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Abstract. AI and Machine Learning can offer powerful tools to
help in the fight against Covid-19. In this paper we present a study
and a concrete tool based on machine learning to predict the progno-
sis of hospitalised patients with Covid-19. In particular we address
the task of predicting the risk of death of a patient at different times
of the hospitalisation, on the base of some demographic informa-
tion, chest X-ray scores and several laboratory findings. Our machine
learning models use ensembles of decision trees trained and tested
using data from more than 2000 patients. An experimental evalua-
tion of the models shows good performance in solving the addressed
task.

1 Introduction

The fight against Covid-19 is a new important challenge for the world
that AI and machine learning can help facing at various levels [15,
28, 29]. In March 2020, at the time of the coronavirus emergency
in Italy, we started working in strict collaboration with one of the
hospitals that had more Covid-19 patients in Italy, Spedali Civili di
Brescia, to help predicting the prognosis of hospitalised patients. Our
work was focused on the task of predicting the risk of death of a
patient at different times of the hospitalisation. As discussed in [28],
predicting if a patient is at risk of decease or adverse events can help
the hospital, for instance, to organize the allocation of limited health
resources in a more efficient way.

Our predictive models are built on the base of demographic in-
formation (sex and age), the values of ten laboratory tests and the
chest X-ray score(s), which is an innovative measure developed and
used at Spedali Civili di Brescia to assess the severity of the pul-
monary conditions [3]. Other important information, such us the pa-
tient comorbidities or the time and duration of the symptoms related
to Covid-19, were not used because not available to us.

Using raw data from more than 2000 patients, we built some data
sets describing the “clinical history” of each patient during the hos-
pitalisation. In particular, each dataset contains a “snapshot” of the
infection conditions of every considered patient at a certain day after
the start of the hospitalisation. For each dataset, we built a different
predictor, allowing to make progressive predictions over time that
take into account the evolution of the disease severity in a patient,
which helps the formulation of a personalized prediction of the prog-
nosis. A change of the predicted risk over time for a patient could also
hint a link between specific events or treatments and the increase or
decrease of the risk for the patient. As snapshot times for a patient, in
our experiments we considered the 2nd, 4th, 6th, 8th and 10th hospi-
talization day, and the day before the end of the hospitalisation.

Our datasets were engineered to cope with a number of practical
issues, including missing values and feature values categorization,
and to add some helpful artificial features. We also addressed the
“concept drift” issue [6, 23], since we observed that the risk of death
was clearly sensitive to the time period when the patient was hos-
pitalised; the risk was significantly higher during the earlier period
of the emergency (March 2020), when in northern Italy the spread of
the virus infection was very high and many people were hospitalised.
Moreover, given the very sensitive nature of our task, we introduced
a threshold to discharge the model predictions that have a low esti-
mated probability. Such a threshold is a parameter that is automati-
cally calculated and optimised during the training phase.

We considered several machine learning algorithms. A first experi-
mental comparison of their performance on our data sets showed that
methods based on forests of trees have more promising performance,
and so we decided to focus on this approach. The obtained predic-
tion models have good performance over a randomly chosen test set
of 200 patients for each considered period, in terms of both F2 and
ROC-AUC scores. In particular, overall the system makes very few
errors in predicting patient survival, i.e., the specificity of the predic-
tion is very high.

In the following, after discussing related work, we describe our
data sets, we present our prediction models and their experimental
evaluation, and finally we give conclusions and mention future work.

2 Related work

Artificial Intelligence and Machine Learning techniques can be used
for tackling the Covid-19 pandemic in different aspects. However,
given that the pandemic has started only few months ago, most works
are still preliminary, and there isn’t a clear description of the devel-
oped techniques and of their results (often only pre-printed and not
properly peer-reviewed).

A preliminary study is presented in [15]. Given a set of only 53
patients with mild symptoms and their lab tests, comorbidities and
treatment, the authors train several machine learning models (Lo-
gistic Regression, Decision Trees, Random Forests, Support Vector
Machines, KNN) to predict if a patient will be subject to more sever
symptoms, obtaining a prediction accuracy score of up to 0.8 using
10-fold cross validation. The generalizability and strength of these
results are questionable, given the very small set of considered pa-
tients.

Another example is the pre-printed work by Li Yan et al. [29] that
uses lab tests for predicting the mortality risk; the proposed model
is a very simple decision tree based on the three most important fea-
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tures. While the performance seems promising, the test set used for
evaluation was very small (29 patients).

