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Abstract 

Bayesian networks (BN) are particularly well 
suited to capturing vague and uncertain 
knowledge.  However, the capture of this 
knowledge and associated reasoning from human 
domain experts often requires specialized 
knowledge engineers and computational 
modelers responsible for creating BN-based 
models.  Through our experiences in applying 
BN modeling techniques across application 
domains, we have analyzed how these models 
are constructed, refined, and validated with 
domain experts.  From this analysis, we have 
identified potential simplifying assumptions and 
used these to guide the design of computational 
and user interface methods that support the rapid 
creation and validation of BN models.  

1. INTRODUCTION & MOTIVATION 
A Bayesian network (BN) (Jensen, 2001; Pearl, 1988) is a 
probabilistic model used to reason under uncertainty. BNs 
have been used by the authors, their colleagues, and 
numerous other researchers to reason about a wide variety 
of phenomena (e.g., computer vision (Rimey & Brown, 
1994), social networks (Koelle et al., 2006), human 
cognition (Guarino et al., 2006; Glymour, 2001), and 
disease detection (Pang et al., 2004)) with notable 
success.   These successes have led to increased interest in 
BNs as computational methods for domains where the 
representation of expert reasoning and knowledge is 
paramount.  For example, a knowledge engineer may 
wish to capture an expert’s reasoning about how incoming 
information should be classified based on the source of 
the information and associated environment factors (prior 
work has discussed issues with this elicitation 
(Tabachneck-Schijf & Greenen, 2006; Mathias et al., 
2006)).  Or, an expert may want to directly externalize his 
or her reasoning so that it could be encoded and 
automated.   

However, the expression of a model (i.e., creating a “view 
of that model”) by either a knowledge engineer or a 
domain expert using most current tools is relatively 
cumbersome, since the full representation of Bayesian 
network computation is beyond the mathematical 
sophistication of many domain experts and some 
knowledge engineers (who, in some cases, may have 
backgrounds in Cognitive Science and Psychology, rather 
than Mathematics or Computer Science).  Even with an 
effort to reduce the complexity and power of a BN 
representation, there is still the problem of constructing 
conditional probability tables (CPTs).  Since the number 
of distributions that must be expressed in a CPT grows 
exponentially in the number of parents and the number of 
states per parent, a knowledge engineer or domain expert 
can end up responsible for expressing a vast number of 
what may end up to be meaningless separate distributions 
(e.g., a child with 3 states and 7 parents that have 4 states 
each would require the entry of 49,152 probabilities!). 
Clearly, this exponential explosion, combined with the 
underlying sophistication of the representation, presents a 
challenge. 
To some degree, the problem has been recognized by the 
research community and the subsequent development of 
“canonical models” that reduce the number of parameters 
needed to specify a CPT.  A canonical model (Diez & 
Druzdzel, 2006) makes a specific assumption about the 
type of relationship between a node and its parents. This 
assumption results in many fewer parameters being 
needed to specify an entire CPT. There are many types of 
canonical models used in practice and each assumes a 
different relationship. Noisy-OR (Henrion, 1989; Pearl, 
1988), Noisy-MAX (Diez & Galan, 2003), and Influence 
Networks (IN) (Rosen & Smith, 1996a; Rosen & Smith, 
1996b) are three commonly used canonical models.  
However, the assumptions underpinning these canonical 
models may make them less generalizeable, or may 
introduce other inconsistencies that decrease their utility.  
Furthermore, it is unclear what advances in user interface 
designs have been made as a result of these models.   
In this paper, we describe our efforts to understand how 
knowledge engineers and domain experts express their 



