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Abstract. Fracture detection has been a long-standing
paradigm on the medical imaging community. Many algo-
rithms and systems have been presented to accurately detect
and classify images in terms of the presence and absence of
fractures in different parts of the body. While these solutions
are capable of obtaining results which even surpass human
scores, few efforts have been dedicated to evaluate how these
systems can be embedded in the clinicians and radiologists
working pipeline. Moreover, the reports that are included with
the radiography could also provide key information regarding
the nature and the severity of the fracture. In this paper, we
present our first findings towards assessing how computer vi-
sion, natural language processing and other systems could be
correctly embedded in the clinicians’ pathway to better aid
on the fracture detection task. We present some initial exper-
imental results using publicly available fracture datasets along
with a handful of data provided by the National Healthcare
System from the United Kingdom in a research initiative call.
Results show that there is a high likelihood of applying trans-
fer learning from different existing and pre-trained models to
the new records provided in the challenge, and that there
are various ways in which these techniques can be embedded
along the clinicians’ pathway.
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1 Introduction

In recent years, fracture detection has been one of the most
cited challenges in medical imaging analysis, evidenced both
by public competitions [18] and clinical trials [9] alike. The
design of a system which aids clinicians in the automatic de-
tection of fractures is of paramount to reduce the workload of
the front line staff and allow them more time to focus on the
most urgent cases. To address this issue, the Scottish Govern-
ment, Opportunity North East (ONE) and the Small Business
Research Initiative (SBRI) announced a challenge to carry out
a project towards looking at this problem in the healthcare
system in the northeast of Scotland3. A team comprised of
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members from the industry (Jiva.ai) and academia (Robert
Gordon University) was formed to look at the problem and
design a solution.

In addition, a key contribution of this work is the mod-
elling of the clinician’s pathway, exploring the current pro-
cess of radiology imaging for fracture treatment. This was
built through a series of co-creation sessions with a reporting
radiographer, then verified by two clinicians and two other
reporting radiographers. By designing this pathway, we iden-
tified three key stakeholders (clinician, radiologist, patient)
and four sub-processes: (1) requesting radiology images; (2)
acquiring radiology images; (3) reporting on radiology im-
ages; and (4) decision support. By understanding the current
approach to radiology imaging for fracture treatment, we con-
sider that we are capable of offering a valuable contribution
that will allow research groups to pinpoint opportunities for
smart automation of this process in future.

The contributions of this paper are as follows:

1. Identify the current processes involved with the various pro-
cedures affected by radiology imaging for fractures.

2. Explore where these processes can be improved through the
implementation of AI.

3. Identify what form of AI would be most applicable in order
to maximise the obtained benefits by the affected stake-
holder.

4. Given the limited amount of samples provided by the chal-
lenge proposer, perform initial proof of concept tests using
baseline methods to identify the potential of transfer learn-
ing in this domain.

2 Related Work

2.1 Image recognition

Only a handful of demonstrations of machine learning, com-
puter vision and natural language processing for bone frac-
ture detection appear in scientific literature. Lindsey et al. [9]
demonstrated that a deep neural network trained on 256’000
x-rays could detect fractures with a similar diagnostic accu-
racy to a sub-specialised orthopaedic surgeon. Also, Olczak et
al. [10] applied deep learning to analyse 256’458 x-rays, and
concluded that artificial intelligence methods are applicable
for radiology screening, especially during out-of-hours health-
care or at remote locations with poor access to radiologists
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or orthopedists. Smaller scale studies using tens to low thou-
sands of images include Lawn et al. [8], Kim and MacKinnon
[5], Tomita et al. [14], Dimililer [3] and Bandyopadhyay et al.
[1], amongst others.

