
Bringing Computational Thinking to non-STEM
Undergraduates through an Integrated

Notebook Application

Juan Carlos Farah1, Arielle Moro2, Kristoffer Bergram2, Aditya Kumar
Purohit2, Denis Gillet1, and Adrian Holzer2

1 École Polytechnique Fédérale de Lausanne, Switzerland
{juancarlos.farah,denis.gillet}@epfl.ch

2 University of Neuchâtel, Switzerland
{arielle.moro,kristoffer.bergram,aditya.purohit,adrian.holzer}@unine.ch

Abstract. Computational thinking courses are no longer exclusive to
engineering and computer science students in higher education but have
become a requirement in other fields, as well as for students in secondary,
primary, and even early childhood education. Computational notebooks,
such as Jupyter, are popular solutions to develop the programming skills
typically introduced in these courses. However, these solutions often re-
quire technical infrastructure and lack support for rich educational expe-
riences that integrate discussion, active feedback, and learning analytics.
In this paper, we introduce a web application designed to address these
challenges. We present blended learning scenarios supported by this ap-
plication and evaluate them in an eight-week computational thinking
course comprising 67 students pursuing a Bachelor in Business and Eco-
nomics. We include in our results the impact of the disruption caused by
the COVID-19 pandemic, which forced a move from blended to online
distance learning for the second half of our evaluation.

Keywords: Computational Thinking · Blended Learning · Digital Ed-
ucation · Jupyter Notebooks · Learning Analytics · Python · COVID-19.

1 Introduction

Computational thinking can be defined as the different thought processes used
in computer science to solve problems [35]. Among the main concepts used are
modeling problems using abstractions, division of problems into subproblems,
design of solutions through sequential steps (algorithms), and identification of
patterns. Over the past decade, computational thinking has become a tool to
solve problems in virtually every field of study [2]. Learning computational think-
ing thus becomes crucial not only for engineers and computer scientists, but also
for students in domains outside science, technology, engineering, and mathemat-
ics (STEM). In line with this trend, computational thinking courses have been
introduced not only for a wide array of university degrees, but also in secondary
schools [17, 36] and all the way down to early childhood education [3].

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

2 Farah et al.

An essential part of computational thinking courses is a basic understanding
of programming [23]. Due to the complexity of providing a consistent experi-
ence across different devices and operating systems, introductory programming
courses have traditionally required a technical setup to ensure that all students
are running the same development environment [9]. This can be a high barrier to
entry for less technical students, teachers, and even institutions lacking proper
information technology support. To lower this barrier, computational notebooks
have been proposed as a way to minimize the amount of technical setup needed
to provide a homogeneous programming environment. Computational notebooks
are online tools that combine resources (such as text or images), executable
code, and both textual and graphical outputs. They are typically used by data
scientists for sharing and keeping track of data exploration as well as for repro-
ducibility purposes [34], and their popularity has “exploded” in recent years,
most prominently through the use of Jupyter Notebooks [26].

Nevertheless, self-hosted computational notebook solutions such as Jupyter
often require a backend server infrastructure to execute code and manage users,
while directing students to cloud-based solutions such as Google’s Colabora-
tory [4] risks violating privacy and legal regulations (e.g., the European General
Data Protection Regulation (GDPR) [15]), which many institutions are required
to adhere to. With these concerns in mind, we designed a novel web application
(app) that allows students to execute Python directly on the browser. This app
is free and open source, and can be integrated into online learning platforms —
along with collaborative and learning analytics tools—to offer features present in
computational notebooks and foster rich learning experiences. To better under-
stand how such an app supports the acquisition of computational thinking skills,
we put forth our first research question. RQ1: How do non-STEM students in
introductory programming courses use and perceive computational notebooks as
a tool for learning programming?

To address this question, we incorporated our app into a computational think-
ing course for students pursuing a bachelor’s degree in Business and Economics at
the University of Neuchâtel, Switzerland (henceforth the university). Our initial
goal was to analyze usage and perception of the app within a blended learning
scenario. However, at the end of the fourth week of our study, the university had
to shut down due to the COVID-19 pandemic, forcing us to adapt the course
to a purely online distance learning scenario. This unexpected turn of events
prompted a second research question. RQ2: How is the usage of computational
notebooks different between a blended and a distance learning scenario?