Various AI and machine learning techniques have been developed
for prognosis and disease progression prediction [7] in the context of
diseases different from Covid-19 [20, 21, 22]. In particular, in the last
few years, several works about predicting mortality risk or adverse
events and on the use of AI in critical care [19] have been published.
The survey in [1] presents a review of statistical and ML systems for
predicting the mortality risk, the need of beds in intense care units
[30] or the length of the patient hospitalization. In particular, it is
worth to mention the work by Harutyunyan et al. [11] which uses
LSTM Neural Networks for predicting both the mortality risk and
the length of the hospitalisation.

An overview of the issues and challenges for applying ML in a
critical-care context is available in [16]. This work stresses the need
to deal with corrupted data, like missing values, imprecision, and
errors that can increase the complexity of prediction tasks.

Lab test findings and their variation over time are the main focus
of the work by Hyland et al. [14], which describes a system that
processes these data to generate an alarm predicting that a patient
will have a circulatory failure 2 hours in advance.

3 Available Data Sources

During the Covid-19 outbreak, from February to April 2020 in
hospital Spedali Civili di Brescia more than two thousand patients
were hospitalised. During their hospitalisation, the medical staff per-
formed several exams to them in order to monitor their conditions,
checking the response to some treatments, verifying the need to
transfer a patient to the ICU, etc. We had data from a total of 2015
hospitalised patients; for each of these patients, the specific data that
were made available to us are:

• the age and sex;
• the values and dates of several lab tests (see Table 1);
• the scores (each one from 0 to 18), assigned by the physicians,

assessing the severity of the pulmonary conditions resulting from
the X-ray exams [3];

• the values and dates of the throat-swab exams for Covid-19;
• the final outcome of the hospitalisation at the end of the stay,

which is the classification value of our application (either in-
hospital death, released survivor, or transferred to another hospital
or rehabilitation center).

Table 1 specifies the considered lab tests, their normal range of val-
ues, and their median values in our set of patients. We had no further
information about symptoms, their timing, comorbidities, generic
health conditions or clinical treatment. Moreover, we have no CT im-
ages or text reports associated with the X-ray exams. The available
information about whether a patient was or had been in ICU was not
clear enough to be used. Finally, of course, also the names of the
patient and of the involved medical staff names were not provided.

3.1 Data Quality Issues

When applying machine learning to raw real-world data, there are
some non-trivial practical issues to deal with, such as the quality of
the available data and related aspects, that in biomedical applications
are especially important given the very sensitive domain [12].

In our case, one of such issues is that the length of the hospital-
isation period can sensibly differ from one patient to another (from

Lab test Normal Range Median Value
C-Reactive Protein (PCR) ≤ 10 34.3
Lactate dehydrogenase (LDH) [80, 300] 280
Ferritin (Male) [30, 400] 1030
Ferritin (Female) [13, 150] 497
Troponin-T ≤ 14 19
White blood cell (WBC) [4, 11] 7.1
D-dimer ≤ 250 553
Fibrinogen [180, 430] 442
Lymphocite (over 18 years old patients) [20, 45] 1.0
Neutrophils/Lymphocites [0.8, 3.5] 4.9
Chest XRay-Score (RX) < 7 8

Table 1: Lab tests performed during the hospitalisation. In the second
column, we show the range which is considered clinically normal
for a specific exam. In the third column, we show the median value
extracted considering the lab test findings for our set of 2015 patients.

few days to two months), due to different reasons including the nov-
elty and the characteristics of the disease, its high contagiousness or
the absence of an effective treatment. Therefore, the number of per-
formed lab tests and relative findings significantly varies among the
considered set of patients (from only three to hundreds).

Moreover, the lab tests and X-ray exams are not performed at a
regular frequency due, e.g., to the different kinds and timing of the
relative procedures, the need of different resources (X-Ray machines,
lab equipments, technical staff, etc.), or to the different severity of
the health conditions of the patients. For example, in our data we see
that a patient can be tested for PCR everyday and not be subject to
a Ferritin exam for two weeks. This leads to the need of handling
the issues missing values and outdated values. When we consider a
snapshot of a patient at a certain day, we have a missing value for a
lab test (or X-ray) feature if that test (X-ray) has not been performed.
We have an outdated value for a feature if the corresponding lab test
(X-ray) was performed several days earlier: since in the meanwhile
the disease has progressed, the findings of the lab test could be incon-
sistent with the current conditions of the patient, and so they could
mislead the prediction.