reasoning and knowledge with the goal of using this 
understanding to select simplifying assumptions for the 
construction and execution of Bayesian networks.  From 
these assumptions, we have constructed both an 
underlying computational representation as well as a 
prototype user interface to further explore the degree to 
which users can more rapidly express their reasoning, as 
well as the degree to which those assumptions may be 
violated.  This approach varies from that of Tabachneck-
Schijf et al., (2006), who proposed a more formal user-
centered process for knowledge engineering, in that our 
end goal is to create both computational and user interface 
methods to allow for both knowledge engineers and 
domain experts to rapidly create, validate, refine, and 
share their own and others’ reasoning. We recognize that 
from a particular set of requirements, many possible user 
interface designs are possible; in this paper, we present 
our overall approach to design and development, and 
describe the resulting methods only to support our 
approach.  In Section 2, we describe relevant background 
material. In Section 3, we introduce our approach to 
analysis of user cognition and decision-making across 
different application domains.  In Section 4, we outline 
our results from these many analyses and their 
implications for model construction and validation.  In 
Section 5, we describe the design of underlying 
algorithms and supporting user interfaces to address our 
understanding of how to best support model generation, 
testing, and refinement. Finally, in Section 6, we discuss 
implications for future research and development efforts. 

2. BACKGROUND 
A review of Bayesian network literature indicates a clear 
bias towards mathematical techniques for representation, 
inference, and learning instead of techniques for eliciting 
Bayesian networks from experts.  The research that does 
exist related to Bayesian network elicitation focuses on 
obtaining the structure (random variables, their states, and 
the causal connections between them) of the Bayesian 
network, the conditional probability distribution 
parameters that quantify the network, or both. 
Nadkarni & Shenoy (2000) demonstrate an approach for 
converting a causal map into a Bayesian network.  A 
causal map is similar to the structure of a BN, where an 
expert draws directed links between concepts to represent 
causal relationships. Their approach focuses on elicitation 
techniques for the causal map and proper conversion 
techniques for tranlating it into a BN.  They recommend 
using canonical models (such as Noisy-OR and Noisy-
AND) to simplify parameter elicitation for nodes in the 
resulting BN with multiple parents. Without easy 
conversion between the causal map and the BN (and, 
indeed, bi-directional conversion), then  the ability of an 
expert to rapidly test and validate a BN may be hindered. 
Skaanning (2000) presents an automated tool for eliciting 
diagnostic BNs from domain experts.  While the approach 

is focused on diagnostic tools for printers, it can be used 
in other domains that follow similar constraints.  By 
asking the domain expert natural language questions, 
imposing strict constaints on the resulting BN structure, 
and eliciting reverse parameters (the probability of a 
cause given the effect), they greatly simplify the 
elicitation of both structure and parameters.  Kraaijeveld 
et al., (2005) also present their GeNIeRate system that 
aids in eliciting diagnostic BNs from experts.  They 
simplify the elicitation by assuming the BN has only three 
levels of variables and that all nodes use the Noisy-MAX 
canonical model.  This approach removes the value of 
showing an expert an interactive graphical model where 
they can visualize the reasoning captured as they express 
it. 
Neil, Fenton, & Neilsen (1999) build on recent research in 
Object-Oriented software design and Object-Oriented 
BNs to come up with a process similar to the spiral 
process of software engineering for building complex 
BNs from smaller BN parts.  They define five of these 
parts, called idioms, in detail and describe how to use 
them in practice to build large BNs.   A process-based 
approach to simplifying BN construction is indeed useful, 
and contrasts with our goal of enabling a domain expert to 
create their own model. 
The Weighted Sum Algorithm (WSA) (Das, 2004) 
reduces the number of parameters to specify a CPT from 
being exponential in the number of parents to linear in the 
number of parents.  In WSA, the domain expert need only 
specify one probability distribution over the child node’s 
states for each state of each parent (instead of one such 
distribution for each combination of parent states).  This 
distribution is conditional on the state of the parent and 
the most compatible state of each other parent.  Therefore, 
joint effects of parents can still be taken into account 
while specifying a small number of parameters.  After 
specifying these parameters for compatible parent 
configurations and a relative weight for each parent, the 
WSA is used to combine them into the full CPT. This 
method represents yet another approach to solving the 
underpinning mathematical issues with making a causal 
network easier to express.  However, this work is focused 
on computational efficiency, not the ease with with the 
model can be expressed by a user. 
Helsper et al. (2005) describe a method for eliciting 
qualitative information about the probabilistic relations in 
a BN from an expert using a dedicated eliciation 
technique, like {Tabachneck-Schijf, 2006 9201 /id}.  This 
qualitative infromation is then used to constrain the 
probabilities learned from a small set of data that 
otherwise would be too small to provide accurate learned 
probabilities.  Again, these approaches are important in 
cases where dedicated knowledge elicitation is the correct 
approach, but may be less useful when encouraging 
domain experts to express their own reasoning. 
Helsper, van der Gaag, & Groenendaal (2004) list the 
three types of effects that parent nodes have on child 