This paper puts forth two main contributions. The first is the design of our
app and an overview of how it can be used to create computational notebook
learning environments with a lower barrier to entry directed at less technical stu-
dents and instructors. The second contribution is an analysis of student interac-
tion with the app and the learning environment in which it was deployed (RQ1).
This analysis also contains insights on how the switch from a blended learning
scenario to a distance learning scenario impacted usage (RQ2).

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Bringing Computational Thinking to non-STEM Undergraduates 3

2 Related Work

One of the key trends in education over the last decade has been the shift to using
blended learning models, where traditional face-to-face learning is complemented
with digital interaction, whether in-class or at distance [21]. Compared to online
learning alone, a blended learning approach has been found to be more effective in
terms of learning outcomes [13]. To some extent, most current learning activities
occur in some form of blended learning [25, 30]. On top of direct pedagogical
gains, blended learning offers the opportunity to integrate learning analytics
into the instructor’s awareness and reflection processes to assess how students
perform and potentially be able to predict student success or failure early on in
the course [33].

Introductory programming courses are prime candidates for blended learning
[6, 12], and the simplicity and readability of Python have made it an attractive
introductory programming language [29]. Although there are a large number of
online Python tools available [22], Jupyter Notebooks have become common in
introductory Python courses [8, 9, 37]. The combination of an online coding envi-
ronment that does not require external software and the possibility to run code
embedded within text and multimedia content is particularly well-suited to teach
computational thinking [24]. Typically among the opportunities offered by tools
such as Jupyter is the fact that students can iterate on their coding assignments
on the same platform without the need to switch between the assignment and
the coding software [28]. Jupyter also includes several tools specifically designed
for teaching purposes, such as grading modules [28]. Previous work has explored
the usage of online notebooks for teaching computational thinking in different
learning activities. For instance, researchers evaluated its usage for (i) lectures,
(ii) reading, (iii) homework, and (iv) exams [24].

It should be noted that such notebooks can also have a negative impact
on learning, as some argue that they promote poor coding practices because
they make it difficult to break code into smaller reusable modules and to de-
velop and run tests on the code [26]. Furthermore, there is a tension between
exploration and explanation, as it requires a lot of effort for a user to convert a
messy exploratory notebook to a clean shareable notebook [31]. Moreover, such
environments still lack support for a wider range of interaction, collaboration,
activity awareness, and access control mechanisms [34]. Although computational
notebooks are valuable for beginner students, they can be inadequate for experi-
enced users [5, 11]. To address this, notebooks can be personalized according to
learning style, programming level, or learning context [24]. Aside from Jupyter,
other approaches focus on integrating smart content hosted on different servers
to enhance the learning experience [7], while several web-based tools for teaching
Python have also been proposed [14, 18, 27].

3 Design

In this section, we present the design of our digital tool and describe how it
enables instructors to scaffold computational notebooks and provide a variety of

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

4 Farah et al.

learning scenarios for their students. We then describe how the tool was used in
the context of a course introducing business students to programming.

3.1 Digital Education Tool

As noted in Section 1, we developed an open source web application (henceforth
the code app3) to provide a ready-made Python environment for instructors and
students. The code app leverages the Pyodide4 library to execute Python directly
on the browser without any additional dependencies. It supports reading and
writing files, receiving input from users, and displaying graphical output from
libraries such as Matplotlib [20]. The app also features a command-line interface
that serves both to display output and allow students to navigate a virtual file
system. In its simplest form, the code app can be used independently of any other
software simply by accessing a web link. Nevertheless, it can leverage application
programming interfaces (APIs) exposed by digital education platforms to enable
advanced features as well as learning analytics. To enable these features and to
provide a context resembling computational notebooks, we designed the code
app to be compatible with the Graasp open digital education platform [16].

Fig. 1. A computational notebook learning capsule on Graasp. Students can write and
execute code, navigate a virtual file system and view graphics.

Graasp provides two interfaces. The first is an Authoring View where instruc-
tors integrate and configure the resources that they will use to create their online

3 Code App: github.com/graasp/graasp-app-code
4 Pyodide: github.com/iodide-project/pyodide

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Bringing Computational Thinking to non-STEM Undergraduates 5

lessons, which we refer to as learning capsules. Learning capsules can be scaf-
folded into step-by-step code exercises, which can be contextualized with text,
images, links, chatrooms, and other interactive content. Within this instructor-
centric view, the code app can be preconfigured with sample code, data files,
and instructions for students. It also features a feedback functionality that al-
lows instructors to review the code of each student and provide comments in a
way similar to code reviews on development platforms such as GitHub.

