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Abstract. Supervised machine learning models have impres-
sive predictive capabilities, making them useful to support human
decision-making. However, most advanced machine learning tech-
niques, such as Artificial Neural Networks (ANNs), are black boxes
and therefore not interpretable for humans. A way of explaining an
ANN is visualizing the internal feature representations of its hidden
layers (neural embeddings). However, interpreting these visualiza-
tions is still difficult. We therefore present InterVENE: an approach
that visualizes neural embeddings and interactively explains this vi-
sualization, aiming for knowledge extraction and network interpreta-
tion. We project neural embeddings in a 2-dimensional scatter plot,
where users can interactively select two subsets of data instances
in this visualization. Subsequently, a personalized decision tree is
trained to distinguish these two sets, thus explaining the difference
between the two sets. We apply InterVENE to a medical case study
where interpretability of decision support is critical: outcome predic-
tion of comatose patients. Our experiments confirm that InterVENE
can successfully extract knowledge from an ANN, and give both do-
main experts and machine learning experts insight into the behaviour
of an ANN. Furthermore, InterVENE’s explanations about outcome
prediction of comatose patients seem plausible when compared to
existing neurological domain knowledge.

1 Introduction
Most advanced artificial intelligence techniques, such as Artificial
Neural Networks (ANNs), are black boxes and therefore not inter-
pretable for humans. As argued by [22], it depends on the applica-
tion to what extent this is a concern. Interpretability is critical in the
case of this paper: outcome prediction of comatose patients, where
AI is meant to support the physician in (high-stakes) decision mak-
ing. “Explainable AI” (XAI) is essential for medical professionals to
understand the how and why of the AI’s decision, for example, to
be able to confirm that the system is right for the right reasons [23].
Moreover, interpretable algorithms (i.e. algorithms that explain or
present their decision to a human in understandable terms [5]) could
appropriately enhance users’ trust in future AI systems [22]. Since
a poor predicted diagnosis may cause care to be reduced, getting in-
sights in the algorithm may reveal predictions that cannot be trusted,
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thus allowing to save a patient’s life. On the other hand, AI might dis-
cover patterns that were not known to the medical profession before,
leading to knowledge discovery for healthcare improvement.

One way of explaining an ANN is visualizing the internal feature
representations of its hidden layers (called neural embeddings) [26].
Solely relying on such visualization techniques is, however, insuffi-
cient: the resulting projection does not explicitly show the relations
between projected points and the original input features, making it
challenging to understand why data points are placed far apart or
close together. Interviews revealed that data analysts try to map the
synthetic data dimensions to original input features, and that they try
to name and verify clusters [3]. In this paper, we therefore explain a
visualization.

Contributions Since visualizations of neural embeddings are too
complex to readily grasp, we explain a visualization with an easy-
to-understand and effective interactive approach, suitable for both
domain and machine learning experts. After visualizing neural em-
beddings in a scatter plot with dimensionality-reduction, a user can
interact with the visualization by selecting two sets of data points
in the visualization. We explain the difference between these sub-
sets by training a decision tree (or another interpretable model) that
distinguishes between the user-selected subsets in the visualization
in terms of the original input features. Allowing manual selection of
data points in the visualization results in a personalized explanation
that gives meaning to clusters seen in the visualization where the user
had specific interest in. An overview of the overall process is shown
in Figure 1.

Our approach serves two goals: (i) knowledge discovery and
knowledge validation: extracting knowledge from the neural network
allows the domain expert to observe and validate patterns learnt by
the neural network, and (ii) network interpretation: understanding the
neural network allows the machine learning expert to analyse errors,
behaviour over training time and contributions of single layers.

We implemented our approach in a tool called InterVENE (Inter-
actively Visualizing and Explaining Neural Embeddings)3. We apply
InterVENE to the medical domain where interpretability of a deci-
sion support system is critical: outcome prediction for postanoxic
coma patients, based on a structured dataset containing features of
EEG recordings of 518 comatose patients.

3 InterVENE is open-sourced at https://github.com/M-Nauta/
InterVENE
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Figure 1. Overview of the approach. A machine learning model (e.g. an artificial neural network) is trained, the feature vectors of its hidden layers (embed-
dings) are projected into 2D. Domain experts then can interactively explore the visualizations and select groups of interest, whose difference is explained by an
interpretable discriminative model (e.g. a decision tree).