nodes: qualitative influence (QI), additive synergy (AS), 
and product synergy (PS).  The specific values of these 
three effects in a BN constrain the actual values of entries 
in the CPT. To determine QI, AS, and PS, they propose 
using “case cards” which ask the domain expert to order 
the parent configurations by causal effect on the child 
node.  Therefore, an domain expert need only specify an 
ordering of parent configurations without any conditional 
probabilities.  This approach is currently constrained to 
nodes with only two states and nodes with only two 
parents.  This approach also does not generate actual 
CPTs; it only constrains the values the CPTs can have 
given the higher-level qualitative concepts of QI, AS, and 
PS.  Wiegmann (2005) provides a review of several 
methods for eliciting probabilities from domain experts as 
well as combining the probabilities elicited from multiple 
experts.  Their approach in their fielded system is to use 
multiple elicitation techniques to improve the accuracy of 
the probabilities that the experts specify. These 
approaches represent a step towards our stated goal – 
understanding the way the user may want to express 
causal relations to provide them with a method for 
directly expressing those relations into a computational 
model.  This work, more generally, may help to illustrate 
cases where models developed by domain-experts may be 
subject to biases or incorrect assumptions about the 
underlying comptuation. 

3. APPROACH 
Our goal across projects has been to identify and study the 
users and experts and their approaches to decision-making 
in different application domains, with the express purpose 
of aiding in that decision making with techniques such as 
BN modeling.  To accomplish this goal in each project, 
we use a particular set of analytic methods generally 
referred to as Cognitive Systems Engineering (CSE). 
The CSE community emerged as experience with the 
introduction of new technology demonstrated that 
increased computerization does not guarantee improved 
human-computer system performance (Woods & Dekker, 
2000; Roth, Malin, & Schreckenghost, 1997; Woods, 
Sarter, & Billings, 1997). Poor use of technology can 
result in systems that are difficult to learn or use, can 
create additional workload for system users, or in the 
extreme, can result in systems that are more likely to lead 
to catastrophic errors (e.g., confusions that lead to 
casualties from friendly fire).  CSE attempts to prevent 
these types of failures in the design and development of 
complex system by addressing design issues through 
careful analysis of the problem domain, the tasks to be 
performed by a human-computer system, and the 
limitations of both the human and the machine. 

 

Figure 3-1: Cognitive Systems Engineering Process 

While there are many different approaches to the analysis 
components of CSE, such as Cognitive Task Analysis 
(Schraagen, Chipman, & Shalin, 2000), Cognitive Work 
Analysis (Vicente, 1999), Work Centered Support 
Systems (Eggleston, Roth, & Scott, 2003), and Applied 
Cognitive Task Analysis (Militello & Hutton, 1998), 
these methods share a commitment to analyzing the 
cognitive and environmental demands imposed by the 
domain of practice and identifying implications for 
information, visualization, and decision-support 
requirements.  CSE methods generally entail a multi-
phase, iterative design approach that includes an analysis 
phase, a concept development and prototyping phase, and 
a user evaluation phase. The cognitive analysis phase 
typically employs knowledge elicitation methods such as 
interviews of domain practitioners and observations of 
work in context. These methods uncover the reasoning 
processes involved in making decisions and performing 
tasks in the domain and the challenges that arise (Potter, 
Roth, Woods and Elm, 2000; Roth and Patterson, 2005). 
The analysis phase supports the development of system 
requirements that can be used to prototype computational 