Data quality issues arise especially patients hospitalised in the pe-
riod of the highest emergency, when several hundreds of patients
were in the hospital at the same time.

3.2 Concept Drift
An examination of the data available for our cohort of patients re-
vealed that their prognostic risk is influenced by multiple factors,
such as the number of the patients currently hospitalised and the con-
sequent availability of ICU beds or other resources, the experimen-
tation of new therapies, and the increase of the clinical knowledge.

In machine learning, this change of data distribution is known as
concept drift [6, 23]. A classical method to deal with this problem is
training the algorithm using only a subset of samples, depending on
the data distribution that we are considering [6, 24].

For this reason, we divided the considered set of patients into two
groups: the High Contagion Phase (HCP) group of patients, which
is composed by the patients admitted during the last weeks of Febru-
ary and the first weeks of March (the most critical period of the pan-
demic outbreak in Italy) and the Moderate Contagion Phase (MCP)
group of patients, which is composed by the patients admitted from
the last decade of March to the end of April.

The main differences between these groups of patients are:

1. the mortality rate of the HCP patients is about twice the mortality
rate of the MCP patients;



Figure 1: Length of stay in hospital (left) and weekly death rate histograms for the High Contagion Phase (in blue) and for the Moderate
Contagion Phase (in orange). On the x-axis, for the length of stay we indicate the range of days, for the death rate we indicate the week when
the patient was released. On the y-axis we indicate the percentage of patients.

2. in HCP patients the median value of the hospitalisation period is 8
days, while in MCP patients is 14 days. Further details are given
in Figure 1;

3. for many of the considered lab test, the mortality rate associated
with having values in a particular range significantly changes in
the two groups. For example, in HCP patients the mortality rate
for the patients which had a PCR value 10 times above the normal
range is 40.1%, while in MCP patients it is 21.1%.

These differences clearly indicate that the data in the HCP and
MCP groups represent different target (concept) functions; therefore
predicting mortality during the high infection phase and during the
moderate phase can be considered as two different tasks. If we had
only the patients hospitalised during the high infection phase, using
these data for training an algorithm that predicts the mortality during
the moderate phase would lead to many errors.

In our case, we generated two different systems, one for each of
the two groups of patients. We are currently investigating ways to
automatically select the set of patients for training starting from the
latest ones, and keeping the less recent ones until we find significant
changes in the mortality rate or in the data distribution.

4 Datasets for Training and Testing

The main task of our work is to provide survival/death predictions at
different days of the patient hospitalisation, according to the current
patient conditions reflected by the available lab findings and X-ray
scores. In this section we describe the specific extracted features and
the (training and testing) datasets that we built for this purpose.

4.1 Pre-processing and Feature Extraction

The issues presented in Section 3.1 compel us to a robust pre-
processing phase with the goal of extracting features in order to sum-
marize the patients conditions and process them by a machine learn-
ing algorithm. The pre-processing is applied to both HCP and MCP
data.

Given that we have no information about the survival or the de-
cease of a patient after a transfer (which can be due to limited avail-
ability of beds or ICU places), we exclude from our training and test
set the 142 patients which were admitted in Spedali Civili di Bres-
cia and then transferred to another hospital. However, the 74 patients
who were transferred to a rehabilitation center can be considered not
at risk of death; therefore we include them in our datasets and con-
sider the transferred patients as released alive.

4.1.1 Patient Snapshot and Feature Engineering

In order to provide a prediction for a patient at different hospitalisa-
tion times, we introduced the concept of patient snapshot to repre-
sent the patient health conditions at a given day.

In this snapshot, for each lab test of Table 1, we consider its most
recent value. In the ideal case, we should know the lab test findings
at every day. However, as explained in Section 3.1, in a real-world
context the situation is very different. For example, in our data if we
consider to take a snapshot of a patient 14 days after the admission
into the hospital, we have cases with very recent values of PCR, LDH
or WBC (obtained one or a few days before), very old values for Fib-
rinogen or Troponin-T (obtained the first day of the hospitalisation)
and even no value for Ferritin.

Given the difficulty to set a predefined threshold that separates re-
cent and old values of the lab tests (e.g., for Fibrinogen and Troponin-
T), we choose to always use the most recent value, even if it could
be outdated. In order to allow the learning algorithm to capture that
a value may not be significant to represent the current status of the
patient (because too old), we introduce a feature called ageing for
each test finding. If a lab test has been performed at a day d0, and the
snapshot of a patient is taken at day d1, the ageing is defined as the
number of days between d1 and d0. If there is no available value for
a lab test, its ageing is considered a missing value.

