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Abstract 
Geospatial Reasoning has been an essential aspect of 
military planning since the invention of cartography.  
Although maps have always been a focal point for 
developing situational awareness, the dawning era of 
Network Centric Operations brings the promise of 
unprecedented battlefield advantage due to improved 
geospatial situational awareness. Geographic infor-
mation systems (GIS) and GIS-based decision support 
systems are ubiquitous within current military forces, 
as well as civil and humanitarian organizations. 
Understanding the quality of geospatial data is 
fundamental to using it intelligently. A systematic 
approach to data quality requires: estimating and 
describing the quality of data as it is collected; 
recording the data quality as meta data; propagating 
uncertainty through models for data processing; 
exploiting uncertainty appropriately in decision 
support tools; and communicating to the user the 
uncertainty in the final product. Bayesian reasoning 
provides a principled and coherent approach to 
representing and drawing inferences about data 
quality. This paper describes our research on data 
quality for military applications of geospatial 
reasoning, and describes model views appropriate for 
model builders, analysts, and end users. 

1 INTRODUCTION 
The focal point of the battlefield command post is the 
map. Through interactions with the map, the commander 
and staff collaborate to build a common operating picture. 
This common operating picture displays the area of 
operations, the militarily significant features of the 
terrain, the locations of adversary and friendly forces, and 
the evolving plan. A generation ago, planning centered on 
a paper map, its overlays of acetate covered with marks of 
grease pencils wielded by the staff members congregated 
around it.  Today the paper map has been replaced in 
brigade and larger headquarters with a digitized map 
projected onto a large-screen display. The grease pencil 
has become an input device for drawing objects or 
selecting pre-computed overlays from a menu of options.  
The map and overlays are stored in the computer as data 
structures, are processed by algorithms that can generate 

in seconds products it would take soldiers many hours of 
tedious effort to duplicate, and can be sent instantly to 
relevant consumers anywhere on the Global Information 
Grid (GIG), the information processing infrastructure of 
the United States Department of Defense (DoD). The GIG 
is the physical infrastructure to enable Network-Centric 
Operations, the DoD’s new doctrine for warfare in the 21st 
Century. 

Advanced automated geospatial tools (AAGTs) transform 
commercial geographic information systems (GIS) into 
useful military services for Network Centric Operations.  
Because of their basis in commercial GIS, they also have 
widespread applicability to fire, police, disaster relief, and 
other problems characterized by a command hierarchy. 
The advanced situation awareness provided by AAGTs 
can do much more than simply speed up calculations.  
They are changing the way military operations are 
conducted.  The development of tools is shaped by 
military necessity, but as the new century dawns, the 
decision making process itself is being shaped by the 
automated tools that provide warfighters with more robust 
situational awareness. 

Widespread enthusiasm for AAGTs has created a demand 
for geospatial data that exceeds the capacity of agencies 
that produce data. As a result, geospatial data from a wide 
variety of sources is being used, often with little regard 
for quality. A concern is the influence of errors or 
uncertainty in geospatial data on the quality of military 
decisions made based on displays of geospatial data. 

Quality of geospatial data is an issue that has received 
considerable interest in the academic GIS community 
(Goodchild, 1992). Studies have shown that, while all 
geospatial data contain errors, errors in geospatial data are 
not well documented, not well understood, and are 
commonly underestimated by users. A particular problem 
is the tendency of users to implicitly trust high resolution 
graphic computer displays of geographic data. The quality 
of the display masks the underlying uncertainty in the 
data (Lunetta & Congalton, 1991). 

Scientifically based methodologies are required to assess 
data quality, to represent quality as metadata associated 
with GIS systems, to propagate it correctly through 
models for data fusion, data processing and decision 



 

support, and to provide end 
users with an assessment of 
the implications of uncer-
tainty in the data on decision 
making. Statisticians have 
developed a wide variety of 
methods for analyzing and 
reasoning with spatial data 
(e.g., Cressie, 1993), and 
these methods are widely 
used in generating and an-
alyzing geospatial data. A 
number of authors have 
applied Bayesian networks to 
reason about uncertainty in 
geographic information sys-
tems (e.g., Walker, et al., 
2005). A Bayesian analysis 
plugin, based on the open 
source GeNIe/SMILE1 open 
source Bayesian network 
system, has recently been 
released for the open source 
MapWindow2 GIS system. 
Applications of Bayesian net-
works to geospatial reasoning include avalanche risk 
assessment (Grêt-Regamey and Straub, 2006), locust 
hazard modeling (Jianwen and Qin, 2005), and watershed 
management (Ames, 2002), and military decision support 
(Wright, 1998; 2002).  