support tools and user interfaces, including the knowledge 
elicitation needed to engineer formalized representations 
of user knowledge and expertise. The development of 
requirements and capture of expert knowledge is followed 
by subjective evaluations of a prototype system.  These 
subjective evaluations lead to the development of more 
robust prototypes, which are then more rigorously 
evaluated.  The results of the evaluation then aid in the 
refinement of the system requirements.  This spiral 
development process will eventually converge on an 
optimal human-computer system (although time/cost 
constraints will influence the number of possible 
iterations) (Pfautz & Roth, 2005c).  This development 
process is illustrated in Figure 3-1. 

4. RESULTS 
In applying this process across numerous projects, we 
have spent thousands of hours with hundreds of domain 
experts across a wide variety of applications, such as 
supporting the analysis of weather impacts (Lefevre, 
Pfautz, & Jones, 2005), military intelligence (Pfautz et al., 
2006b) and command and control (Pfautz et al., 2006a).  
In these projects, we have observed some consistent 
patterns in how knowledge is (and can be) elicited by a 
knowledge engineer to develop models.  Similarly, we 
have observed how experts tend to express their reasoning 
about the domain.  In addition, we have identified ways in 
which we could improve our efforts to encode domain 
experts’ knowledge and reasoning in BN models, and to 
work with domain experts to validate those models.  This 
meta-analysis of our own development process led us to 
postulate some key features that may be aided by 
improved computational methods and associated user 
interfaces. 
The first and foremost finding is that the power of a 
computational representation is seemingly proportionate 
to the ease with which expert knowledge can be both 
encoded and validated.  That is, the ability to quickly 
create a model with domain experts, then to work through 
a set of cases within that model allows for a very rapid 
cycle of elicitation, representation, and validation.   
Rather than the model being reliant on the knowledge 
engineer’s ability to ex post facto recall and extrapolate 
from the statements of the domain expert, the model can 
be more comprehensively and reliably based on expert 
knowledge and reasoning.  An additional benefit to this 
ability to rapidly cycle through model development is that 
time with domain experts is typically constrained, and 
that multiple sessions would be otherwise required to 
develop, then refine, then validate a model.   
A second finding was that while domain experts may not 
be conversant in computationally sophisticated 
technologies, they can be systematically guided to express 
their own knowledge and reasoning.  This systematic 
guidance can come in the form of a knowledge engineer 
performing a structured interview, but it may also come in 

the form of the modeling tool itself.  That is, the domain 
expert could conceivably develop the model herself, if the 
interface to the model were sufficiently simple (and 
presuming a knowledge engineer was present to provide 
some guidance).  This concept of supporting domain 
experts in expressing their own models has additional 
benefits, in that a domain expert has an external record of 
their own reasoning, which in turn can be used in a 
collaborative decision-making process, shared and used as 
the basis for future reasoning, or independently validated 
by other experts. 
These main findings were accompanied by more specific 
results about the actual construction of Bayesian networks 
by both our knowledge engineers and the domain experts 
with whom we work: 
(1) The exponential growth of CPTs with the number of 

parents and parent states was cited most frequently as 
a cause for frustration.  Few domain experts or 
knowledge engineers were willing to tackle the entry 
of extremely large CPTs.   Domain experts facing 
this challenge often resorted to saying, “they’d just be 
making it up” at that level of detail to avoid the task. 

(2) The lack of ability with many BN software packages 
to develop a network and immediately update beliefs 
(as a function of new nodes, states, CPTs, or causal 
links) slowed model development. 

(3) “Evidence” and “belief” were commonly confused 
when shown simultaneously.  These terms were also 
commonly confused in discussions about what a BN 
was representing. 