A patient snapshot can contain the values of the lab test findings in
two forms: either numerical, in which we report the value itself, or
categorical, in which the value is transformed into an integer number
expressing the gravity of the test finding within a partition of the
possible real values. This partition is based on the range of values for
normal conditions and on how the test values are distributed over the
data of all patients. For example, we divide the D-Dimer vales into
6 categories: the normal range, up to 2 times the maximum value
of the normal range, up to 4 times, 6 times, 10 times and over 10
times. The categorical form could help the algorithm to have a clearer
understanding of the data and improve performance.

Monitoring the conditions of a patient means knowing not only the
patient status at a specific time, but also how the conditions evolve
during the hospitalisation. For this purpose, we introduce a feature
called trend that is defined as follows:

For each lab test, if there is no available value for a lab test or if
the patient has not performed the lab test at least two times, the
trend is a missing value. Otherwise, given the values v1 and v2
of the findings for the lab test performed at days d1 and d2 and a
threshold T that we set to 15% of v1, if v2 > (1 + T ) ∗ v1, then
the trend is increasing, while if v2 < (1 − T ) ∗ v1 the trend is



decreasing; otherwise the trend is stable.

We distinguish two types of trends: the start trend, that uses the
distance between the most recent value and the first available value,
and the last trend, that uses the distance between the last one and
the penultimate one. We are currently investigating techniques for
including more than two values in the trend calculation.

To summarize, for each lab test in a patient snapshot, we have the
most recent finding and the relative ageing and trend, as well as the
static features age and sex.

4.2 Training and Test Sets Generation
In this section we describe how we generated the training and test
sets for the purpose of predicting, at different days from the start of
the patient hospitalization, the final outcome of her/his stay.

First, for both the HCP and MCP sets, we used stratified sampling
for selecting 80% of the patients for training the models and 20% for
testing them. Then, we created specific training and test sets for each
element in a sequence of times when the model is used to make the
prediction1:

• 2 days of hospitalisation. We include all the patients’ snapshots
containing the first values for each lab test conducted in the first
two days after the hospital admission. Note that if a patient has
performed a lab test more than once in the first two days, the
snapshot will consider the oldest value. In fact, the purpose of
the model we want to build is to provide the prediction as soon
as possible, with the first information available. Furthermore, in
these snapshots the ageing and trend values are not included.

• 4 days and 6 days of hospitalisation. In these cases, the corre-
sponding snapshots also contain the ageing and trend features, and
the lab values will be the most recent ones in the available data.
Given that only a few days passed after admission, we consider
the start trend.

• 8 days and 10 days of hospitalisation. The procedure of creating
the corresponding snapshots is the same as for the snapshots of
4 days and 6 days cases, except that we consider the last trend
instead of the start trend.

• End day (the last day before the patient is released or the patience
decease). In this case, for each lab test the snapshot includes both
the start trend and the last trend features.

It is important to observe, that while the datasets of the latter days
will contain more information about the single patients (more lab
tests findings, less missing values), the overall number of patients in
the datasets decreases with the prediction day increase. This is due to
the fact that more patients are released or die within longer periods
of hospitalisation, and therefore such patients are not included in the
corresponding datasets.

Finally, note that the splitting between training and testing of the
data is done only once considering all patients. Thus if, for instance,
a patient belongs to the training set of 2 days, then it does not belong
to the test set of the following days.

5 Machine Learning Algorithms
In this section we briefly describe the machine learning algorithms
used in our prognosis prediction system.

1 While we chose 2, 4, 6, 8, 10 days after the hospitalisation, plus the day
before the patient release, of course other sequences could be considered.

5.1 Classification Algorithms
Decision trees

Decision Trees [25] are one of the most popular learning methods
for solving classification tasks. In a decision tree, the root and each
internal node provides a condition for splitting the training samples
into two subsets depending on whether the condition holds for a sam-
ple or not. In our context, for each numerical feature f , a candidate
splitting condition is f ≤ C, where C is called cut point. The final
splitting condition is chosen by finding the f and C providing the
best split according to one of some possible measures like Informa-
tion Gain, Entropy index or Gini index.

