodes and chooseinterpre-
tations. The first variable nodes is a list which consists itself of list elements. Each
of these elements has the form ["n", "¢,,"] where n represents a node and ¢,, its
corresponding acceptance condition. Both elements have to be of the type string.
The acceptance condition has to be notated as a logical formula where logical
conjunction is represented as ”,”, disjunction via ”;” and negation as "#”. It is
further possible to use shorthands for true (”!”) and false (”?”). Moreover, paren-
theses are allowed. The whole process is illustrated in Example 2] The variable
chooseinterpretations is a list specifying the considered semantics. Possible inputs
are "a" for admissible, "p" for preferred, "c¢" for complete or "g" for grounded
semantics. Every input for this field needs to be of the type string. In addition it is
possible to use the option "¢ri" enabling the evaluation of formulae w.r.t. Kleene’s
three-valued logic K3. This way of calculation is only correct if all used accep-
tance conditions are single-node formulae, i.e. any node appears at most once in
an acceptance condition(cf. [4, Definition 7] for more detailed information).

Example 2. The “getting home” scenario from Ezample [1] can be entered in the
following way:

1 nodes = [[llbll'Il#wlbll],[llhll’llwl,bll],[llrll,II?II]’ \
2 [llsll'Ilh'bll],[llwlllIl#r,#bll]]
3 chooseinterpretations = ["a","c","p"]

The output is displayed in the following style:

[['r’, [’ False "], {}], [’b’, [’ not ’, 'w’, ’ and ’,
‘b, "1, {’b’: [3], 'w’': [1]}],

Admissible Interpretations

Nr.1 ['b:False’, 'h:u’, ’'r:False’, ’'s:False’, 'w:u’]
Nr.2 [’'b:False’, ’h:u’, ’'r:False’, ’s:False’, ’'w:True’]

© 00 ~J O Uk

On the technical side, the input from nodes (Example [2| lines 1-3) is first
preprocessed into a customized structure respecting Python syntax (Example
lines 4-5). During the translation each element from nodes is transformed into
a list. The first element represents the name of the node and the second one
its corresponding acceptance condition. The additional third element is a lookup
table storing the position of all nodes in the transformed acceptance condition.
The aim of this table is to allow a fast replacing of nodes with truth values of a
given interpretation during the evaluation step.

For a given ADF D the script generates systematically each three-valued
interpretation v and calculates the corresponding I'p(v). The way how I'p(v) is
computed depends on whether the tri option has been chosen. Anyway, in both
cases we use the Python built-in eval function for the evaluation of acceptance
conditions. If the t¢ri option is specified the system calculates I'p(v) via Kleene’s
three-valued logic. In this case the values f, u, t are replaced with 0,0.5,1 and the
semantics is given via v(A A B) = min{v(4),v(B)},v(AV B) = max{v(A),v(B)}

Baumann and Heinrich / A Python Script for Abstract Dialectical Frameworks ud

and v(—=A) = 1 — v(B). Without this option the script systematically generates
all two-valued completions w of v. Moreover, the evaluation of any acceptance
condition w.r.t. w is stored. We mark a node if a completion returns a different
value than the stored ones. A marked node will be mapped to u. If all nodes are
marked we reached u and the calculation is stopped. If not, all completions are
computed and we return the values of the nodes according to its completions.

In the next step we compare v and I'p(v). For admissible interpretations we
have to check v <; I'p(v) and for complete ones v = I'p(v) is required. For these
two semantics the workflow and pseudocode are illustrated by the flowchart and
the pseudocode presented in Figure 2] In order to calculate preferred interpre-
tations we first compute all complete ones. After that each complete interpreta-
tion v is systematically taken and compared with all other complete interpreta-
tions w € emp(D) \ {v}. A preferred interpretation is found if v <; w is always
false. The calculation of grounded semantics is considerably different. Since I'p is
<;-monotonic and the grounded interpretation is defined as <;-least fixpoint we
calculate it via iteratively applying the gamma operator starting from <;-least
interpretation u [2].

Preprocessing

ADF D,
semantics
o

Use two-valued
completions
for T'p(v)

tri
option?

Require: ADF D and semantics o
Preprocessing of Input
if tri option specified then
Use three-valued logic for

Use three-valued
logic for T'p(v)

Ip(v)
Use two-valued completions
C te T (v) Evaluate v and
ompute I'p To(0) wrt. o for I'p(v)
end if

Generate three-valued
interpretations V¥
for v in VP do
Compute I'p(v)
Evaluate v and T'p(v) w.r.t. o

end for
Stop . . .
[} return valid interpretations

Figure 2. Flowchart and Pseudocode for Computing Admissible and Complete Interpretations

Three-
valued
intepra-
tion v’
left?

valid
interpre-
tations

4. Comparison: Classical Completion Approach vs. Three-valued Approach

In this section we evaluate how much faster ADF semantics can be calculated
if the three-valued approach instead of the two-valued completion is used. We
therefore wrote a testcase generator creating random instances of ADFs with
single-node formulae. The generator works as follows: We fix a set S consisting of
n nodes. Regarding the acceptance condition for a single node a we first determine

78 Baumann and Heinrich / A Python Script for Abstract Dialectical Frameworks

which nodes of S should occur in its acceptance formula. This happens through
simulated coin flips. If a node has been chosen it gets negated with probability
of 0.5. The selected nodes are conjoined with conjunction or disjunction, which is
again determined through a coin flip. If no nodes are selected at all the acceptance
formula is equally likely set to T or L. This procedure is repeated for every node
in S. The calculation was done with a Ryzen 5 3600 CPU possessing 16 GB RAM.
In its current version the script does not support multiple threads meaning that
the whole computational process was not parallelized.