(4) The expression of vague or uncertain knowledge or 
reasoning varied significantly between users.   A 
great deal of speculation was used in the creation of 
the CPTs (more so than the relationships among 
variables) 

(5) The selection of variables was a primary challenge.  
We discovered that expression could be guided 
towards primarily Boolean and/or Ordinal ranges, 
although in some cases, Categorical variables were 
used to simplify the network (“Categorical” refers to 
non-Boolean, non-Ordinal groups such as {apples, 
oranges, jet skis}).  It was possible to create networks 
that represented identical reasoning, but that used a 
different selection of variables and variable types. 

(6) Many networks were constructed with the 
assumption that parents were independent, or when 
parents had dependent influences, variable names and 
states could be relatively easily re-defined to preserve 
parental independence. Working towards networks 
with parental independence may also have helped to 
more explicitly represent un-stated or assumed 
influences among variables. 

(7) In some cases, variables were selected such that they 
caused wholesale disregard for other variables (e.g., 



“if A, then I don’t care about anything else, the 
answer is True”.)   

(8) The underlying reasoning, while mathematically 
correct, could be opaque and non-intuitive 
(particularly when certain non-linearities were 
exposed).  This led to issues of trust in the model and 
the modeling technique. 

These findings are the result of our analysis and 
experience, not a comprehensive, empirical set of 
evaluations.  However, we would assert that they are 
highly valuable observations to be used as part of an 
effort to build better BN-based modeling tools and will, 
as part of our iterative approach to development, be 
subjected to more formal evaluation to test the limits of 
their application in BN modeling. 

5. APPLICATION OF RESULTS 
The results of this analysis were used in the development 
of Charles River Analytics’ BNet™ suite of products 
(note: other BN tools (e.g., Elvira, GeNIe) may also 
perform a subset of features we developed – our goal in 
this paper is not to perform a product comparison, but 
simply to show how an analysis of common problems 
should systematically lead to user interface design 
elements).  Each of the findings has resulted in a 
particular feature or set of features.  For example, our 
finding that users typically wanted to see updates to 
beliefs whenever any type of change was made to the 
network led to the development of a “no-compile” or 
“mode-less” user interface (see (2) above).  Other user 
interface methods were used to simplify, where possible, 
the completion of CPTs (e.g., supporting entry of multiple 
rows simultaneously, supporting cut and paste from 
spreadsheet applications (see (7) above)). However, while 
these improvements to BN modeling clearly improve the 
user experience for an experienced knowledge engineer, 
they fail to address the broader goal of making BN model 
construction a more interactive process with domain 
experts to whom the subtleties of BN representations are 
not as immediately important as the construction and 
validation of the model.   
Therefore, we focused on two key components of a BN 
modeling tool that would support a more rapid model 
creation and validation cycle with domain experts and 
knowledge engineers, with the greater goal of working 
towards methods that would allow domain experts to 
comfortably and intuitively externalize their knowledge 
and reasoning.  The first component consists of an 
underlying mathematical representation (Causal Influence 
Models, or CIMs) that is based entirely on BNs, but uses 
simplifying assumptions much like the canonical models 
described in Section 1.  Compared to these canonical 
models, these simplifications are based primarily on the 
desire to support improvements to the user interface, 
rather than computational efficiency.  The second 
component of our effort was to develop user interface 

methods that leveraged the results of our analysis and the 
power of the simplified computational model.  Both of 
these components are described in more detail below. 