A subset of samples at a tree node can either be split again by
further feature conditions forming a new internal node, or form a
leaf node labelled with a specific classification (prediction) value; in
our application domain the label is either the alive class or the dead
class. Let us consider a decision tree with a leaf node l and a subset S
of associated training samples. A test instance X that reaches l from
the root tree, is classified (predicted) y with probability

P (y|X) =
TP

TP + FP

where TP (True Positives) is the number of training samples in S
that have class value y, and FP (False Positives) is the number of
samples in S that don’t have class value y [5]. Given that in our task
we have only two classes (y and y), P (y|X) = 1 − P (y|X). The
classification outcome of a decision tree forX is the class value with
the highest probability.

Random Forests

Random Forests (RF) [4] is an ensemble learning method [32] that
builds a number of decision trees at training time. For building each
individual tree of the random forest, a randomly chosen subset of the
data features is used. While, in the standard implementation of ran-
dom forests the final classification label is provided using the statisti-
cal mode of the class values predicted by each individual tree, in the
well-known tool Scikit-Learn [18] that we used for our system im-
plementation, the probability of the classification output is obtained
by averaging the probabilities provided by all trees. Hence, given a
random forest with n decision trees, a class (prediction) value y is
assigned to an instance X with the following probability:

P (y|X) =

∑n
i=1 Pi(y|X)

n
.

Extra Trees

Extremely Randomized Trees (Extra Trees or ET) [8] are another
ensemble learning method based on decision trees. The main differ-
ences between Extra Trees and Random Forests are:

• In the original description of Extra Trees [8] each tree is built us-
ing the entire training dataset. However in most implementations
of Extra Trees, including Scikit-Learn [18], the decision trees are
built exactly as in Random Forests.

• In standard decision trees and Random Forests, the cut point is
chosen by first computing the optimal cut point for each feature,
and then choosing the best feature for branching the tree; while
in Extra Trees, first we randomly choose k features and then, for
each chosen feature f , the algorithm randomly selects a cut point
Cf in the range of the possible f values. This generates a set of k



couples {(fi, Ci) | i = 1, . . . , k}. Then, the algorithm compares
the splits generated by each couple (e.g., under split test fi ≤ ci)
to select the best one using a split quality measure such as the Gini
Index or others.

The probability P (y|X) of assigning a class value y to an instance
X is computed as in Random Forests (see equation above).

5.2 Hyperparameter Search
Most machine learning algorithms have several hyperparameters to
tune such as, for instance, in a Random Forest the number of decision
trees to create and their maximum depth. Since in our application
handling the missing values is an important issue, we also used a hy-
perparameter for this with three possible settings: a missing value is
set to either the average value, the median value or a special constant
(-1).

In order to find the best performing configuration of the hyper-
parameters, we used the Random Search optimization approach [2],
which consists of the following main steps:

1. We divide our training sets into k folds, with either k = 10 or
k = 5, depending on the dimension of the considered dataset.

2. For each randomly selected combination of hyperparameters, we
run the learning algorithm in k-fold cross validation.

3. For each fold, we evaluate the performance of the algorithm with
that configuration using the Macro F-β score metric and β = 2.
The F -β score is the weighted harmonic mean of precision and
recall measures. The β parameter indicates how many times the
recall is more important with respect to the precision:

F -β = (1 + β2) ∗ precision+ recall

β2 ∗ precision+ recall

We choose β = 2 in order to give particular importance to false
negatives, i.e. those patients which our system could not identify
as at death risk. Given that we can compute the F2-score both for
both the alive class and the dead class, we considered the Macro
F2-Score, which is the arithmetic mean of the scores for the two
classes.

4. The overall evaluation score of the k-fold cross validation for
a configuration of the parameters is obtained by averaging the
scores obtained for each fold.

5. The hyperparameter configuration with the best overall score is
selected.

5.3 Handling Prediction Uncertainty
The output for an instance X of every generate classification model
is an array of two probabilities, P (alive|X) and P (dead|X), de-
fined as described in Section 5.1. We can see them as “degrees of
certainty” of the prediction: the higher the probability is, the more
reliable the prediction is. Given the very sensitive nature of our task,
the system discards potential predictions supported by a low proba-
bility. This is achieved using a prediction threshold under which the
system considers the prediction uncertain (and the patient risk un-
predictable). Note that if we used a threshold value that is too high,
many patients could be classified uncertain, and our model would be
much less useful for clinical practice. To avoid this, at training time
we impose a maximum percentage of samples that can can be con-
sidered uncertain (unpredictable), and we implemented this with a
parameter, called max u, that is given in input; for our experimental
analysis we used max u = 25%.