In his dissertation on the application of Bayesian 
networks to tactical military decision aids, Wright (2002) 
considered all phases of the life cycle of geospatial data, 
including data generation, data management, analysis, 
display, and decision support.  In this paper, we focus on 
improving decisions by representing, propagating through 
models, and reporting to users the uncertainties in 
geospatial data.  We describe how model views can be 
applied to conveying the uncertainty in geospatial 
information to decision makers.    

2 CASE STUDY: CROSS COUNTRY 
MOBILITY 

As a case study to illustrate the challenges and 
opportunities of uncertainty management in geospatial 
information systems, we focus on Cross Country Mobility 
(CCM) analysis. CCM analysis is performed to evaluate 
the feasibility and desirability of enemy and friendly 
courses of action. The CCM Tactical Decision Aid (TDA) 
predicts the speed that a specific military vehicle or unit 
can move across country (off roads) based on the terrain. 
The terrain factors that influence CCM speed are slope, 
soil type, soil wetness, vegetation and vegetation 

                                                             
1 http://genie.sis.pitt.edu/ 
2 http://www.mapwindow.org/ 

attributes, ground or surface roughness, and presence of 
obstacles. 

There are several CCM analysis models commonly in use 
by military organizations in the U.S. and around the 
world. The CCM product of Figure 1 was produced using 
the DMA CCM algorithm (DMS, 1993). CCM products 
can be generated for specific vehicle types, for classes of 
vehicles, or for military unit types. The products can be 
used as inputs to algorithms for producing mobility 
corridors, or combined with other information to generate 
avenues of approach for friendly or enemy forces. 
Traditional CCM algorithms use point estimates of their 
input data and produce point estimates of predicted 
speeds. Traditional CCM displays show predicted speeds 
without any attempt to estimate or communicate the 
quality of the prediction based on the quality of the 
underlying data and the quality of the algorithm used to 
make the prediction. 

There are many sources of uncertainty in CCM estimates.  
Input data on the factors that influence speed may contain 
errors.  In many cases, the input parameters required by 
models may be unavailable, and must be estimated using 
a combination of auxiliary models and human judgment. 
Models for predicting speed from input parameters are 
imperfect. As shown below, uncertainty can have decision 
implications, and decision making can be improved by 
properly considering uncertainty in decision support 
algorithms. 

3 MILITARY GIS DATA 
A wide range of military digital mapping products (digital 
terrain data) are available from the DoD National 

 
Figure 1: Traditional CCM Product  

(M1 Tank, DMA Mobility Model, ITD Data, Korea) 



 

Geospatial Agency (NGA). Two commonly used products 
for military GIS analysis are Digital Terrain Elevation 
Data (DTED) and Interim Terrain Data (ITD). 

DTED is an array of elevation values that represent the 
surface elevation of portion of the world. Elevation values 
are provided on a grid with a defined spacing in the North 
South and East West directions. NGA produces DTED 
level 1 data in cells covering an area of 1 degree by 1 
degree, with a grid spacing of 3 arc seconds 
(approximately 100 meters at the equator). DTED level 2 
is produced over smaller areas with a grid spacing of 1 arc 
second (approximately 30 meters at the equator). Higher 
resolution DTED at levels 3, 4, and 5 are available in 
limited areas. DTED is widely used for visualization and 
Line of Sight (LOS) applications. 