5.1 CAUSAL INFLUENCE MODELS 

One of the key findings from our analysis was that experts 
tend to express the degree to which certain factors 
influence the likelihood of other factors independently 
(and, where they do not consider these factors 
independently, the act of explicitly expressing these 
interdependencies leads to a model where new factors are 
created to represent the dependency) (see (6) above).  
Therefore, we started with the simplifying assumptions 
that each parent node influences the child node (causes it 
to be more or less likely) and these parents act 
independently.  These assumptions, along with a 
procedure for combining parent influences into a full 
CPT, lead to the Causal Influence Model  (described in 
full detail in (Cox & Pfautz, 2007).  
In our CIM, the user first specifies a baseline probability 
distribution over the states of the child node.  These 
baseline probabilities represent the a priori likelihood of 
the child states, without the effects of any of its parents.  
Next, the user specifies the influence that each parent 
state has on each child state.  This influence is a number 
in the range [-1, +1] and represents the amount that the 
parent state increases or decreases the baseline probability 
of the child state. 
Once the user specifies the baseline probabilities and 
influences, they are used to calculate all of the 
probabilities in the CPT.  For each row and child state in 
the CPT, we combine the influence of each parent state in 
that row on the child state into the overall parent 
influence. While many combination functions are 
possible, we typically use the mean of the parent 
influences since it is a linear function causing positive and 
negative influences to balance each other out and 
therefore produces CPTs that represent linear relations 
(see (8) above).  This overall parent influence is then used 
to either increase or decrease the baseline probability of 
the child state, and this result is used as the conditional 
probability of the child state given the parent states in that 
row. 
The CIM requires a number of parameters that is only 
linear in the number of parents, as opposed to exponential 
for a CPT (addressing (1) above).  The baseline 
probabilities and influences are also easily specified by 
domain experts since they do not involve the joint effects 
of numerous parent states.  In our experience, a domain 
expert is much more likely to accurately specify a small 
number of simple parameters.  This is the primary benefit 
of using the CIM instead of a full CPT.  Of course, the 
user can always further refine the actual CPT later, by 
hand or with data, meaning that the full representational 
capabilities of the BN model are accessible as needed. 



While the IN canonical model (Rosen & Smith, 1996c) 
also provides these same benefits, the CIM overcomes the 
IN’s two primary drawbacks.  First, the CIM can be used 
with any discrete node, regardless of the number or 
meaning of its states, while the IN is restricted to Boolean 
nodes only.  This capability was based on our observation 
that, while experts can be guided to formulate their 
reasoning in purely Boolean terms, it is often more 
representative or concise to support Ordinal and 
Categorical terms.   Second, the IN model uses a non-
linear function to combine parent influences which has 
been known to produce unintuitive CPT entries in certain 
cases (e.g., where beliefs become overly sensitive to 
evidence from a particular parent).  The CIM uses a 
simple linear function to combine parent influences, thus 
avoiding this problem. 
For each parent, the user must specify a number of 
influences equal to the product of the number of parent 
states and child states for the CIM.  While this is certainly 
better than the CPT, it can still result in too many 
parameters for a user to specify.  We simplify the CIM 
even further by making assumptions about the types of 
the parent and child nodes and the type of influence that 
the parent has on the child.  These assumptions allow us 
to completely specify the CIM using only a single 
parameter for edges between Boolean and Ordinal nodes, 
and for edges connected to a Categorical node only a 
single parameter for each state of the Categorical node is 
needed.  For example, in a network with only Ordinal or 
Boolean variables, a child with 7 parents would require 
the entry of only 7 values.  In a full BN representation, the 
user would need to specify a minimum (assuming only 2 
states per variable) of 128 values. 

5.2 USER INTERFACES 

The CIM, and the underpinning assumptions that it uses, 
is based on the goal of improving interfaces to BN models 
to the level where they can be dynamically and 
interactively created with or by domain experts.  This goal 
has led to the development of a number of specific user 
interface methods that have been incorporated into our 
BNet™ product suite for further evaluation and 
refinement.  These methods are described in more detail 
below. 
First, we addressed the need to allow for dynamic 
updating of the model as new links, variables, states, and 
evidence are created (see (1) above).  This is supported by 
the underlying computation, but results in a network that 
actively animates as it changes.  For example, a user 
adjusting an evidence slider will see all of the beliefs in 
the networks move to indicate the change.  This 
animation, in particular, supports current efforts to 
understand how best to visualize causality (Ware, 2000).  
We have also developed methods to help draw attention 
to changes in a network, so that many variables may be 
simultaneously monitored for change (e.g., through 
“snapshots” of the beliefs in the network compared to the 

network after evidence has been posted), although others 
have developed similar user interface designs to achieve 
this capability (e.g., Elvira: http://www.ia.uned.es/~elvira)   
Next, we addressed the need to develop methods that 
render nodes differently as a function of the type of 
variable they represent (see (5) above).  The following 
figures show the prototype node renderers for Boolean 
(Figure 5-1 and Figure 5-2), Ordinal (Figure 5-3 and 
Figure 5-4), and Categorical (Figure 5-5 and Figure 5-6) 
node types: 