The second is a Live View, which is an environment directed at students,
accessible through a link. Students can exploit the online lesson, navigating
through pages containing the exercises prepared by the instructor. Within this
student-centric view, the code app enables students to write, execute and save
code, review feedback provided by the instructor, and visualize graphics. The
result, as shown in Figure 1, is a computational notebook learning capsule.

During lectures or while watching videos or reviewing slides, students can
run code and test results using the code app. The live view also supports a
presentation mode, which the instructor can use to guide the students through
the learning capsule. Several tools can be included within the learning capsule
to provide formative assessment. A simple input app allows students to submit
text, while a real-time communication app enables students to spontaneously ask
questions and to respond to multiple-choice questions posed by the instructor.

Finally, through the analytics features of the learning capsule, instructors
can have an overview of the progress and difficulties students are encountering,
and thus adjust their teaching accordingly. As an example, Figure 2 shows a
learning dashboard to track user activity. More specifically, it shows the order
in which each student has visited the pages available in the live view, as well
as the time spent on each of them. If instructors use the live view at the same
time, then the instructors’ data can be compared against the students’ data.
Each color represents a page inside the live view. If students were to be perfectly
synchronized with the instructor, their color patterns would all be the same.

Instructor Activity

Pages

Student Activity

Fig. 2. A learning analytics dashboard to track student use of a learning capsule.

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

6 Farah et al.

3.2 The Information Technologies Course

The evaluation took place in a first-year course on information technologies
for students enrolled in a Bachelor’s in Business and Economics. A total of
69 students were enrolled, 31 of them female (45%). Two of the 69 students
did not opt in for the study, thus their data was removed. The course lasted
one semester (14 weeks) and consisted of two periods (1.5 hours) of weekly
lectures and two periods of weekly lab sessions with exercises. Student presence
in class was not mandatory. The first half of the semester, which is the focus of
this study, covered computational thinking, with two weeks for general theory
about concepts (e.g., abstractions, problem division, algorithms) and six weeks
of introduction to programming with Python to put the theory into practice (see
Table 1). Note that during these eight weeks, teaching was dramatically impacted
by the COVID-19 pandemic. Indeed, all in-class lectures were suspended at the
end of the fourth week of the semester, and all teaching was moved online.
Teaching in the course progressed through three main phases, as outlined below.

Week Date Lecture (Wednesdays) Lab (Thursdays) Teaching Style Data Collected

1 17.02 Concepts 1/2 Game In-Class Video, Pre-Survey
2 24.02 Concepts 2/2, Python Basics 1/2 Game, Group Activities In-Class Blended Video, Activity Traces
3 02.03 Python Basics 2/2 Start Lab 1 In-Class Blended Video, Activity Traces
4 09.03 Python Lists Solution Lab 1, Start Lab 2 In-Class Blended Video, Activity Traces

16.03.2020, COVID-19 Confinement starts. No more in-class lectures or lab sessions after that date.

5 16.03 Python Functions Solution Lab 2, Start Lab 3 Distance Video, Activity Traces
6 23.03 Python Dictionaries Solution Lab 3, Start Lab 4 Distance Video, Activity Traces
7 30.04 Python Graphs Solution Lab 4, Start Lab 5 Distance Video, Activity Traces
8 06.04 - Solution Lab 5 Distance Post-Survey

Table 1. Structure of the Information Technologies Course

Phase 1: Concepts (in-class) The first phase covered the first week and a
half and consisted mainly of in-class lectures with in-class interactive activities.
The exercise sessions were also in-class and focused on getting familiar with al-
gorithmic concepts using a game (Human Resource Machine5) as well as through
practical group exercises (e.g., designing an analog algorithm to find the most
frequent word in a text that was handed out on a piece of paper).