2 Related Work

Explanation approaches of machine learning models address
different stakeholders and explain different aspects of the model.
Three general approaches have emerged towards providing explana-
tions [7]. First, explanations can be model-based by showing the op-
erational procedure of the complete model. Some machine learning
models are considered inherently interpretable, e.g. decision trees or
decision rules [6] or can be extended to be inherently interpretable,
such as Deep Neural Decision Trees [31]. More complex models,
such as deep neural networks can be locally or globally approximated
by interpretable models (e.g., [8]). Other explanations approaches
show similar cases (e.g., [20]), or the contributions of features for
a decision (e.g., [12]). In this paper, we use decision trees as inter-
pretable models to locally explain subgroups that emerge from the
implicit feature representations of end-to-end machine learning mod-
els.

Dimensionality reduction techniques are suitable for visualizing
high-dimensional data by projecting it on a low-dimensional space
while preserving as much of the original data structure. Although
many projection techniques have been proposed (we refer the reader
to [14] for a review), t-SNE [15] is arguably the best known and
most applied technique, due to its capability of capturing both the
local and global structure of the high-dimensional data. It provides
a 2- or 3-dimensional feature representation that can be visualized
in a plot. Recently, the Uniform Manifold Approximation and Pro-
jection (UMAP) algorithm was introduced [16], which preserves as
much of the local and more of the global data structure than t-SNE
with faster run times [2]. UMAP uses the nearest neighbour descent
algorithm [4] to construct a weighted k-neighbour graph that ap-
proximates the representation of the high dimensional data. It then
optimizes this low dimensional layout via probabilistic edge sam-
pling and negative sampling [17]. It has been shown that UMAP
provides meaningful visualizations for biological data [2], materials
science [13] and image classification [16].

Dimensionality reduction can also be applied to derived fea-
tures, such as embeddings. An embedding is a vector containing
the post-activation values in a hidden layer of an Artificial Neural
Network (ANN). The learned, continuous embedding is therefore a
representation of the input data. Visualizing the embeddings of each
hidden layer provides a general overview of the inner behavior of
the ANN [25]. Most existing work on visualizing embeddings was
created for image data, using e.g. heat maps or pixel displays [25].
Dimension-reduction techniques such as t-SNE and UMAP however,
can be used for visualizing the embeddings of any type of data. Data
instances with similar representations in a network layer will be close
in the projection space. It has already been shown that t-SNE projec-
tions of neural embeddings (both after training and during training)
can aid the understanding and improving of ANNs [21], since it al-
lows users to view global geometry and to discover clusters [26]. The

embedding projector of [26], using t-SNE or Principal Component
Analysis, is therefore integrated into the Tensorflow platform [1].

Although dimension-reduction is considered an explainable
method because data is represented in a lower-dimensional space,
users often have difficulty interpreting the dimensions of the visu-
alization in a meaningful way [14]. It is therefore needed to explain
the visualization. For example, [27] introduced probing, a tool to un-
derstand projections by exploring the dimensionality-reduced data
and to interact with the visualization to examine errors. [11] explains
a visualization by creating just-in-time descriptions to automatically
identify and annotate visual features, such as clusters and outliers.
In contrast, our approach provides personalized explanations by ex-
plaining the difference between user-chosen clusters with an inter-
pretable model. Our approach can be applied to any dimensionality
reduction method that visualizes embeddings, such as t-SNE [15],
UMAP [16], DarkSight [30] or the existing embedding projector
of [27].

Reliable prediction of neurological outcome in comatose pa-
tients after cardiac arrest is challenging. It may prevent futile care
in patients with a poor prognosis, and allow timely communication
with family members about the neurological condition. Early EEG
recordings have been shown to allow reliable prognostication within
24 hours after arrest in a significant fraction of patients [9]. However,
visual analysis by the neurologist is time-consuming and allows re-
liable prediction of neurological outcome of approximately 50% of
patients, only. This motivates the need for techniques that assist or
even replace the human expert, as resources are limited, and hold
promise to increase the diagnostic yield. Deep neural networks have
recently been used to predict neurological outcome [29], showing a
significant improvement in classification accuracy. A limitation of
these approaches, however, is the lack of interpretability, which is
what we address in this paper.