ITD is the most widely available feature data in use by 
military GIS systems today. It was originally developed 
as an interim product, while users awaited a more detailed 
and robust digital terrain data product. ITD is available in 
two forms - ITD, and VITD (Vector Product Format 
(VPF) ITD) - which differ in format, although much of 
the information content is similar. ITD is digital vector 
data, where terrain features are represented as points, lines 
and polygons. Each terrain feature has a number of fea-
ture attributes defined for it. Figure 2 shows a graphic that 
illustrates the information content of ITD. Information is 
provided in six thematic layers. Vegetation polygons are 
defined for several types of wooded areas, orchards, and 
agricultural applications. Vegetation attributes include 
vegetation stem spacing, and stem diameter. The 
transportation layer contains features that represent roads, 
bridges, railroads, airfields, etc. Attributes define road 
widths, construction materials, bridge length, width, ca-
pacity, etc. The surface materials layer provides polygons 
of soil type and an attribute for surface roughness. The 
surface drainage layer contains information on rivers and 

streams, with attributes that define width, 
depth, bank height and slope. Surface 
configuration layer contains polygons for 
surface slope in defined categories. The 
obstacle layer contains information of 
other terrain features (like ledges, fences, 
pipelines, cuts and fills) that may be 
obstacles to military mobility.  

ITD is used for a range of military GIS 
applications (Terrain Analysis) including 
mobility products such as CCM. 
Although ITD data is very valuable, it is 
expensive to produce, requiring a great 
deal of human-intensive feature 
extraction. NGA has recognized the 
inability to provide widespread coverage 
of ITD (or ITD-like data) in support of 
worldwide military operations. The NGA 
concept for future terrain data support 
envisions large area coverage of a subset 
of quickly produced data (Foundation 

Feature Data - FFD) to meet the military’s immediate 
planning needs, and rapid production of more complete 
data (Mission Specific Data Sets - MSDS) to meet 
specific requirements in a crisis.  This concept requires 
the ability to combine information from multiple sources 
to produce the needed products.  The available inputs may 
be of varying quality and resolution.  It is essential both to 
employ a sound methodology for propagating the 
uncertainties in the different inputs, and to communicate 
properly to end users the uncertainty in results. 

4 PROPAGATING UNCERTAINTY 
Figure 3 shows an example, taken from (Wright, 2002), of 
a Bayesian network (BN) for integrating data from 
different sources into an integrated vegetation cover map, 
an important input into a CCM tactical decision aid.  
Information was fused from ten sources, including digital 
elevation data; geology data; forest and vegetation maps; 
and various images from the years 1977, 1987, and 1988. 
This Bayesian network applies to a single pixel, and is 
replicated for each pixel in the data set.  A more 
sophisticated model must be applied when errors at 
different pixels are not independent.  For example, 
blurring of an image can introduce correlations between 
neighboring pixels, and registration errors can introduce a 
bias that affects all pixels in a given region.  A graphical 
model for fusing elevation data described by Wright 
(2002) used undirected arcs to model spatial auto-
correlation, and included random variables to represent 
vertical bias in elevation measurements. If spatial 
correlation and bias were considered serious sources of 
error, the model of  Figure 3 could be extended in a 
similar manner. 

To perform the kind of analysis described here, the fusion 
system must have the necessary information to 
characterize the quality of the input data sources. 

 
Figure 2: Information Content of Interim Terrain Data (ITD) 



 

Metadata that represents data quality information enables 
producer and consumer to communicate information 
about data quality needed for fusing that data with data 
from other sources.  

The BN of Figure 3 also makes use of geology, 
topography, soils, and image data (or results from 
algorithms run on images).  In order for this scheme to 
work, all data sources must publish relevant data quality 
information as metadata.  Furthermore, all sources must 
describe appropriate structure (relationships between 
themes, and common image sources for products). That 
is, the metadata must include not just simple data quality 
attributes for results, but also the necessary structural 
information to enable a probabilistic reasoner to construct 
the appropriate Bayesian network for drawing inferences 
about vegetation cover. We have argued elsewhere (e.g., 
Costa, et al, 2007) that this information should be 
represented as a probabilistic ontology (PO).  