 

Figure 5-1: A Boolean node 

 

Figure 5-2: A Boolean node expanded to show the 
evidence/baseline slider 

 

Figure 5-3: An Ordinal node 

 

Figure 5-4: An Ordinal node expanded to show the 
evidence/baseline slider 

 

Figure 5-5: A Categorical node 



 

Figure 5-6: A Categorical node expanded to show the 
evidence/baseline sliders 

We attempted to address the confusion about “beliefs” 
versus “evidence” that we observed with many of our 
domain experts by visually separating these two elements 
(belief being represented by the vertical bar, evidence via 
the horizontal slider) (see (3) above) and only expanding 
the node to show the evidence slider(s) when the user 
hovers the mouse over the node.  This also provided 
additional affordances (or lack thereof) to show that 
evidence is something that could be entered by the user.  
The expanded nodes in Figure 5-2, Figure 5-4, and Figure 
5-6 show an evidence knob above the slider track and also 
a baseline knob below the track.  The baseline knob can 
be removed to simplify the user interface, if necessary. 
The Boolean node simply displays the belief for the true 
state in a vertical bar and provides a slider that allows the 
user to (optionally) set the evidence between true and 
false.  The Ordinal node (shown with 4 states to represent 
the intermediate steps from “none” to “full”) necessarily 
breaks the vertical belief bar into segments to represent 
the distribution across the states.  A straightforward 
defuzzification of these results has also been developed to 
represent this belief as a non-segmented bar.  The user 
can (optionally) set the evidence using a single slider that 
is fuzzified into values for each state.  The Categorical 
node displays the belief for each state in its own vertical 
bar and provides a separate evidence slider for each state.  
We are continuing to prototype additional visualization 
and user interface methods for all of these nodes.   
We have also developed methods for expressing 
probability ranges and baseline probabilities in an attempt 
to address (4) above (Figure 5-7), although we believe 
these methods may add a level of complexity that may 
inhibit usability and have developed versions of the 
interface that omit these methods.  Given that experts may 
struggle to express in any numerical form their 
uncertainty about evidence, we developed an interface 
that allows the user to “grow” a confidence interval 
around any evidence that is posted.  Similarly, we 
provided a “dual slider” interface where the baseline 
probability can be expressed.  We believe these two 
additional capabilities (expressing a confidence interval 
and a baseline) may represent a higher level of 
complexity in the user interface that may be too 
sophisticated for some very rapid model development 

environments, but may be used in the refinement of initial 
models developed with an interface permitting more 
limited expressivity. 

 

Figure 5-7: Methods for expressing confidence intervals 
on posted evidence and baselines for individual states 

In addition to using our experience with how experts may 
tend to express their knowledge and reasoning to guide 
the design of node visualization and user interface 
methods, we also developed methods for exploiting the 
CIM’s ability to more rapidly quantify causal relations.  
Because the CIM allows the influence between Boolean 
and Ordinal nodes to be expressed as a single number, we 
developed the interface shown in Figure 5-8.  

 

Figure 5-8: Interface for manipulating the strength of a 
causal relationship between variables 

In this case, the user has moused-over the link between 
the two nodes, and buttons have appeared allowing the 
user to change the excitatory or inhibitory nature of the 
link.  By adjusting this to various ends of a discrete range 
(or a continuous range using a slider rather than the two 
buttons shown) for each parent, the user completely 
specifies the CPT for the child.  In the cases where a child 
or parent variable is Categorical, additional buttons 
appear for each state.  This interface becomes clumsy for 
Categorical-to-Categorical variable relationships, as the 
relationship between each child state and each parent state 
must be specified.  In practice, however, we have found 
that experts are able to reformulate their reasoning in a 
form that uses primarily Ordinal or Boolean types.  In 
addition, we have also developed prototype methods for 
collapsing certain structures of Boolean nodes into 
Categorical structures (and vice versa). 