Three technical frames have been described as applicable
for ML in radiology: image segmentation, registration and
computer-aided detection and diagnosis [17]. Out of these,
graph models, such as Bayesian networks and Markov ran-
dom fields, have been identified as the two most widely used
techniques for fracture modelling. However, recent advances
in generative deep models (e.g. variational autoencoders) [6]
have been applied to annotate both images and text; which
are yet to be exploited in radiology and related applications.
Similarly, multi-modal learners [16] have been used to learn
from image and text to improve recognition of objects; unlike
single modality learners these can combine mixed embedding
spaces that unite different modalities. These have been ap-
plied to public text and images but digital health applications
are yet to emerge. Given the relevance of both image and text
to clinical radiology we expect to adapt these algorithms to
create an innovative unified embedding suited to automated
annotation by deep generative algorithms. Indeed, we can use
state-of-the-art translation algorithms such as transformers
[15] which exploit similarity and capitalise on adjacency infor-
mation, to generate reports from both radiograms and clinical
text.

3 Modelling a Clinician’s Pathway

Any artificially intelligent solution which is suggested to re-
solve some problem within the field of radiology should be
rooted in deep understanding of the domain and user re-
quirements. With this in mind, we have received input from
domain-experts to develop a clinician’s pathway, detailing
current process of radiology imaging for fracture treatment. In
this paper, we aim to demonstrate the opportunities which of-
fer potential for smart automation in this field. In particular,
we aim to highlight the areas where the application of artifi-
cial intelligence would be impactful for increasing efficiency,
improving patient experience and decreasing cost.

3.1 Co-Creation of Clinician’s Pathway

We performed a multi-stage co-creation process to model the
clinician’s pathway which was indicative of real-world radiol-
ogy practice. These stages were divided into a design phase,
where we aimed to understand and model the current pro-
cesses for the acquisition and reporting of radiology images,
and a validation phase, in which we obtained unbiased feed-
back on our model from personnel external to our co-creation.
The result is a clinician’s workflow which has been devel-
oped alongside a reporting radiographer, and verified by two
clinicians (one consultant radiologist and one senior accident
& emergency doctor) and two reporting radiographers from
within the National Health Service (NHS) Scotland. We are
therefore confident in its accuracy and its suitability to de-
scribe real radiology processes. Although this pathway has
been built with input from British radiologists, we suggest it
can be generalised to wider radiology practices (within rea-
son).

During the design phase, we organised two separate co-
creation sessions. In the first session, we met with a report-
ing radiographer to discuss the complete journey of a patient
who was given an appointment for radiology imaging for a
suspected fracture. This session was useful to establish the
process start-points and end-points. In the second session, we
observed a reporting radiographer reporting on a series of x-
ray images for suspected fractures. This session was intended
to identify relevant technologies and the role they played in
reporting on radiology images. The outcome of this two stage
design phase was an initial draft of the clinician’s pathway
which could be validated by domain experts.

We then organised three sessions for the validation of the
developed workflow. In the first session, we obtained feed-
back upon the pathway from the reporting radiographer who
was directly involved in its formation. This allowed any er-
rors which had arisen due to misunderstanding aspects of the
design phase to be corrected. In the second session, a mem-
ber of the research team met with a clinician and a reporting
radiographer to explain and discuss the draft pathway and
obtain feedback. This session was designed to ensure that the
pathway could be generalised to more than just the single
radiographer with whom it had been co-designed. In partic-
ular, the session resulted in a number of updates to the role
of the clinician as an actor in the process. Finally, we used
the third session as an opportunity to obtain blind feedback
on the developed pathway as a form of litmus test regarding
its accuracy to radiology practice. We presented the pathway
to a new clinician and reporting radiographer, and requested
feedback on any areas where they felt (a) that the pathway
was not indicative of real-world practice and (b) that there
were opportunities for artificial intelligence to make the pro-
cess more efficient.

The results of the validation sessions were very valuable
for the design process. As a methodology, by performing our
co-creation of the clinician’s pathway in this manner, we are
confident it is accurate to real-world practice, and general-
isable beyond simply an individual’s viewpoint. In the final
validation session, the clinician did not highlight any areas of
the workflow which were not indicative of real-world practice,
while the reporting radiologist suggested only a minor amend-
ment to terminology. Furthermore, the areas which both of the
participants suggested were suitable for artificial intelligence
to make a process improvement very closely overlapped with
our own findings as researchers. We discuss this in more detail
in Section 3.3. In the following subsection, we will introduce
and discuss the developed clinician’s pathway in detail.