3 Approach
Our approach consists of three general steps, integrating two stake-
holders: the machine learning expert and the domain expert. As
shown in Figure 1, the machine learning expert first trains a pre-
dictive model for the task at hand on the labeled data {x, y}, with
x being the feature vector and y the respective label. This task is
iterative and usually includes model selection and hyper-parameter
optimisation steps. The output is the machine learning model, and its
predictions ŷ on the data, which ideally should match the ground-
truth labels y. For the remainder of this paper, we assume that these
models generate an implicit feature representation to solve their pre-
diction task. In end-to-end (deep) learning scenarios these feature
representations are the activations in the hidden layers of the neural
networks. We refer to these representations as embeddings e. There
can be more than one embedding for one training sample, e.g. the
embeddings of the first hidden layer, of the second and so on. Em-



beddings can also be collected for different training epochs, e.g. after
training the network for 10 epochs versus training for 50 epochs.

The embeddings of a layer of a certain epoch are then projected
into a 2-dimensional feature space, resulting in one visualization
for each layer. More specifically, the projection function p takes em-
beddings e from feature vector x and generates a low-dimensional
representation x′. In principle, any projection of dimensionality re-
duction method can be used in this step. We choose a 2-dimensional
scatter plot as visualization since this is easy to interpret. In our
implementation called InterVENE, we use UMAP as dimension-
reduction technique, because of its good run time performance and
data structure preservation (cf. Section 2). An example of the visual-
izations is shown in Figure 4.

The user can select one of the visualizations (i.e. one of the lay-
ers at a certain training epoch), to inspect this projection in more
detail. The selected projection x′ is then used in an interactive visu-
alization to show the patterns the machine learning model implicitly
learned to best solve the prediction task. We visualize the following
information about the machine learning model: i) an approximation
of the learned feature space by the model x′ (using 2d-position as
visual channel), ii) the prediction of the model ŷ (using color hue as
visual channel), iii) whether the decision is a true positive, a false
positive, a true negative or a false negative (using shape as visual
channel). As shown in Figure 2, the visualization allows for interac-
tive selection of subgroups of interest by either lasso selection with
a mouse and/or choosing pre-selected categories, such as true and
false positives or positives. The advantage of manual selection com-
pared to automated clustering is that users can generate explanations
about subgroups of data points where they have specific interest in.
Data instances in these subgroups implicitly get assigned labels z in-
dicating to which selection they belong. The difference between the
selected subgroups is then explained by training an interpretable ma-
chine learning model to approximate the subgroup labels z based on
the input features x. InterVENE uses a decision tree that classifies the
selected data points to one of the selected subgroups. An example of
this visualization and the explanation is shown in Figure 3.

4 Case Study and Data Set

InterVENE can be applied to any machine learning model that gen-
erates embeddings trained on any labeled dataset, since UMAP has
no computational restrictions on embedding dimension [16] and the
underlying techniques of InterVENE are generally applicable. To
show the importance and benefits of InterVENE, we perform an ex-
ploratory study on a medical case where interpretability is critical.
We use InterVENE to better understand a neural network predict-
ing the neurological outcome of comatose patients after cardiac ar-
rest. These predictions may prevent futile care in patients with a
poor prognosis, as discussed in Section 2. Our structured dataset
contains features from continuous EEG recordings of 518 prospec-
tively collected adult patients who were comatose after cardiac ar-
rest (Glasgow Coma Scale score <8) and admitted to the ICU of the
Medisch Spectrum Twente (June 2010-May 2017) or Rijnstate hos-
pital (June 2012-April 2017). Details have been described previously
by Hofmeijer et al. [9].

The primary outcome measure was the Glasgow-Pittsburgh Cere-
bral Performance Category (CPC) score at 6 months, dichotomized
as good (CPC 1 or 2, no or moderate neurological deficits with in-
dependence in activities of daily living) and poor (CPC score ≥ 3,
major disability, coma, or death). The CPC scores were obtained
prospectively by telephone follow-up with the patient or patient’s le-

gal representative. Part of the data is used in work of [28] and [19].
EEG features We extracted 42 qEEG features from each 10 sec-

ond EEG segment at 24 hours after arrest to quantify 5 minute EEG
epochs, broadly grouped into three domains: (i) time domain features
capturing time varying amplitude information of the EEG signal; (ii)
frequency domain features that capture key EEG patterns in differ-
ent sub-bands in the spectrogram; and (iii) entropy domain features
providing measures of complexity and randomness of the EEG sig-
nal. The median values of features across all channels were averaged
for each 5 minute EEG epoch resulting in 42 features per patient. We
used the same features as described by [19], except for 2 entropy fea-
tures due to long calculation times. The data is scaled to have zero
mean and unit variance, such that it can be used as input for a neural
network. The dataset was complemented by a smaller set of features
as described in [28] which are easier to interpret by the neurologist.
These features are only used in an extra explanation, as discussed in
Section 6.1.