Phase 2: Python (blended) The second phase covered the end of the second
week and the two weeks that followed, and consisted of blended learning both
for lectures and lab sessions. During the lectures, the presentation mode of our
learning capsules was used by the instructor. Concretely, the instructor logged
in to the live view and moved from one page to the next, typing and executing
code while providing explanations. In the meantime, students connected to the
same learning capsule but logged in with their own credentials and thus accessed
their own version of the exercises, where they could write and execute code

5 Human Resource Machine: tomorrowcorporation.com/humanresourcemachine

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Bringing Computational Thinking to non-STEM Undergraduates 7

while the instructor was giving the presentation. During the lectures, a real-time
communication app was integrated into the learning capsule. Students asked
questions and the instructor conducted several polls to see if the level of the
course was adequate. During the lab sessions, students were given a learning
capsule with five questions, each one containing the code app as well as an input
box to provide answers to the questions. The solutions to each exercice were
presented the following week. During these first two phases, the lectures were
recorded and posted on the university’s learning management system (LMS).

Phase 3: Python (distance) The third phase was not planned and was trig-
gered by the national response to the COVID-19 pandemic. As the government
imposed a partial confinement, the university had to cancel its on-site lectures.
For this last phase, lectures were prerecorded and published on the LMS. The
instructions for the labs were published on the LMS and a video explaining the
solutions was recorded and posted on the LMS a week later. Student interac-
tion with teaching assistants (TAs) and the instructor took place principally
(i) through email, (ii) through the communication app, and (iii) through the
feedback feature of the code app.

4 Methods

We employed two types of methods to collect data: (i) online activity traces and
(ii) surveys. At the beginning of the course, students were informed of our study
and were asked to opt in to participate. The learning experience was identical
for both those who opted in and those who did not.

We used three forms of activity traces. The first was a measure indicating the
number of edits (e.g., keystrokes, deletions, copy/paste actions) that a student
performed within the code apps embedded in the learning capsules. We refer
to this measure as the code app interaction metric. The second form of activity
traces was linked to the in-class video recordings and the screencasts for distance
learning, which were uploaded to the university’s video repository service. The
service tracked each time a student logged in and recorded how long a video was
played. We refer to this metric as the time spent watching videos metric. The
third form was generated by tracking how students moved between the different
pages of our learning capsules, as visualized in Figure 2.

At the beginning of the course, students were asked to fill in an optional pre-
survey about their programming experience and their attitude towards learn-
ing technologies. This pre-survey also included an ungraded test assessing their
Python knowledge. Students were not informed of their performance. At the end
of Phase 3, an optional post-survey was conducted, which included a number of
open questions about the learning technologies used, as well as the System Us-
ability Scale (SUS) [1, 19]. The post-survey also included an ungraded post-test.
This test followed the same format and included some of the questions posed in
the pre-test. This time, students were informed of their performance.

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

8 Farah et al.

5 Results

In this section, we first present results pertaining to student interaction with the
code app, the computational notebook learning capsules, and the accompanying
lecture and lab video recordings. We then consider students’ perceptions of these
learning technologies. Finally, we address the difference between the blended and
distance learning scenarios.

How did students interact with the code app? Use of the code app—
as measured by the code app interaction metric—varied widely (x̄ = 22167,
Median = 23990, SD = 13223). However, usage was not significantly corre-
lated with students’ self-reported tech-savviness (r = −0.129, p = 0.309), and
a Kruskal-Wallis H test found no significant differences by gender (H = 0.0228,
p = 0.880). The number of days that students interacted with the code app
throughout the duration of the course also varied widely across students. On
average, students actively interacted with the code app on nine different days
(x̄ = 8.925, Median = 9, SD = 4.831). As shown in Figure 3, before the switch

1 2 3 4 5 6 7 8
Week

St
ud

en
t

-- Confinement Starts

Days with Recorded Activity on the Code App

Fig. 3. Days in which there was recorded activity on the code app. Each horizontal
line represents a student and each block represents a day in which the student recorded
an interaction. A change in use is evident after the switch to distance learning.

from blended to distance learning, usage was concentrated on Wednesdays and
Thursdays, coinciding with lectures and labs. Although around a third of stu-
dents stopped using the code app—or only used it sporadically—after the switch,

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Bringing Computational Thinking to non-STEM Undergraduates 9

around two-thirds of students continued to use it regularly. This pattern is rel-
atively consistent throughout Weeks 5-8 in the same way the long synchronized
blocks are present throughout Weeks 2-4. It is worth noting that interaction
in the blended scenario was a predictor of interaction in the distance learning
scenario (r = 0.577, p < 0.001).