3.2 Resulting Clinician’s Pathway

In modelling the process of radiology imaging for fracture
treatment, we identified three key stakeholders (clinician, ra-
diologist, patient) and four sub-processes: (1) requesting radi-
ology images; (2) acquiring radiology images; (3) reporting on
radiology images; and (4) decision support. The complete fig-
ure can be accessed via this link4 and can be seen in Figure 1.
We summarise our pathway using a workflow diagram which
we will break down into respective processes in Figures 2, 3
and 4.

4 https://www.dropbox.com/s/3gx7bicf43bn0lx/wrk flw comp c.
pdf?dl=0
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Figure 1. A complete depiction of the current workflow for requesting, acquiring and reporting upon radiology images

1. Requesting Radiology Images: When requesting ra-
diography images for a patient, a clinician sends an imaging
request to the radiology department. This request contains in-
formation on the patient’s demographic (including a medical

history), information about the clinician making the request
and the examinations requested. It allows an appointment to
be scheduled on the Radiology Information System (RIS), and
the ordering information is dispatched to Picture Archiving



and Communications System (PACS). PACS is an end-to-end
system that supports the process of acquiring radiography
images of a patient from referral of the patient until diagno-
sis and subsequent treatment are agreed. Contained within
PACS is the RIS, where the textual components of patient
information is stored.

2. Acquiring Radiology Images: Each day, the RIS au-
tomatically generates a work list for each imaging modality.
This work list gives the radiologist (or the reporting radiog-
rapher) access to the request information created by the orig-
inal referring clinician, helping them to understand the imag-
ing requirements. This enables the radiologist to perform the
requested imaging. After the imaging has been performed,
the medical equipment will generate images in Digital Imag-
ing and Communication in Medicine (DICOM) standard, and
load them into a graphic user interface where they are made
available for the radiologist to annotate and report. A graph-
ical representation of this is displayed in Figure 2. DICOM
defines an image standard and format for medical images.
Images are high resolution and are linked directly with other
patient data (such as name, gender and age). It was devel-
oped by the National Electrical Manufacturers Association
(NEMA) as part of a set of standards that define best prac-
tice and inform the international standard for the capture,
retrieval, storage and transmission of medical imaging data.
DICOM is currently the most commonly used standard across
the world for medical imaging, and is implemented in most
radiology, cardiology and radiotherapy devices, as well as de-
vices in other medical domains such as dentistry.

3. Reporting on Radiology Images: Radiologists can
access these images by calling up a list of unreported examina-
tions. For each patient, previous images and reports are also
available to support diagnosis. PACS enables radiologists to
annotate the images to highlight areas of interest or identify
supporting evidence for their diagnosis. These annotations in-
clude the ability to perform simple measurements (length of
objects, angles of intersections, etc) and to mark a Region of
Interest (ROI) on the image. This allows the radiologist to
use tools to capture metadata about the ROI, including its
area, average pixel values, standard deviation, and range of
pixel values.

The radiologist will then generate a textual report to sum-
marise and describe their findings. These reports have no
set template or length, but generally include a statement of
whether a fracture has been detected, what type of fracture
it is, where it is located, and the seriousness of the breakage.
Furthermore, the reports may be appended to existing docu-
mentation on the patient (if previous radiology records exist)
or may be used to begin a radiology record (if no previous
visits have been recorded). Many countries then require the
reports to be authorised by a radiologist before being released
to a clinician. For example, within the United Kingdom the
standards for fail-safe communication of radiology reports are
governed by the Royal College of Radiologists (RCR)5. The
result of these factors is that the reports are a complex textual
data source with limited uniformity and describing a broad
range of diagnosis and observations. We represent this infor-
mation as part of the workflow displayed in Figure 3.