An ontology specifies a controlled vocabulary for 
representing entities and relationships characterizing a 
domain. Ontologies facilitate interoperability by 
standardizing terminology, allow automated tools to use 
the stored data in a context-aware fashion, enable 
intelligent software agents to perform better knowledge 
management, and provide other benefits of formalized 
semantics. However, as described in (Costa, 2005), 
standard ontology formalisms do not provide a 
standardized means to convey both the structural and 
numerical information required to represent and reason 
with uncertainty in a principled way. POs, on the other 
hand, are designed for comprehensively describing 
knowledge about a domain and the uncertainty associated 
with that knowledge in a principled, structured and 
sharable way. Therefore, POs provide a coherent 
representation of statistical regularities and uncertain 
evidence, an ideal way of representing and propagating 
uncertainty in geospatial systems. Like a traditional 
ontology, a PO represents types of entities that can exist 
in a domain, the attributes of each type of entity, and the 
relationships that can occur between entities. In addition, 
a PO can represent probability distributions. This requires 
more than the simple ability to represent uncertainty about 
the attributes of entities of a given type. POs represent 
conditional dependencies on other attributes of the same 
or related entities, as well as uncertainty about the types 
of entities and the relationships themselves. PR-OWL 
(Costa, 2005) is an upper ontology, written in the OWL 
ontology language, that enables an OWL ontology to 
represent such relational uncertainty. 

As an example, consider the problem of aggregating 
geospatial information from several databases. Suppose 
we consult three different databases, all three of which 
label a particular area as forested. Each report is tagged 
with a particular credibility. Because the three reports 
agree, standard statistical aggregation technologies would 
label the region as forested and assign a higher credibility 
than the three individual credibilities. However, if all 

three databases obtained their raw data for this area from 
the same satellite image, and all three applied similar 
algorithms for assigning a ground cover type label. In this 
situation, the credibility of the aggregate report is no 
greater than any of the individual input credibility values. 
In this case, we need to represent not just a single 
credibility number, but dependency information about 
how the credibility depends on the sensor and the data 
processing algorithm. If there is uncertainty about the 
source of the data in one of the databases, then the 
appropriate combination rule would be a probability 
weighted average, with weights equal to the posterior 
probability, given the observed data, of the different data 
sources. If the systems providing input give no data 
quality information, or supply insufficient information for 
a probabilistic reasoner to determine unambiguously the 
structure and/or probabilities for the Bayesian network, 
then the fusion system has an additional inference 
challenge – to determine the appropriate BN for fusing 
the diverse inputs. 

A standard ontology annotated with probabilities could 
not represent these complex kinds of dependence 
relatinoships. A probabilistic ontology could, provided 
that it is based on a sufficiently expressive probabilistic 
logic. POs provide a flexible means to express complex 
statistical relationships, a crucial requirement for dealing 
with uncertainty in geospatial systems. Reasoners capable 
of handling general-purpose relational probabilistic 
models are not yet generally available.  To compute the 
results shown in Figure 5, custom application was written 
to apply the Bayesian network of Figure 3 to each pixel in 
a geographic database, using an application programmer 
interface to a Bayesian network tool.  Today, this example 
could be computed using the Bayesian plugin to 
MapWindow. More sophisticated models including 
spatial correlation and bias would still require custom 
software, although new theory and tools are emerging 
rapidly.  

 
 

Figure 3 – Bayesian Network for Information 
Integration 



 

5 MANAGING UNCERTAINTY IN GIS 
DATA 

There are errors, or uncertainties, in all geospatial data. 
Different kinds of uncertainties in geospatial data include  
uncertainties due to positional error, feature classification 
error, resolution, attribute error, data completeness, 
currency, and logical consistency (Kraak, & Ormeling, 
1996). Unfortunately many of these types of uncertainty 
are difficult to quantify, and are often ignored in the 
production of GIS products - even for military 
applications. 

Positional errors, absolute and relative errors in X,Y, and 
Z, are reasonably well understood and for most military 
geospatial data are fairly well defined. For many 
applications, like targeting and navigation, estimates of 
positional accuracy are sufficient to evaluate the 
suitability of the GIS data for use. Other GIS products, 
that depend on position are more complicated. 

For example, the LOS product depends on the Z location 
(elevation) of the observer, a potential target, and multiple 
terrain points. LOS does not depend on absolute 
elevations, but on relative elevations of the various points. 
Unfortunately, acceptable relative elevations errors are 
not specified for DTED level 1 and 2 products, and are 
not used to estimate the uncertainty in LOS predictions. 