How usable were the tools? The SUS score ranges from 0 (worst) to 100
(best). The code app achieved a mean score of 71.3 (n = 57), which indicates
good usability [1]. To assess if students found the other digital tools beneficial for
their learning, a three-item questionnaire was disseminated. Questions followed a
five-point Likert scale from ‘Strongly Disagree’ to ‘Strongly Agree’ (n = 56): (i)
I think the use of the interactive slides in Graasp during the course was useful,
(ii) I think the use of the chat feature in Graasp was useful for the course, and
(iii) I think the feedback feature in Graasp was useful. A one-sample Wilcoxon
signed-rank test indicated the median for the first item was significantly different
from three (the neutral position), Z = 6.57, p < 0.001, with a very strong effect
size (r = 0.87). Similar significant results were achieved for the second and third
items, with Z = 4.58, p < 0.001, r = 0.61 (strong effect size) and Z = 4.47,
p < 0.001, r = 0.59 (moderate effect size), respectively.

We also collected diverse perspectives regarding the tools integrated into the
computational notebook learning capsules. Students were presented with an open
question: In your opinion, what are the pros and cons of the digital technologies
used in this course?. A total of 41 students provided open-ended comments.
We analyzed responses by articulating emergent themes using line-by-line data
coding [10]. Here we discuss the major themes.

1. Easy to use. The first theme that emerged was that the code app was easy to
use, easy to understand, and easy to get used to. One student explained: “You
get used to the [code app] service quite quickly.” Another commented that “the
positive points are the ease of use of [the code app], the clarity and the stability
of the service”.

2. Ready-made. Students also appreciated the ability to execute Python in the
code app without any installation requirements. One student commented: “The
biggest positive point for me is that we didn’t need to install an application.
We can easily access the [code app] service. Compared to R, it is easier to use
and more modern.” Another student noted: “Easy to use / nothing to install /
nothing is saved on our computers”.

3. Mirroring. A third theme worth noting focused on the possibility for students
to mirror what the teacher was doing using the learning capsules. One student
reported: “We can put the examples we have seen into practice and we can check
by ourselves the explanations given to us during the course work. I find that it
puts our computational thinking into practice and motivates us to move forward
in this course.” Another student commented that “the use of [the code app]
during the course allows for a better understanding of the course. You don’t just
listen, you already assimilate the material”.

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

10 Farah et al.

4. Multiple access. Several students asked for greater flexibility to access multiple
learning capsules in parallel. Codes like multitask and parallel control were recur-
rent. One student reported: “Can’t use multiple learning capsule pages without
one page closing.” Another student commented that “[the code app] does not
open for the lecture and for the lab, you still have to identify yourself and it’s
painful, it’s either one or the other”.

To get an overall indication of the qualitative feedback, we performed a sen-
timent analysis, extracting the polarity (-1 (negative) to 1 (positive)) of each
comment. Although results show that the majority of the comments were neu-
tral, this is not surprising, given that we asked students to indicate both positive
and negative aspects of the technology used. Nonetheless, our analysis registered
a weak positive tendency, indicating that comments were slightly favorable.

How were the computational notebook learning capsules used differ-
ently between the blended and distance learning scenarios? Using data
from the learning dashboard presented in Figure 2, we examined usage patterns
from Week 3 and Week 4 (blended learning), and Week 5 (distance learning)
(Figure 4). In the blended learning scenario, where the learning platform is used
by the instructor and the students at the same time, the dashboard gives the
instructor a visual impression of how synchronized students are during lecture.
Figure 4 (A) includes all student activity during Week 3, showing that 64 stu-
dents, including a TA, were active at some point in the lecture. A visual analysis
considering only active students—not those who left the class early or arrived
late—indicates that there seem to be only 5-6, approximately 10% of all students,
who are not following the general page change pattern. Figure 4 (B) shows the
dashboard for Week 4. The results are very similar to Week 3, with 61 students
active on the platform, most of them—except around 5 students—following the
instructor’s pattern closely. Note that for both weeks we counted the number
of students physically present at the beginning of the second part of the lecture
to be 53 (24 female) on Week 3 and 50 (25 female) on Week 4. These student
counts are in line with the number of students observed online and convey the
fact that the tool was used virtually by all students present in class.