4. Decision Support In the existing pathway, decision

5 http://bit.ly/rcr-standards

support occurs after the radiology reports are generated. This
is non-optimal; often for accident and emergency fracture
cases (which make up the majority of fractures in a hospi-
tal) the clinician will attempt to read and comprehend the
generated radiology images without any input from an expert
radiologist. This can be seen in the current workflow in Fig-
ures 2 and 4. This occurs because experts can be unavailable
- not all radiology staff are sufficiently trained to report on
acquired images. As a result the clinician is forced to make
a diagnosis and organise follow up treatment on the basis of
their individual knowledge. This can lead to misdiagnosis, if
the clinician’s findings are not consistent with the radiolo-
gist’s, which can have an impact on the patient’s health as
well as financial consequences for the hospital involved.

Having developed an understanding of the current proce-
dure of radiology imaging for fracture treatment, we are mo-
tivated to make some recommendations where artificial intel-
ligence could make improvements to this process.

3.3 Opportunities for Artificial Intelligence

The key outcome of this work is highlighting the applicabil-
ity of artificial intelligence in two places: to reduce burden
on radiologists by (1) autonomously classifying radiology im-
ages and (2) generating understandable and accurate medical
reports to describe the intelligent system’s findings. Appli-
cations of artificial intelligence to fill these gaps presents an
opportunity to improve decision-support for clinicians by giv-
ing them access to the information immediately. This is a key
factor that is missing from much of the research literature
on this topic; although an artificial intelligence method for
fracture recognition should enhance the efficiency of radiolo-
gists, it should also improve the decision-making of clinicians.
Therefore, it should be of a suitable form to be absorbed by
that user group.

This outcome is supported by the verification obtained from
our test group of clinicians and radiologists. Based on their
feedback, we have highlighted the most impacted area of the
current clinical pathway in Figure 5.

As seen in our discussion of related work, there has been
much exploration of autonomous classification of fracture im-
ages throughout the literature [1, 3, 5, 8, 9, 10, 14]. However,
few works have considered how this could be integrated with
existing medical processes. It is clear that from a clinician’s
perspective, it would be desirable to have the classification of
the image and the report in order to support their decision-
making. This suggests an ecosystem of artificial intelligence
processes would be much more suitable than a standalone
method.

4 Experiments on Image Classification

The main purpose of the experimental framework was to test
the learning capabilities of different baseline algorithms and
settings to classify the images provided in the challenge as
fracture/no fracture. To do so, the first task consisted of hav-
ing a specialist re-annotate the data provided by splitting it
into fracture and no fracture labels, based both on the visual
aspect of the radiography and on the information provided
by the text reports. It was discovered that while most of the
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Figure 2. The co-created workflow for requesting and acquiring radiology images.

Patient is referred 
to radiology 

department by 
clinician.

Radiologist PatientClinician

Patient 
info, 

clinician 
info, exams 
requested
Imaging 
Request

Start

Patient suffers 
injury

Patient is healing 
previous fracture.

Patient is seen by 
clinician.

On day of 
appointment

(or 
attendance)

Request 
information 
entered and 

scheduled on RIS 
and ordering info 

sent to PACs.

RIS sends 
information to 

imaging modality.

Radiographer 
commences 

appointment.
Image acquisition.

Radiographer 
enters details of 

exam on RIS.

Patient attends 
appointment.

Re
qu

es
tin

g 
Ra

di
ol

og
y 

Im
ag

es

Images 
automatically sent 

to PACs.

Ac
qu

iri
ng

 R
ad

io
lo

gy
 Im

ag
es

Reporting 
radiographer (or 
radiologist) starts 

session by bringing 
up list of 

unreported 
examinations

Patient is selected 
and information 

from PACs is made 
available.

At later date

Re
po

rt
in

g 
on

 R
ad

io
lo

gy
 Im

ag
es

Reports written.

Reports authorised 
by reporting 
radiographer.

Report sent to 
clinician.

First 
report?

Yes

New report 
appended to 

existing reports.

No

Report 
matches 
clinician 

diagnosis
?

End

No

De
ci

si
on

 S
up

po
rt

Yes

Image analysed by 
reporting 

radiographer or 
radiologist.

Can 
reporting 

radiographer 
or  

radiologist 
diagnose?