For any number of nodes between 1 and 10 we generated and evaluated 100
test instances w.r.t. all considered semantics. The results are displayed in Table [T}
The column o resp. o-tri shows the average times (in seconds) for the classical
two-valued completion approach or the three-valued logic approach, respectively.
The results were rounded to four digits after the decimal point. The raw data
can be found at the mentioned github page. The column speed factor shows the
proportion from computation time of the two-valued completion to computation
time of the three-valued approach. For the admissible and grounded interpreta-
tions the computational time is further illustrated in Figure [3] Please note that
the y-axis uses logarithmic scale meaning that the growth in time is exponential.

As can be seen for both approaches the grounded semantics are calculated
in very short time. For this semantics we start directly with u and apply I'p re-
peatedly till a fixpoint is reached. Therefore not every three-valued interpretation
has to be generated and evaluated, which increases the speed of computation. In
addition for grounded semantics the speed gain w.r.t. the three-valued approach
is remarquable. This can be explained because u is the interpretation, which re-
quires the most two-valued completions. The evaluation of these completions is
skipped through the use of the three-valued approach. Admissible, preferred and
complete semantics are influenced by the tri-option too but it is not comparable
with the speed gain in case of grounded semantics. Moreover, the differences in
calculation time between the three latter semantics are occurring on the scale of
hundreds and thousands of seconds. Note that this observation is independent
from the chosen approach. However, this is a bit surprising at least for preferred
semantics as it uses the computation of complete semantics as a preprocess. Fur-
ther experimental studies of this issue will be part of future work. It might be
the case that a significant computation differences occurs far beyond the number
ten of considered statements. To sum up, the three-valued approach increases
the performance in an exponential way for any considered semantics. Neverthe-
less, except grounded semantics, computing ADFs with more than ten statements
seems not to be feasible.

nodes adm adm-tri | speed cmp cmp-tri | speed prf prf-tri | speed grd grd-tri | speed
1 0.0 0.0 1.37 0.0 0.0 117 0.0 0.0 1.13 0.0 0.0 1.33

2 0.0002 0.0002 1.31 0.0002 0.0002 1.27 0.0002 0.0002 1.28 0.0001 0.0 1.88

3 0.0012 0.0008 1.51 0.0012 0.0008 1.52 0.0012 0.0008 1.51 0.0002 | 0.0001 2.79

4 0.0065 0.0036 1.82 0.0065 0.0036 1.81 0.0066 0.0036 1.82 | 0.0004 | 0.0001 4.3
0.0347 0.015 2.31 0.0347 0.0151 2.3 0.0348 0.0151 2.3 0.0008 | 0.0001 8.21

0.1765 0.0605 2.92 0.1771 0.0605 2.93 0.1749 0.0601 2.91 0.0016 | 0.0001 13.6

0.8953 0.2378 3.77 0.8961 0.2377 3.77 0.8954 0.2376 3.77 0.0039 | 0.0001 27.57
4.3859 0.8921 4.92 4.3854 0.8932 4.91 4.3863 0.8934 4.91 0.0094 | 0.0002 54.65
21.3739 3.3403 6.4 21.3224 3.326 6.41 21.3296 3.3227 6.42 0.0234 | 0.0002 | 112.17
103.1276 | 12.3506 8.35 103.0094 | 12.3051 8.37 103.3044 | 12.3584 8.36 0.0535 | 0.0002 | 215.73

© w9 o >

-
1S

Table 1. Performance Comparison: Classical vs. Three-valued Approach

Baumann and Heinrich / A Python Script for Abstract Dialectical Frameworks 79

Comparison of Admissible and Grounded Semantics

102 { — adm
- admetri

— gd
- grd-tri

Time in seconds

2 3 4 5 6 7 8 9 10
Number of nodes

Figure 3. Performance Illustration via Logarithmic Scale
5. Future Work and Conclusion

In this paper we introduced a Python script which enables a convenient calcula-
tion of various ADF semantics. Python was choosen because it is a widely used
high-level programming language, which enables an easy implementation and is
therefore well-suited to test the benefits of a three-valued logic approach. Another
system calculating ADFs semantics is DIAMOND [5] relying on ASP encodings.
At the moment this project is no longer maintained and lacks the support of
three-valued logic. For future work it seems interesting to test the three-valued
approach against DIAMOND. Further improvements of our script might involve
the implementation of a separate user interface avoiding the direct editing of
the script. In addition, it is planned to integrate parallel processing for speeding
up the computation. Finally, we plan to support the recently introduced timed
ADFs (tADFs) via allowing additional temporal shorthands [4, Section 2.2] as
acceptance conditions.

Acknowledgement
We thank DFG (406289255) and BMBF (01IS18026B) for funding this work.

References

[1] Wintein S. On All Strong Kleene Generalizations of Classical Logic. Studia Logica.
2016;104(3):503-545.

[2] Brewka G, Ellmauthaler S, Strass H, Wallner JP, Woltran S. Abstract Dialectical Frame-
works. An Overview. Journal of Logics and their Applications. 2017 10;4(8):2263-2317.

[3] Dung PM. On the Acceptability of Arguments and its Fundamental Role in Non-
monotonic Reasoning, Logic Programming and n-Person Games. Artificial Intelligence.
1995;77(2):321-358.

[4] Baumann R, Heinrich M. Timed Abstract Dialectical Frameworks: A Simple Translation-
Based Approach. In: Proceedings of COMMA; 2020. p. to appear.

[5] Ellmauthaler S, Strass H. The DIAMOND System for Computing with Abstract Dialectical
Frameworks. In: Proceedings of COMMA; 2014. p. 233-240.