In the distance learning scenario, the dashboard allows us to see when stu-
dents logged in to the online platform to work on the course. Figure 4 (C) shows
an overview of the lecture during Week 5 (March 17). The instructor’s video
recording of the lecture was 35 minutes long (the content was not changed com-
pared to a 90-minute live lecture, however, the online recording did not include
interaction time). Once the video was posted, students could access it at their
discretion. Figure 4 (C) also shows all activity on the platform related to that
particular capsule for the whole week after the video was posted. Overall, 51
students accessed the capsule, and 29 spent at least 30 minutes on the platform.
As expected, the usage pattern is not synchronized across students. Neverthe-
less, there is a diminishing trend of active students per day, with 18 students
accessing the learning capsule on the scheduled lecture date (Wednesday, March

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Bringing Computational Thinking to non-STEM Undergraduates 11

March 17 - Instructor Records Lecture (35 min)

9:00 12:00 15:00 18:00 21:00

March 19 - 13 students

March 20 - 9 students

March 21 - 3 students

March 22 - 1 student

March 24 - 4 students

February 4 - Instructor Conducts Live Lecture

10:00 11:00 12:00

A) Week 3 - Blended Learning Scenario C) Week 5 - Distance Learning Scenario

During the Lecture (64 students)

10:00 11:00 12:00

B) Week 4 - Blended Learning Scenario
March 11 - Instructor Conducts Live Lecture

March 18 - 18 students

March 23 - 3 students

During the Lecture (61 students)

Fig. 4. Comparing blended (A, B) and distance (C) learning scenarios. The instructor’s
data is show on a thick line above, and each thin line represents a student.

18), 13 students the day after, nine students on the Friday, and a minority of
students over the weekend, through to the following Monday.

Given the difference in usage before and after the switch to distance learning,
we also wanted to explore the relationship between the code app and other digital
tools used for distance education. Specifically, we considered the link between
the code app and the video recordings that replaced the live lectures at the
start of Week 5. There was a strong positive relationship between the code app
interaction and the time spent watching videos metrics, (r = 0.501, n = 66, p <
0.001). In other words, the more students used the code app the more time they
spent watching videos and vice versa. This might be due to the fact that these
resources were meant to be used in parallel to simulate the in-class experience.

6 Conclusion

The results of our evaluation give rise to a number of discussion points concern-
ing our research questions. First, in terms of inclusion, our results show that
there is no difference in usage metrics related to either digital literacy or gender.
From a learning design perspective, this shows that our code app did not invol-
untarily discriminate against gender or programming skills. This is particularly
important since there can be strong stereotype threats that can hinder learning
in computer science, where female students are still widely underrepresented [32].
At the University of Neuchâtel, there are typically around 50% of female stu-
dents registered in the business curriculum and thus present in all mandatory
courses, such as our information technology course. Nonetheless, this percentage
drops to under 20% in the elective programming course. It is therefore impera-
tive that the tools employed in introductory courses do not discourage students
from continuing studies that reinforce computational thinking skills.

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

12 Farah et al.

Second, while usage of the code app and the computational learning cap-
sule was synchronized across students and heavily concentrated on lecture and
lab days during the blended learning scenario, the distance learning scenario
introduced a sharp departure from that pattern of use. Access to the learning
capsules became spread over the first two to three days after the lecture was
posted, with some students changing their study habits and viewing the mate-
rial during the evening, as was also highlighted in [12]. Similarly, usage of the
code app became scattered throughout the week. Nevertheless, it is important to
highlight that around two-thirds of students continued to use the code app reg-
ularly throughout the distance learning period. This could signal that the code
app and the computational notebook learning capsules could be successfully de-
ployed in both types of learning contexts. Furthermore, usage of the code app
during the blended scenario predicted usage in the distance scenario. This could
help instructors identify students who might find the switch more challenging
and provide them with adequate support, as suggested in [33].

Third, the results from our surveys indicate that students were generally
positive regarding the usability and pertinence of both our code app and the
computational notebook learning capsules it supports. Moreover, students par-
ticularly appreciated the browser-based experience, with no required installation
or setup. This serves as a crucial insight into the possible improvements that can
be done to the current computational notebook ecosystems in order to lower the
barrier to entry for non-STEM students.

To conclude, our study provides a snapshot of how digital tools can allow
both instructors and students to adapt to an unforeseen change in pedagogical
scenarios. Although our evaluation is by no means conclusive, the fact that
usage of our code app was not correlated with prior programming skills and that
students found it easy to use is a good sign that it will be positively received in
introductory programming courses. In future work, we aim to study how students
transition from our code app to more advanced technologies, such as Jupyter
Notebooks or integrated development environments. Furthermore, we aim to
refine our digital tools following the feedback received and continue to investigate
how they can enable computational thinking courses across non-STEM fields.