Yes

No

Images sent back 
to clinician (with 

patient for 
emergency 

appointments).

Can 
clinician 
diagnose

?

Further images 
requested

No

Yes

Follow up 
appointment 
organised to 

correct treatment

Treatment decided Patient treated

Figure 3. The co-created workflow for reporting on radiology images.

images corresponded to ”regular” scenarios (where the pur-
pose is to assess whether the patient has suffered a fracture or
not), some other cases also contained follow-up reports (iden-
tified as POP) where the issue is not to identify the pres-
ence/absence of a fracture, but rather to give a follow up for

a patient which already has had the fracture identified in a
previous visit. We labelled 73 images as positive (i.e. with
fracture) and 138 negative (i.e. no fracture). Moreover, six
examples were POP fractures, and thus were not included in
our experiments.
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Figure 4. The co-created workflow for using radiology images for decision support.

Figure 5. AI provides an opportunity to provide decision support much more quickly by classifying an acquired image and generating

a suitable report to describe its findings.

4.1 Datasets

To demonstrate the potential of transfer learning capabilities
of the selected algorithms towards the NHS provided records,
we used the following publicly available dataset.

MURA: The MURA (MUsculoskeletal RAdiographs)
dataset is a large dataset of bone X-rays. Algorithms are
tasked with determining whether an X-ray study is normal or
abnormal. It consists of X-ray scans on elbow, finger, forearm,
hand, humerus, shoulder and wrist. The training set consists
of 14’873 positive cases and 21’939 negative cases while the
validation set has 1’530 positive examples and 1’667 negative
examples. Among them, forearm and wrist are close to our
problem, which consists of 7’443 negative and 5’094 positive
examples. Images from this dataset can be accessed here6.

6 https://stanfordmlgroup.github.io/competitions/mura/

4.2 Image Preprocessing

To increase the likelihood of classification and the training
sample size, We applied the following preprocessing tech-
niques, which are the most commonly used in related liter-
ature [18]:

• horizontal flip, width shift by 0.1,
• height shift by 0.1,
• shearing with range 0.1,
• zoom with range from 0.9 to 1.25 and
• random rotation from 0 to 15 degrees.

4.3 Architecture Details

These followings baseline architectures were used in our ex-
periments:

A VGG 16 [11] is a Convolutional Neural Network (CNN)
model proposed by Simonyan and Zisserman. The model



achieves 92.7% top-5 test accuracy in ImageNet, which is a
dataset of over 14 million images belonging to 1’000 classes.
It is an improvement over the classical AlexNet [7] by re-
placing large kernel-sized filters (11 and 5 in the first and
second convolutional layer, respectively) with multiple 3×3
kernel-sized filters one after another. The original VGG16
was trained for weeks and was implemented using NVIDIA
Titan Black GPU’s.

B Resnet 50 [4] is a CNN architecture of 50 layers deep,
each of which is formulated as learning residual functions
with reference to the layer inputs, instead of learning unref-
erenced functions. Because of these residual modules, the
architecture can become very deep. This architecture won
the 1st place on the ILSVRC 2015 classification challenge.

C Inception V3 [12, 13] is a CNN architecture which
achieved improved utilisation of the computing resources
inside the network by carefully crafted design that allows
for increasing the depth and width of the network while
keeping the computational budget constant. To optimize
quality, the architectural decisions were based on the Heb-
bian principle and the intuition of multi-scale processing.
The authors also proposed ways to scale up networks in
ways that aim at using the added computation as effi-
ciently as possible by suitably factorised convolutions and
aggressive regularization. Tests were made on the ILSVRC
2012 dataset, in which with an ensemble of four models
and multi-crop evaluation, authors reported 3.5% top-5 er-
ror on the validation set (3.6% error on the test set) and
17.3% top-1 error on the validation set.

4.4 Experiment Details

To have different points of comparison, we tested the results
of using the three aforementioned classifiers to classify im-
ages from the MURA dataset. We distinguished between the
following four configurations:

1. When the networks were pre-trained with ImageNet [2].
2. When they were initialised randomly.
3. When the networks were initialised randomly, trained on

all the MURA dataset (except wrist and arm images) and
then retrained on wrist and arm images.