FINDUNCERTAINTHRESHOLD: Algorithm for computing,
during the training phase, an optimised prediction threshold
under which the model labels an instance as uncertain.

Input:
– L array of labels (alive or dead) li with l[i] label of the sample i

of the validation data (fold);
– P = [pi = (palive, pdead)i | i is the sample index in val. set];
– max u the maximum percentage of the samples in the validation

set that can be labeled as uncertain (not predictable);
– n the maximum number of thresholds to try;
– EvaluateScore the score function to maximize by dropping the

uncertain samples;

Output: A pair (v, th) where v is the score function value
after dropping the uncertain samples and th the
optimized threshold value.

1 Lpred ← array of labels such that Lpred[i] is the predicted
label (the label with highest probability) of the val. sample i;

2 Pmax ← [max(palive, pdead)i | (palive, pdead)i ∈ P ];
3 v ← EvaluateScore(L,Lpred);
4 th← min value in Pmax;
5 δ ← [(max value in Pmax) − (min value in Pmax)]/n;
6 for i← 0 to n− 1 do
7 th′ ← min value in Pmax + i · δ;
8 S ← {i |i is id sample such that Pmax[i] > th′}
9 u← 1− (|S|/|Pmax|);

10 if u ≥ max u then return (v, th);
11 L′ ← array of labels such that L[i] is the label of the val.

sample i and i ∈ S;
12 L′

pred ← array of labels such that Lpred[i] is the
predicted label of the val. sample i and i ∈ S;

13 v′ ← EvaluateScore(L′, L′
pred);

14 if v′ > v then
15 th← th′;
16 v ← v′;
17 end
18 end

Figure 2: Pseudocode of algorithm FINDUNCERTAINTHRESHOLD.

We designed an algorithm called FINDUNCERTAINTHRESHOLD

that is used in the training phase to decide the threshold and opti-
mize the prediction performance on the training samples that pass it,
under the max u constraint. The pseudocode of the algorithm is in
Figure 2.

Given the original labels L of the validation samples and their
prediction probabilities P derived by the learning algorithm, FIND-
UNCERTAINTHRESHOLD first computes: the predicted labels Lpred

(i.e., the class values with highest probabilities) and the relative
Pmax probabilities; the original score v obtained using the input
score function evaluating all samples; an initial value of the threshold
(th) defined as to the minimum probability in Pmax.

The next loop finds an optimal value of threshold th and computes
the score function for the validation set reduced to the validation
samples with predicted labels that have probabilities above th. The
considered threshold values are obtained by using the δ-increments
defined at lines 5 and 7. First we compute the new threshold th′ in-
creasing the current threshold by δ, and then we derive the set S
of sample ids with prediction probabilities higher than th′. Next we
compute the percentage u of samples that are labeled as uncertain
using threshold th′. If u ≥ max u, we can terminate returning the



Figure 3: Average performance (F2 score) of seven machine learning
algorithms for the HCP datasets. The line over the bar represents the
standard deviation.

current best new score v and the corresponding threshold value th (a
greater threshold value cannot lead to label as uncertain less samples
than the returned th value). Otherwise (u < max u), we compute
the correct sample labels L′ and the predicted sample labels L′

pred

for the samples identified by S, and we compute the new score value
v′ using L′ and L′

preds. If v′ is a better score than v, we update both
the threshold and the score values.

FINDUNCERTAINTHRESHOLD is executed during the training
phase. In particular during the hyperparameter search, for each at-
tempted hyperparamenter configuration, we compute through FIND-
UNCERTAINTHRESHOLD an optimized threshold and the relative
score function value. These two values are obtained by averaging
the optimal thresholds and corresponding scores over all folds of the
cross validation for the attempted configuration. The hyperparameter
search returns the best configuration together with the relative (aver-
aged) threshold.

6 Experimental Evaluation and Discussion
In this section, we evaluate the performance the of the machine learn-
ing models that we built. Our system was implemented using the
Scikit-Learn [18] library for Python, and the experimental tests were
conducted using a Intel(R) Xeon(R) Gold 6140M CPU @ 2.30GHz.

The performance of the learning algorithms with the relative op-
timized hyperparameters was evaluated using the test set in terms
of F2 score and ROC-AUC score. The second metric is defined as
the area under the Receiver Operating Characteristic curve, which
plots the true positive rate against the false positive rate, and it takes
also into account the probability that the predictive system produces
false positives (i.e. false alarms). This metric is a standard method
for evaluating medical tests and risk models [9, 10].