Uncertainty due to feature classification errors and feature 
attribute errors are also commonly neglected in military 
GIS analysis. The product specification for ITD (and for 
related feature products) does not provide any standards 
for feature classification accuracy or feature attribute 
accuracy. The accuracy of the different thematic layers is 
in general unknown, although some studies have been 
done (Ryder, and Voyadgis, 1996) and results from 
civilian studies may be used as a guide. In general, 
estimation of terrain features like vegetation and soil type 
from imagery source materials - without extensive 
“ground truth” is very difficult. Results which achieve 

80% accuracy are considered good. Terrain products, 
produced from terrain feature data, will be in error as a 
result of propagation of the uncertainties in the terrain 
data through the algorithm, or model, used to create the 
product. Today, military GIS systems typically do not 
attempt to estimate the uncertainty in GIS products, and 
have no way to incorporate uncertainty in algorithms or 
display it to users. 

Other uncertainties due to data resolution, completeness, 
or consistency are also present in military GIS systems. 
Although users (terrain analysts) may be aware of these 
uncertainties, there is no systematic way to account for 
them or to communicate them to decision makers. 

Figure 4, taken from Wright (2002), presents a model of 
the lifecycle of geospatial data, showing the management 
of uncertainty operations that are required at each stage. 
The first block, data generation, is the creation of 
geospatial data from source materials, often remote 
sensors. During this step, tools and techniques that 
measure the quality of data, as it is produced, are needed. 
Quality must be measured in appropriate quality metrics, 
and recorded as part of the meta data for the data. The 
next two steps, build and manage the database and the 
database itself, are important parts of the process that are 
often overlooked. Today we rarely generate all new data 
for a particular GIS project. In almost all cases existing 
data will be available, and there will be new data 
produced by other organizations. All this data must be 
integrated into a cohesive database. The data integration 
required to merge these different data layers is a critical 
and complex operation. In addition to merging the data, 
we need to merge the corresponding meta data as well, to 
derive meta data for the new integrated data. 

The database, where available data is stored, is also 
explicitly shown as not “full.” Usually we will not have 
all the information we would like to have before we start 
to generate GIS products. Over time, as additional data is 
ingested, the database will contain more data - but usually 

 
Figure 4: Conceptual Model for Mangement of Uncertainty in GIS Data 



 

our appetite for new data is also growing, so the data store 
will never be full. As the availability of data changes over 
time, the meta data must be updated to reflect the quality 
of currently available data. 

The next block, analysis, is the application of GIS 
operations, according to some model, to produce a GIS 
product. Techniques for propagating the uncertainty in 
geospatial data through the GIS model into the GIS 
product are required. In the following block, the GIS 
product is displayed or presented to the user. In this step, 
it is important to present the user with a visualization of 
the uncertainty in the product. One of the challenges is to 
find good ways to present such information. 

The final block in the geospatial life cycle is the user. 
This block also is an important step in managing 
uncertainty: ensuring that users are trained to ask for and 
use information about the quality of GIS products as part 
of their decision process. 

6 VISUALIZING UNCERTAINTY 
Visualization of uncertainty in GIS products is essential to 
communicate uncertainties to decision makers. This helps 
to prevent decision makers from being blinded by the 
quality of the display, and to make them aware of the 
underlying uncertainty of the product. 

A few examples of uncertainty visualization ideas, taken 
from Wright (2002), are presented here. Figure 5 shows a 
fused vegetation map that displays the results of applying 
the Bayesian network model of Figure 3. The display 
shows color-coded highest-probability classifications, and 
provides the ability to drill down to view the uncertainty 

associated with the fused estimate. Figure 6 shows a 
visualization of CCM with associated uncertainty.  The 
underlying computations for this display were performed 
by implementing a standard CCM algorithm as the 
Bayesian network shown in Figure 7 (Wright, 2002).   

CCM uncertainty is shown two ways, in the legend and 
via interactive histograms that the user can control. The 
bi-variate legend uses color to represent the predicted 
CCM speed range. The quality of the color represents the 
quality of the prediction. There is enough information in 
the legend that it is difficult to interpret the product 
colors. This difficulty is exacerbated by the difficulty of 
matching colors from computer monitor to printed 
hardcopy. To offset the difficulty in interpretation, user 

 
Figure 5 – Fused Vegetation Map for 1988 

 
Figure 6: CCM Product with Visualization of Uncertainty in the CCM Prediction 



 

controlled popup histograms were provided on the digital 
display. Several examples are shown in figure 7. The 
popup histograms are useful to illustrate how the legend 
works: 

• For each pixel in the product display, a 
probability distribution for predicted CCM speed 
was generated (via Bayesian Network), based on 
uncertainties in the original feature data layers. 