Although the CIM allows parent influences to be 
specified in the range [-1, 1], our experience has 
suggested ±5 steps to be a reasonable level of granularity 
so we actually elicit an integer in the range [-5, 5] for 
each parent’s influence on the child (but note that 
establishing the optimal level of granularity with 
empirical evaluation remains a goal of future work).  In 
Figure 5-6, we show these levels of link strength and that 
we adjust the link’s hue, saturation, and width to indicate 
its influence (providing multiple, redundant visual cues).  
Alternatively, we could allow the user to adjust a 
continuous value between [-1, 1] with a slider and 
continuously vary the link’s visual parameters. 

Figure 5-9: Visualization of link strength and 
inhibitory/excitatory influence 

By providing this additional visualization, we allow the 
user to see, at a glance, not only the relationships among 
the variables in the network, but also the proportional 
strength of those relationships.  This imparts, to a degree, 
the sensitivity of the variables to each other, meaning that 
differences in sensitivities can be rapidly adjusted to 
match domain expert expectations (e.g., “I realized I 
made this a much bigger influence than I should have 
when I looked at all of these other variables”).    We have 
discovered potentially challenging interactions between 
the names of variables and the implications of the red and 
green hues used in the visualization.   There may be some 
natural mappings of the color to what the variable is 
intended to represent (“Happy” is more green than red, 
and “Being Happy” has an inhibitory influence on 
“Moping”, but the red link may be perceived as causing 
something to be “less happy”).  Similarly, the semantics 
of the variable names can interact with the visualization 
of causal links (e.g., “Not Happy” has an excitatory 
influence on “Moping”).  We have, in cases where the 
variable semantics can be more structured, provided 
mechanisms for “flipping” the terminology and associated 
link colors.  
An additional challenge faced in a network where experts 
can easily express their own reasoning is the need for 
tools to support validation.  In the application of these 
methods across domains, we have discovered that invalid 
causal chains may be formed simply because it was easy 
to do so.  As a result, we have developed methods that do 
relatively simple translation of the causal paths in the 
network into text (e.g., variable A with a +5 link to 
variable B would result in “A has a strong positive 
influence on B”).  This method appears to be effective for 
simple models or models with relatively short causal 
pathways (or for models that follow particular structural 
patterns). 

6. CONCLUSIONS & FUTURE WORK 
All of the above interfaces have been implemented and 
developed as part of a future release of our BNet™ 
product suite, and as part of many of the custom 
applications we develop for our clients.  As a result, we 
have used these interfaces and will assert that domain 
experts without a significant understanding of the 
underlying computational representation can rapidly 
externalize and validate their own reasoning more easily 
than with current off-the-shelf BN modeling packages.  
We have observed experts, particularly working 
collaboratively, use our prototype user interface to 
develop sophisticated models with very little intervention 
from either knowledge engineers or computational 
modelers.   While this empowers the domain experts to 
create their own models, it also introduces an opportunity 
for representational errors that would not otherwise occur 
with an experienced knowledge engineer “in the loop” 
along the lines suggested by (Tabachneck-Schijf et al., 
2006). 
With these encouraging experiences, but without any 
comprehensive empirical evaluation, we hope to pursue 
additional efforts to resolve some of the user interface and 
computational challenges that have arisen from this effort 
(e.g., semantic issues with node names and the natural 
mappings of certain colors to certain meanings).  We also 
hope to pursue experimental efforts to more formally test 
the simplifying assumptions in the CIM, and other 
observation- and analysis-based design choices.   In 
addition, the user interface designs presented, while 
capturing the desired functionality, will still require 
additional refinement to ensure consistency across 
variable types (and, ideally, additional customizability).  
Finally, we are also in the process of developing methods 
for using the simplified interface to aid in the expression 
of cases that can be used within existing BN learning 
algorithms.    
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