In a preliminary study we examined various machine learning ap-
proaches and we compared their average performances over the HCP
datasets. Figure 3 shows a summary of the relative performance in
terms of F2 score. We considered Decision Trees [25], ExtraTrees
(ET) [8], Gaussian Naive Bayes [31], Multilayer Perceptron with two
layers (MLP) [13], Quadratic Discriminant Analysis [26], Random
Forests (RF) [4] and Support Vector Machines [27]. The best perfor-
mance was obtained with RF and ET. NN and SVM performed much
worse and with a much higher variability over the datasets, probably
related to the missing values and the scarcity of data. For the MCP
datasets the relative performance was similar. Given the observed
better performance of RF and ET, we focused the evaluation of our
system on these learning algorithms

Regarding the training time, including the hyperparamenter search
over 4096 random configurations and the optimization of the uncer-
tainty threshold, for any specific dataset (e.g., the MCP numerical
dataset for 2 days), the overall training time is between 20 and 30

minutes. Therefore, we can build all the four most promising models
generated by RF and ET using the numerical version (RF-N, TC-N)
or the categorical version (RF-C, ET-C) of the data set in less than
two hours, and then select the best performing model among them.

It is also worth to note that in our system the models for predicting
the prognostic risk at different days are completely independent from
each other, and so we can consider prediction tasks at different days
as different tasks.

In Figure 4 and in Table 2 we show the performances of our sys-
tem at each considered day for both the High Contagion Phase and
the Moderate Contagion Phase. As we can see, we obtain promising
results in terms of F2 score for an early evaluation of the risk dur-
ing the HCP (with score 77.1% at day 2), while we encounter some
problems at the 6th and 10th days. For the MCP datasets, the system
performs better at the latter days, in particular for the 10th day F2
is 80.4% and ROC-AUC is 90.2%. For HCP, both RF and ET ob-
tain good results in both the numerical and categorical versions of
the datasets. Instead, for MCP using the categorical datasets does not
give good performance, and we do not observe an improvement for
the latter prediction days (the F2 score is always below the 70%).

In all but one case, the models using the uncertain threshold in-
crease the performance in terms of both F2 and ROC-AUC scores.
In particular, in the most problematic cases of HCP, such as for the
6-days and 10-days datasets, the prediction performance improves in
terms of F2 by over than 7 points. The improvement is less significant
for MCP.

Note that, while the threshold value under which the system labels
an instance (patient risk) as uncertain is derived at training time im-
posing a maximum percentage of uncertain samples (we used 25%),
there is no formal guarantee that this percentage limit is satisfied for
test set. However, in most cases the percentage of uncertain test sam-
ples (indicated with % Unc in Table 2) is much below the limit im-
posed during training, expect for the test set of the 6th day in HCP,
where the unpredicted (labelled as uncertain) patients are 26.1%. The
performance for the “end” dataset is good for both HCP and MCP
even without omitting the uncertain patients (F2 score 86.6% for
HCP, and F2 score 86.9% for MCP).

Figure 4 gives graphical pictures comparing the performance of
our system for HCP and MCP in terms of F2 and ROC-AUC. The
performance behaviour over time significantly differs in the two con-
tagion periods, reflecting the concept drift we discussed in Section
3.2. For HCP, considering the results without omitting the uncertain
test instances (blue curves), the performance prediction is very good
at the 2nd day and it decreases at the 6th and 10th days. Instead, for
MCP the performance improves over time, reaching 90.2% in terms
of ROC-AUC at the 10th day, as also reported in Table 2. This is due
to several factors:

• MCP includes patients that have hospitalisation periods much
longer than the patients in HCP, which can make more difficult to
predict the mortality risk for some patients with only a few days
of hospitalisation;

• on the contrary, in HCP half of the patients stayed in hospital for
less than 8 days. This decreases significantly the size of the 8-
days and 10-days training sets, which contain respectively only
431 and 339 patients. The lack of training data in these datasets
is only partially compensated by the increase of the lab tests for a
single patient in the datasets;

• as described in Section 3.2, the MCP patients are much more un-
balanced (with only 11% deceased patients) than the HCP pa-
tients, and this increases the difficulty of learning an high per-
forming model [17].