4. When the networks were pre-trained from ImageNet ran-
domly, trained on all of MURA (except wrist and arm) and
then retrained on wrist and arm images.

The accuracy result can be seen in Table 4.4 and the run
time in Table 4.4:

Table 1. Accuracy results for cases from (1) to (4)

Case (1) Case (2) Case (3) Case (4)
VGG16 0.82 0.535417 0.535417 0.798958
Resnet50 0.8083 0.535417 0.535417 0.783333
InceptionV3 0.677083 0.535417 0.535417 0.536458

The results showed that case 1 with VGG 16 and ResNet
50 delivered the best accuracy overall (82% and 80% respec-
tively), implying that it is possible to obtain good accuracy
provided that we can train the systems with sufficient data,

Table 2. Running time (in seconds) for cases from (1) to (4)

Case (1) Case (2) Case(3) Case (4)
VGG16 1869.48 2024.83 5557.05 5374.36
Resnet50 1776.34 1308.95 11406.28 7378.9
InceptionV3 3128.09 3086.32 11429.92 8208.37

regardless of its origin. Moreover, case 2 with these same ar-
chitectures also showed good performance, (79% and 78% re-
spectively), but even with the retraining on wrist and arm
images, results were slightly worse than training only with
ImageNet images. This may be due to the fact that some
wrist/arm images had to be used for such retraining instead
of testing. In terms of run time, we also found out that case
1 overall is faster to train and test.

After this initial validation, we tested the transfer learn-
ing capability from MURA to the newly acquired images. We
tested the following three cases:

5. When networks were pre-trained on ImageNet, trained on
MURA and tested on the new dataset.

6. Mixing MURA and new images to generate both training
and test sets (70% train, 30% test).

7. Same as the previous case, however the test set was com-
posed of 70% of MURA images and 30% from the new
dataset.

The accuracy results are shown in Table 4.4:

Table 3. Accuracy results for cases from (5) to (7)

Case (5) Case (6) Case (7)
VGG16 0.668293 0.809524 0.704918
Resnet50 0.673171 0.76112 0.606557
InceptionV3 0.673171 0.727106 0.754098

In contrast to what was expected from the previous test, we
observed that for case 5, all CNNs were unable to learn how
to classify the new images. In contrast, it was more likely to
obtain higher accuracy rates for case 6 and VGG 16 (81%),
although this is a direct result of images from the MURA
dataset being mixed within the test set. Meanwhile, case 7
and Inception V3 obtained 75% accuracy, but keeping in mind
that the test set is only composed of new images, this was a
clear indication that it is possible to transfer a model using a
larger amount of images. In terms of run time, we discovered
that it was faster to train networks through case 6, followed by
case 6 and case 7 respectively. The complete run time results
can be seen in Table 4.4.

Table 4. Running time (in seconds) for cases from (5) to (7)

Case (5) Case (6) Case (7)
VGG16 2727.67 2700.84s 3718.74
Resnet50 1889.82 3495.72s 4280.42
InceptionV3 2763.39 10388.83s 9656.18

5 Conclusion

In this paper, we have presented a first step towards assessing
the most proper way to embed machine learning, computer vi-



sion and natural language processing into the clinicians’ path-
way to improve assisted diagnostics of fracture detection. We
have reviewed the most significant literature and designed a
pipeline where we have annotated the most relevant action
points where artificial intelligence can be used to improve the
current practices. In addition, we have carried out some ini-
tial experiments to verify how current methods and transfer
learning perform on identifying fractures in a reduced dataset
provided by the British public health service. Results show
that there is a great likelihood of being able to apply transfer
learning for these purposes, and in the case that more images
are provided by the challenge setter, then the accuracy can
vastly improve.

We will continue this partnership to explore more ways in
which we can further improve our findings and including other
technologies to enhance the existing results. Finally, we will
keep working with clinicians and radiographers to correctly
assess their pathways and effectively applying these technolo-
gies in commercial settings.
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