Acknowledgements

This research has been co-funded by the European Union’s Horizon 2020 re-
search and innovation program through the GO-GA Project (grant agreement
no. 781012). We would also like to thank Yves Piguet for his contributions.

References

1. Bangor, A., Kortum, P.T., Miller, J.T.: An Empirical Evaluation of the System Us-
ability Scale. Intl. Journal of Human–Computer Interaction 24(6), 574–594 (2008)

2. Barr, D., Harrison, J., Conery, L.: Computational Thinking: A Digital Age Skill
for Everyone. Learning & Leading with Technology 38(6), 20–23 (2011)

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Bringing Computational Thinking to non-STEM Undergraduates 13

3. Bers, M.U., Flannery, L., Kazakoff, E.R., Sullivan, A.: Computational Thinking
and Tinkering: Exploration of an Early Childhood Robotics Curriculum. Comput-
ers & Education 72, 145–157 (2014)

4. Bisong, E.: Google Colaboratory. In: Building Machine Learning and Deep Learn-
ing Models on Google Cloud Platform, pp. 59–64. Springer (2019)

5. Borowski, M., Zagermann, J., Klokmose, C.N., Reiterer, H., Rädle, R.: Exploring
the Benefits and Barriers of Using Computational Notebooks for Collaborative
Programming Assignments. In: Proceedings of the 51st ACM Technical Symposium
on Computer Science Education. pp. 468–474 (2020)

6. Boyle, T., Bradley, C., Chalk, P., Jones, R., Pickard, P.: Using Blended Learning
to Improve Student Success Rates in Learning to Program. Journal of Educational
Media 28(2-3), 165–178 (2003)

7. Brusilovsky, P., Malmi, L., Hosseini, R., Guerra, J., Sirkiä, T., Pollari-Malmi, K.:
An Integrated Practice System for Learning Programming in Python: Design and
Evaluation. Research and Practice in Technology Enhanced Learning 13(1), 18
(2018)

8. Cardoso, A., Leitão, J., Teixeira, C.: Using the Jupyter Notebook as a Tool to
Support the Teaching and Learning Processes in Engineering Courses. In: Intl.
Conference on Interactive Collaborative Learning. pp. 227–236. Springer (2018)

9. Chapman, B.E., Irwin, J.: Python as a First Programming Language for Biomedical
Scientists. In: Proceedings of the 14th Python in Science Conference (2015)

10. Charmaz, K.: Constructing Grounded Theory: A Practical Guide through Quali-
tative Analysis. SAGE (2006)

11. Chattopadhyay, S., Prasad, I., Henley, A.Z., Sarma, A., Barik, T.: What’s Wrong
with Computational Notebooks? Pain Points, Needs, and Design Opportunities.
In: Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems. pp. 1–12 (2020)

12. Chu, Q., Yu, X., Jiang, Y., Wang, H.: Data Analysis of Blended Learning in Python
Programming. In: International Conference on Algorithms and Architectures for
Parallel Processing. pp. 209–217. Springer (2018)

13. Collopy, R., Arnold, J.M.: To Blend or Not to Blend: Online-Only and Blended
Learning Environments. Issues in Teacher Education 18(2) (2009)

14. Edwards, S.H., Tilden, D.S., Allevato, A.: Pythy: Improving the Introductory
Python Programming Experience. In: Proceedings of the 45th ACM Technical
Symposium on Computer Science Education. pp. 641–646 (2014)

15. European Union: Regulation 2016/679 of the European Parliament and the
Council of the European Union. Official Journal of the European Communities
2014(April), 1–88 (2016)

16. Gillet, D., Vozniuk, A., Rodŕıguez-Triana, M.J., Holzer, A.: Agile, Versatile, and
Comprehensive Social Media Platform for Creating, Sharing, Exploiting, and
Archiving Personal Learning Spaces, Artifacts, and Traces. In: The World En-
gineering Education Forum (2016)

17. Grandell, L., Peltomäki, M., Back, R.J., Salakoski, T.: Why Complicate Things?
Introducing Programming in High School Using Python. In: Proceedings of the 8th
Australasian Conference on Computing Education - Volume 52. p. 71–80 (2006)