5 Experimental Setup
Neural Network Architecture Since InterVENE can be used on
any neural network architecture, the aim of this paper is not to train
the best neural network for postanoxic coma classification, but to
find a reasonable well-performing model which we want to explain.
To find such a model, we optimized hyperparameters using grid
search and stratified 5-fold cross validation on a training set (80%
of the dataset) for a simple feedforward ANN. The following sets
of hyperparameters were investigated by grid-search: #hidden lay-
ers {1, 2, 3}, #nodes in a hidden layer4: {5, 10, 20}, dropout: {yes
with p = 0.5, no}, learning rate: {0.1, 0.01}, weight initialization:
{N (0, 1), N (0, 0.1)}. To limit the number of networks to train, we
fixed the activation function to ReLu (and Sigmoid in the output
layer) and used the Adam optimizer. The most accurate network was
a network with 2 hidden layers, with 20 hidden nodes in each hid-
den layer, dropout with p = 0.5, learning rate of 0.01 and weight
initialization of N (0, 0.1). Using a hold out set, we decided to stop
training after 100 epochs. Our network had an accuracy of 0.79 when
using a threshold of 0.5 and AUC = 0.88. Because of a very high cost
of error, prediction performance for poor outcome is in medical lit-
erature usually measured in recall (sensitivity) at 100% specificity.
Our network has a recall of 0.34 for poor outcome at 100% speci-
ficity, outperforming the 0.32 of [28] and lower than state-of-the-art
0.44 [19], showing that our network is reasonably good.

Hyperparameters InterVENE For UMAP, we mainly use the de-
fault settings of the UMAP python package (v0.3). However, we set
the number of neighbours n to 10 (default is 15) to more accurately
catch the detailed manifold structure [16], and tuned the visualization
by setting the distance metric to ‘correlation’. For the decision tree,
we use the default parameters of the scikit-learn decision tree pack-
age (v0.20.03). To improve interpretability and prevent overfitting,
we set the maximum depth to 3 (but this parameter can be changed
by the user), require a minimum number of 5 samples in each leaf
and prune the tree such that a node is not split when all leaves have
the same class label.

4 with the restriction that the number of hidden nodes in a layer cannot exceed
the number of hidden nodes in the previous layer
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, a decision tree is trained to predict the corresponding clusters ẑ. The learnt decision tree thus explains the difference between the two

selected clusters.

6 Experiments
We performed two experiments: (i) we elicited which domain knowl-
edge can be obtained using InterVENE (see Section 6.1) and (ii) in-
vestigated which understanding about the neural networks in terms of
error type and training process can be gained (see Section 6.2). We
used the constructive interaction evaluation protocol in which two
participants naturally communicate and collaborate in trying to solve
predetermined tasks [18]. One participant in our study is a machine
learning expert knowledgable about the projection method and neural
networks. The other participant is a neurologist from Medisch Spec-
trum Twente with a full understanding of the medical dataset. Fur-
thermore, we compare whether the discovered knowledge is in cor-
respondence with existing medical literature (extracted knowledge
validation).

6.1 Experiment 1: Neural Visualization and
Explanation for Knowledge Discovery

We let the neurologist compare its domain knowledge with the re-
sults from our visualization and explanations. For this, the neurol-
ogist selected the visualization of the embedding of the last hidden
layer of the final ANN shown in Figure 3(a). Tasks for the construc-
tive interaction study consist of two components: 1) Interpreting the
visualization, based on shape and colors; 2) Interpreting the expla-
nation: selecting clusters and comparing the learnt decision tree with
domain knowledge.

When looking at the visualization in Figure 3(a), both participants
clearly see that the ANN is able to identify between comatose pa-
tients with a predicted good neurological outcome (yellow-green,
‘cluster 2’) and a predicted poor outcome (purple, ‘cluster 1’). To
get more insight, the neurologist uses InterVENE to manually select
these two clusters, after which a decision tree is trained to explain the
difference between these clusters. The learnt decision tree (not shown
here), with a depth of 3, classifies each instance in the dataset as one
of the two clusters with an accuracy of 0.913. The top feature in the
tree is ‘Hilbert burst’. The neurologist finds this decision tree plausi-
ble, since burst suppression (an EEG pattern in which neural activ-
ity with high amplitudes alternates with quiescence) is characteristic
for an inactivated brain [10]. To evaluate the results, the neurologist
visually inspects a few EEG recordings from each cluster. The neu-
rologist clearly sees differences between poor and good outcome and
would have made the same prediction as our neural network did.