• The pixel color (legend column) was selected 
that corresponds with the highest probability 
speed bin. 

• The prediction quality color (legend row) was 
selected based on the range of speed bins with 
probability equal or greater than 10%. 

• For example, the top row, right histogram is for a 
bright green pixel, indicating that the predicted 
speed is reasonably fast, and there is little 
uncertainty. The bottom row, left histogram is 
also for a green pixel, indicating that the highest 
probability is for a fast CCM speed. However, 
there is also a 10% probability that the correct 
CCM speed range is the lowest speed bin, so the 
quality color of this pixel reflects that the actual 
CCM speed extends across the entire range of 
speeds. 

This CCM display provides more information to decision 
makers about the quality of the prediction and (in the 
interactive versions) the popup histograms provide a 
means to query for more detailed predictions at specific 
points. 

One type of query cannot be answered by the popup his-
tograms of Figure 6. If the decision maker is interested in 
reducing the uncertainty in the CCM predictions - perhaps 
by allocating reconnaissance resources to collect addi-
tional terrain data, he would like to know the influence of 
individual terrain factors on the 
total uncertainty in the CCM 
prediction. The query is: “what 
terrain factor contributes the most 
to the uncertainty in the predicted 
CCM speed?” Figure 8 shows an 
additional visualization that 
makes it possible to answer this 
query. 

The figure represents the uncer-
tainty in the values of the terrain 
factors for one specific point on 
the terrain, as well as a graphical 
depiction of the impact of each of 
the individual factors. The visu-
alization requires input of the 
probability distribution that de-
scribes the current estimate of the 
terrain parameters at a point. 
These probability distributions are 

used in a Monte Carlo technique to map variation in 
terrain inputs into variation in predicted CCM speed. The 
graphic output shows four small graphs that map each 
individual terrain parameter's effect on the CCM speed, 
assuming all other terrain parameters remain fixed (at the 
mean of their distribution). These small graphics each 
contain the curve of terrain value vs. CCM speed, and two 
histograms. The one on the bottom is the random 
variation of the terrain parameter, the one on the left is the 
resulting variation in the predicted CCM speed. Note that 
if the terrain parameter vs CCM speed curve is flat (or 
nearly flat) then there is very little variation in predicted 
CCM speed, even for large variations in terrain values. If 
the terrain parameter vs predicted CCM speed curve is 
steep, then there can be large variation in predicted CCM 
speed even if there is little uncertainty in the terrain 
values. The large histogram at the bottom shows the total 
distribution of predicted CCM speeds based on the 
combined variation of all the terrain inputs. The total 
distribution of predicted CCM speeds shows more 
variation in predicted speed than for any of the individual 
terrain parameters, because of the random combination of 
values and interaction between parameters. 

In the visualization shown, - for this specific set of terrain 
inputs, and terrain uncertainties - the effects of errors in 
slope, stem spacing, and soil strength (Rating Cone Index 
- RCI) have only a small impact on the total uncertainty in 
predicted CCM uncertainty. The influence of stem di-
ameter uncertainty, on the other hand, has a fairly large 
impact on the uncertainty in predicted CCM speed. 

This kind of visualization could be used as an interactive 
guide during data collection: For a given area, and given 
the current best estimate of terrain values and terrain ac-
curacies, it is possible to determine which terrain factor 
will provide the most improvement as a result of addi-
tional collection effort. 

 
Figure 7: Bayesian Network Implementation of CCM Algorithm 



 

The above ideas regarding possible visualizations of 
uncertain, incomplete data uncover another vital issue for 
a successful geospatial system – its ability to meet the 
distinct knowledge requirements of its distinct users. Note 
that we are not addressing cosmetic GUI customizations, 
but a much complex issue. The multitude and diversity of 
users relying upon a wide spectrum of possible features of 
a geospatial system suggests the need of a much richer 
approach for predicting the answers that have to be 
provided, the granularity of information sought by each 
type of user, or even the algorithms that need to be run 
to meet such requests. Merely listing types of users and 
crafting customized reports does not scale to geospatial 
systems intended to meet GIG-era requirements. A more 
flexible solution is required. 