Figure 4: Graphical representation of the prediction performance (F2 and ROC-AUC scores) over hospitalisation time for HCP and MCP.

HCP data F2 ROC F2-U ROC-U % Unc Model MCP data F2 ROC F2-U ROC-U % Unc Model
2days 77.1 77.8 80.1 83.3 18.3 ET-C 2days 60.0 75.4 61.0 78.1 13.9 ET-N
4days 74.1 79.4 76.7 81.9 13.8 RF-N 4days 63.5 78.5 65.4 82.4 21.1 RF-N
6days 68.7 75.6 75.9 83.6 26.1 RF-N 6days 74.1 86.0 77.2 88.1 9.8 ET-N
8days 74.8 76.5 78.2 82.5 22.1 ET-C 8days 73.2 85.0 76.1 86.5 12.3 ET-N
10days 68.9 75.5 80.6 83.9 24.8 RF-C 10days 80.4 90.2 75.3 89.0 12.7 ET-N
end 86.6 89.4 94.3 95.5 19.3 RF-C end 86.9 93.9 95.8 98.4 19.4 RF-N

Table 2: Predictive performance for the High Contagion Phase (HCP, left) and the Moderate Contagion Phase (MCP, right) in terms of F2 and
ROC-AUC scores considering all instances in the test set (columns F2 and ROC) and omitting the instances classified uncertain (columns F2-U
and ROC-U). The percentages of instances that the system classifies uncertain are in the column % Unc. Column Model indicates the method
selected for generating the model; ET stands for Extra Trees, RF for Random Forest, C for categorical and N for numerical.

Figure 5 shows the confusion matrices for the test sets gener-
ated using our predictive models. Above the line we have the HCP
datasets and below the MCP datasets. Despite the training phase was
optimised (through the use of the F2 metric) to avoid false negatives,
for the HCP datasets there are several false negatives (bottom-left of
the matrices). This can be explained by the scarcity of lab test and
X-ray data in the HCP data that affects prediction.

However, false negatives are significantly reduced with the mod-
els that can classify a patient as uncertain. For example, at day 6,
the system classifies as uncertain 4 patients who otherwise would be
false negatives. Moreover, when there are less false negatives, such
as at days 8 and 10, classifying some patients as uncertain helps to
also avoid false positives and so to generate less false alarms.

Remarkably, especially for the MCP datsets, we have very few
false negatives even at the early days, which is quite important in our
application context. On the other hand, especially for days 2 and 4,
our system produces many false positives. This type of error is re-
duced in the models with uncertain patients up to only 5 false alarms
for the end dataset (e.g., at day 2 we avoid 16 false positives.)

7 Conclusions and Future Work
We have presented a system for predicting the prognosis of Covid-
19 patients focusing on the death risk. We built and engineered some
datasets from lab test and X-ray data of more than 2000 patients in
an hospital in northern Italy that was severely hit by Covid-19. Our
predictive system uses a collection of machine learning algorithms
and a new method for setting, at training time, an uncertain threshold
for prediction that helps to significantly reduce the prediction errors.

Overall, the experimental results are quite promising, and show
that our system often obtains high ROC-AUC scores. The observed
predictive performance is especially good in terms of false nega-
tives (patients erroneously predicted survivor), that are very few. This
gives a predictive test for patient survival with very good specificity
in particular when the system can classify a patient as uncertain.

On the other hand, in terms of false positives, there is room for sig-
nificant improvements. We are confident that the availability of more
information, such as patient comorbidities or clinical treatments, will
help to improve performance, reducing the number of both false pos-

Figure 5: Confusion matrices for datasets HCP (above the line) and
MCP (below the line) at different days with dead-alive predictions
for all patients (Complete) and omitting patients classified uncertain
(No Unc). For each matrix of 4 numbers, on the main diagonal we
have the correct predictions (alive class on the top-left corner and
dead class on the bottom-right corner); on the anti-diagonal, we have
the incorrect predictions (false positives and on the top-right corner
and the false negatives on the bottom-left corner).

itives and (few) false negatives.
For future work we plan to extend our datasets with more informa-

tion (both additional features and patients), to consider further meth-
ods for dealing with the observed concept drift and to address other
prediction tasks such as the duration of the hospitalisation or the need
of ICU beds and critical hospital resources. Moreover, we are analyz-
ing the importance of the features used in our models, and we intend
to investigate additional learning techniques.

Acnowledgements. The work of the first author has been sup-
ported by Fondazione Garda Valley.
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