Based on the visualization in Figure 3(a), the neurologist is in-
terested in studying the two sub-clusters within ‘cluster 1’, indicat-
ing that the ANN has learnt two different types of comatose patients
that are expected to have a poor outcome. To explain this difference,
the participants use the lasso selector of InterVENE to manually se-
lect these clusters. The resulting decision tree (not shown here) has

a depth of 2 and an accuracy of 0.912 to classify an instance to one
of the two purple clusters, with ‘skewness’ as top node. For evalua-
tion of the result, a few EEGs from each subcluster are selected and
analysed to evaluate whether the neurologist could see this same dif-
ference. Differentiation within ‘cluster 1’ was beyond visual assess-
ment since skewness is a feature that cannot directly be read from an
EEG; it can only be calculated.

Since manual classification is done by visual inspection of the
EEG, features that cannot be directly read from an EEG are not used
by neurologists in practice (although experiments like these might
change this). This makes interpreting the features used in the decision
tree more difficult. To solve this issue, we trained a second decision
tree that only uses features that are easily interpretable by domain
experts. Thus, while the visualizations are still based on the embed-
dings of an ANN trained on the 42 original features, the decision tree
is only learnt from a dataset with 11 easy-to-interpret features (from
the same patients). The decision tree shown in Figure 3 shows that
Shannon entropy is the most important feature to distinguish between
poor outcome (‘cluster 1’) and good outcome (‘cluster 2’). This cor-
responds with existing literature which showed that Shannon entropy
has the highest individual feature contribution for comatose patients
24 hours after cardiac arrest [28].

6.2 Experiment 2: Neural Visualization for
Network Interpretation

In this experiment, we evaluate to what extent our approach aids
neural network interpretation. We consider the visualizations of both
hidden layers, and compare the visualizations of embeddings trained
over time (after 10, 50 and 100 epochs). An overview with all the
visualizations is shown in Figure 4. We defined the following tasks:
(i) See how the the neural network trains over time by comparing the
visualizations of various epochs.
(ii) Interpret the relevance of hidden layers by comparing the visual-
ization of deeper layers with visualizations of earlier layers.
(iii) Understand where the neural networks makes mistakes by
analysing and comparing True Positives/Negatives with False Pos-
itives/Negatives.

Visualizations over time InterVENE shows how the artificial neu-
ral network (ANN) learns over time to give users a better understand-
ing of the training process. From the top images in Figure 4, the two
clusters indicate that the ANN is already able to distinguish between
two groups of patients after training for 10 epochs. However, the
ANN still makes many classification mistakes when trained for only
10 epochs. The lack of yellow and the presence of purple seem to
indicate that the network quickly learns to recognize poor outcome,
but is not confident yet about good outcomes. This is improved af-
ter 50 epochs, when the visualization clearly shows a yellow cluster
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Figure 3. UMAP visualization of the embedding of the 2nd hidden layer of the ANN, trained for 100 epochs. Each data point is a comatose patient. Color indi-
cates the prediction. A circle indicates a correct classification; a cross indicates an incorrect classification (with prediction threshold 0.5). Users can interactively
select 2 clusters of interest in the visualization using a lasso selector (blue lines). The difference between the selected clusters is explained by a decision tree,
using only interpretable features (accuracy of 0.844). Each splitting node shows the binary expression, total number of samples, division of samples and class
label.
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Figure 4. Visualized embeddings of two hidden layers over time. The left column shows the embedding of the first hidden layer, after the ANN is trained for
10, 50 resp. 100 epochs. The right column shows the embedding of the second hidden layer after 10, 50 resp. 100 epochs. The number of misclassifications
indicates the number of incorrect classifications when a threshold of 0.5 is used to label the output of the ANN.

and a purple cluster. After 100 epochs, the second layer can clearly
distinguish between good and poor outcome. Furthermore, it can bet-
ter distinguish between yellow (confident about good outcome) and
green (not confident about good outcome). Both the machine learn-
ing expert and domain expert found InterVENE useful to better un-
derstand the learning process of the ANN.