One possible approach to face the above challenge 
might be to employ an ontology conveying knowledge 
of patterns of system usage, which would trace 
characteristics related to each type of user to the 
particular aspects regarding the situation in which a 
given service is being requested. Depending on how rich 
this ontology is, the system would be able to predict 
parameters such as the user’s decision level, precision, 
timelessness and expected granularity of information, 
most important factors for CCM predictions, etc, and 
then optimize its resources to provide the most adequate 
level of service to that specific situation (e.g. by 
selecting the most appropriate model views, fine-tuning 
plausible algorithms for CCM predictions, etc).  

Finally, in order to meet the demands of a network-
centric environment, a service-oriented architecture 
similar to the one in (Costa et al., 2007) is implied as a 
precondition for a ontology-driven, seamless 
interoperable employment of multiple, distributed 
information sources, repositories, and users of a 
geospatial system. 

7 DECISION IMPLICATIONS 
A simulation experiment reported by Wright (2002) 
demonstrates the importance of properly accounting for 
uncertainty in CCM calculations. Two versions of a CCM 
product were generated from the operational terrain 
database (original terrain data).  Both used the same CCM 
algorithm, but the first used the algorithm directly and did 
not estimate the uncertainty of the CCM product, whereas 
the second used the Bayesian Network implementation 
shown in Figure 7.  The data quality information used to 
generate the uncertain CCM product was the same as that 
used to generate the simulated terrain databases, with the 
exception that the Bayesian Network CCM process does 
not account for spatial accuracy. 

Simulated agents without access to uncertainty 
information used a standard A* search algorithm to find 
the fastest route from start to finish, and applied a 
“padding factor” (a parameter varied in the experiment) to 
determine a start time that predicted them to arrive at the 

finish point ahead of schedule by an amount determined 
by the padding factor.  Agents with access to uncertainty 
information estimated a distribution of arrival times. If 
this distribution was “too wide,” they were able to 
perform “reconnaissance” to reduce the uncertainty, and 
then replan their routes. Their estimated travel time at the 
90th percentile of the travel time distribution, and also 
applied a “padding factor.” As shown in Figure 9, taken 
from Wright (2002), results of this experiment showed a 

dramatic improvement in the probability of arriving at the 
destination on time for agents that had access to the 
uncertainty information. 

8 DISCUSSION 
The examples demonstrate the importance of 
representing, properly managing, and communicating to 
decision makers information about uncertainty in the GIS 
products used for military planning. Several prerequisites 
are required. The quality of the geospatial data must be 
known, or techniques must be available to estimate data 
quality. If a “ground truth” data set exists, in which values 
are available for all random variables of the network, then 
straightforward parameter learning algorithms can be used 
to estimate the required parameters.  Typically, though, 
some of the random variables will be unobserved hidden 
variables.  In this case, more sophisticated algorithms are 
needed for learning in the presence of hidden variables 

 
Figure 8: Visualizing The Influence of Terrain 

Factors on Total Uncertainty in CCM Predictions 



 

(e.g., Friedman, 1998; Laskey, et al, 2003). In addition to 
representing data quality, techniques must be available to 
propagate uncertainty of the data through GIS algorithms  
to estimate the uncertainty in the product. For example, 
the Bayesian network of Figure 7 was used to propagate 
uncertainty through the CCM model.  

Different model views are appropriate for users playing 
different roles in the uncertainty management process 
shown in Figure 4. Model developers and implementers 
need access to the Bayesian network models of Figures 3 
and 7, as well as to statistical models used to estimate the 
probability distributions that go into the models. End 
users need to see views of the model results that are tied 
to their familiar ways of interacting with the data. The 
displays of Figures 5 and 6 are constructed to be similar 
to traditional map displays, but to provide additional 
information about uncertainty as part of the display, and 
to allow users to drill down to a more detailed explanation 
of particular uncertainties. Figure 8 shows one kind of 
drill-down that decision makers might find useful. 

The analyses and displays shown here were generated as 
stand-alone applications, and have not been incorporated 
into military geospatial analysis tools, into geospatial 
ontologies, or into decision support products. It is possible 
to carry out the kinds of analysis described in this paper 
with technology available today, however both impose 
costs on the production and use of geospatial data. So the 
final prerequisite is an organizational decision that 
providing information about the uncertainty of GIS 
products is important - that it provides benefits that 
exceed the costs. 
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