18. Guo, P.J.: Online Python Tutor: Embeddable Web-Based Program Visualization
for CS Education. In: Proceeding of the 44th ACM Technical Symposium on Com-
puter Science Education. pp. 579–584 (2013)

19. Harrati, N., Bouchrika, I., Tari, A., Ladjailia, A.: Exploring User Satisfaction for
E-Learning Systems via Usage-Based Metrics and System Usability Scale Analysis.
Computers in Human Behavior 61, 463–471 (2016)

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

14 Farah et al.

20. Hunter, J.D.: Matplotlib: A 2D Graphics Environment. Computing in Science &
Engineering 9(3), 90–95 (2007)

21. Johnson, L., Adams Becker, S., Cummins, M., Estrada, V., Freeman, A., Ludgate,
H.: NMC Horizon Report: 2013 Higher Education Edition (2013)

22. Kim, A.S., Ko, A.J.: A Pedagogical Analysis of Online Coding Tutorials. In: Pro-
ceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education. pp. 321–326 (2017)

23. Lye, S.Y., Koh, J.H.L.: Review on Teaching and Learning of Computational Think-
ing Through Programming: What is Next for K-12? Computers in Human Behavior
41, 51–61 (2014)

24. O’Hara, K., Blank, D., Marshall, J.: Computational Notebooks for AI Education.
In: The Twenty-Eighth International Flairs Conference (2015)

25. Oliver, M., Trigwell, K.: Can ‘Blended Learning’ Be Redeemed? E-learning and
Digital Media 2(1), 17–26 (2005)

26. Perkel, J.M.: Why Jupyter is Data Scientists’ Computational Notebook of Choice.
Nature 563(7732), 145–147 (2018)

27. Pritchard, D., Vasiga, T.: CS Circles: An In-Browser Python Course for Begin-
ners. In: Proceeding of the 44th ACM Technical Symposium on Computer Science
Education. pp. 591–596 (2013)

28. Project Jupyter, Blank, D., Bourgin, D., Brown, A., Bussonnier, M., Frederic, J.,
Granger, B., Griffiths, T., Hamrick, J., Kelley, K., Pacer, M., Page, L., Pérez,
F., Ragan-Kelley, B., Suchow, J., Willing, C.: nbgrader: A Tool for Creating and
Grading Assignments in the Jupyter Notebook. Journal of Open Source Education
2(16), 32 (2019)

29. Radenski, A.: “Python First”: A Lab-Based Digital Introduction to Computer
Science. SIGCSE Bulletin 38(3), 197–201 (2006)

30. Rodŕıguez-Triana, M.J., Prieto, L.P., Vozniuk, A., Boroujeni, M.S., Schwendimann,
B.A., Holzer, A., Gillet, D.: Monitoring, Awareness and Reflection in Blended
Technology Enhanced Learning: A Systematic Review. International Journal of
Technology Enhanced Learning 9(2-3), 126–150 (2017)

31. Rule, A., Tabard, A., Hollan, J.D.: Exploration and Explanation in Computational
Notebooks. In: Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems. pp. 1–12 (2018)

32. Starr, C.R.: “I’m Not a Science Nerd!”: STEM Stereotypes, Identity, and Mo-
tivation Among Undergraduate Women. Psychology of Women Quarterly 42(4),
489–503 (2018)

33. Van Goidsenhoven, S., Bogdanova, D., Deeva, G., vanden Broucke, S., De Weerdt,
J., Snoeck, M.: Predicting Student Success in a Blended Learning Environment.
In: Proceedings of the 10th International Conference on Learning Analytics &
Knowledge. pp. 17–25 (2020)

34. Wang, A.Y., Mittal, A., Brooks, C., Oney, S.: How Data Scientists Use Com-
putational Notebooks for Real-Time Collaboration. Proceedings of the ACM on
Human-Computer Interaction 3(CSCW), 1–30 (2019)

35. Yadav, A., Stephenson, C., Hong, H.: Computational Thinking for Teacher Edu-
cation. Communications of the ACM 60(4) (2017)

36. Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S., Korb, J.T.: Introducing Compu-
tational Thinking in Education Courses. In: Proceedings of the 42nd ACM Tech-
nical Symposium on Computer Science Education. pp. 465–470. ACM (2011)

37. Zastre, M.: Jupyter Notebook in CS1: An Experience Report. In: Proceedings of
the Western Canadian Conference on Computing Education. pp. 1–6 (2019)

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