Relevance of hidden layers The participants noticed during the
constructive interaction study that the visualizations of the first and
second hidden layer do not differ substantially. Having comparable
visualizations from different layers could indicate redundancy. Our
grid-search found that a 2-layered model performed best but didn’t

tell how worse a 1-layer model would have been. To test whether the
second layer is (almost) redundant, we trained an ANN with only one
hidden layer, and compared its accuracy with the original 2-layered
ANN. Whereas our ANN with 2 hidden layers misclassified 111 pa-
tients, the ANN with 1 hidden layer misclassified 120 patients. Since
the increase is rather small, it confirms the hypothesis that the added
value of the second layer is positive, but limited. This shows that
InterVENE could be used for neural network pruning.

Analysing problematic instances InterVENE can also act as a
starting point to further explore the training data and more quickly
identify problematic training instances. As shown in Figure 5, users



can select a data subset such as true positives or false negatives using
buttons. This gives more insights in the mistakes the ANN makes.
When looking at the false negatives (Fig. 5), it is surprising to see
that the ANN is very confident that some patients will have a poor
outcome (purple) although in reality they had a good outcome. The
neurologist is interested in this incorrect purple cluster, since a neu-
ral network incorrectly predicting a poor outcome (e.g. meaning that
treatment can stop) can have severe consequences. InterVENE can
explain the difference between e.g. true negatives and false negatives
by learning a decision tree to distinguish between these two clus-
ters. However, in our experiments the decision tree algorithm did not
produce a decision tree that could distinguish between false nega-
tives and true negatives. This means that patients with similar feature
values in the dataset have different outcomes, which would explain
why the ANN had difficulty to predict the correct outcome. This rel-
evant information shows that some patients are not distinguishable,
indicating that we might need to group them in a new class ‘no safe
prediction can be made’. We leave this 3-class prediction problem
for future work.
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Figure 5. Screenshot of InterVENE. Button is used to only visualize false
negatives, after which subgroup(s) can be selected by the user.

7 Discussion

InterVENE allows its users to interactively select groups of data
points. However, literature raises concerns for clustering with t-SNE,
which are salient for clustering the results of UMAP. In both meth-
ods, nearest neighbours are mostly preserved but distances between
clusters and densities are not preserved well [24]. We therefore do
not train an explainable method to predict the projected coordinates
of an instance, but rather require it to only predict to which cluster a
data instance belongs. However, users should still take these concerns
into account when interpreting a UMAP visualization. Furthermore,
although we applied InterVENE to only one dataset, we expect that
InterVENE will perform well on other datasets. Since InterVENE let
users select clusters instead of single datapoints, the quality of the
visualization should not be impacted by the number of instances in
the dataset. However, the number of features in a dataset might influ-
ence the quality of the explanation. Parameter tuning (either manual
or automated) could ensure that an explanation is both accurate and
interpretable (e.g. setting a max depth of the decision tree). Besides,
InterVENE currently only allows 2-dimensional visualizations. This
implementation can however easily be adapted, since UMAP sup-
ports higher dimensional visualizations.

8 Conclusion

Various projection techniques exist to visualize neural network em-
beddings. Since these visualizations are difficult to interpret, we pre-
sented an approach to explain these visualizations to aid knowledge
discovery and network interpretation. We showed with a case study
that users can get more insight in such a visualization by interactively
selecting two subsets and comparing them with an interpretable, pre-
dictive model. Our implementation, called InterVENE, was applied
to a structured dataset containing features about EEGs of comatose
patients and is evaluated by a machine learning expert and domain
expert (neurologist). An artificial neural network was trained to pre-
dict whether a patient would have a good outcome (e.g. wake up)
or a poor outcome (e.g. further treatment is futile). After visualizing
the neural embeddings, user can interact with InterVENE to generate
a personalized decision tree which explains the difference between
two user-selected subsets from the visualization. Our case study on
comatose patients confirmed that InterVENE can successfully ex-
tract knowledge from a neural network. This knowledge was valu-
able for the neurologist and the explanations seemed plausible when
compared with existing neurological domain knowledge. InterVENE
also visualizes neural embeddings while the network is trained over
time. Our experiments showed that this gives both domain experts
and machine learning experts an idea of how the neural network is
learning. Moreover, we showed that InterVENE can be used to judge
the relevance of a hidden layer, by comparing the visualized embed-
dings of different hidden layers. For future work, we would like to
apply InterVENE to other case studies, and train a network on raw
EEG data and extract the learnt patterns from the network by learning
a decision tree with hand-made features.
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