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Abstract. In the present work we illustrate how two sorts of defeasible
reasoning that are fundamental in the normative domain, that is, reason-
ing about exceptions and reasoning about violations, can be simulated
via monotonic propositional theories based on a bimodal language with
primitive operators representing knowledge and obligation. The proposed
theoretical framework paves the way to using native theorem provers for
multimodal logic, such as MleanCoP, in order to automate normative
reasoning.
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1 Introduction

Deciding whether an obligation (permission, prohibition, etc.) applies to a given
scenario ultimately depends on what one knows about that scenario. This work
aims at providing a simple approach to defeasible reasoning in the normative
domain based on the combination of deontic and epistemic modalities.5 We will
distinguish between two sorts of defeasibility, which are at the core of normative

5 Several ways of exploiting epistemic concepts in the normative domain have been
proposed in the literature; for instance, they are used by Aucher, Boella and van
der Torre [1] to capture the dynamic character of normative systems, and by Pacuit,
Parikh and Cogan [14] in the definition of deontic concepts. Our work can be located
in this tradition.
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reasoning. The first sort emerges in reasoning about exceptions of norms, namely
in cases in which a norm applies to more specific circumstances than another;
the second sort emerges in reasoning about violations of norms, namely in cases
in which a norm applies when another is violated.

The two sorts of defeasibility can be illustrated with a classical example
adapted from Prakken and Sergot [16] (for a more detailed presentation, see
van der Torre [21] or van der Torre and Tan [22]). Consider the following set of
sentences:

– you ought not to build a fence in your land;
– if there is a fence in your land, then it must be white;
– if there is a dog living in your land, then you must build a fence.

The first sentence presents a general norm; the second sentence describes what
happens if the first norm is violated (a contrary-to-duty obligation becomes
effective); the last sentence provides an exception to the first norm (there are
special circumstances in which what is prohibited by the first norm becomes
obligatory).

Many formal approaches to deal with defeasible reasoning, starting with Re-
iter’s logic of defaults [17], rely on a set of primitive rules for non-monotonic infer-
ences. Other approaches, such as Moore’s autoepistemic logic [11] and Boutilier’s
conditional logics of normality [3], can be used to capture defeasible reasoning
within a framework of (multi)modal logic. In the normative domain, a systematic
formal treatment of defeasible reasoning is offered by dyadic deontic logic [7],
whose language allows one to express norms of the form O(φ/ψ) (to be read
‘φ is obligatory under condition ψ’), where O is an operator for obligation, ψ
is the antecedent of the obligation and φ the consequent of the obligation. In
these systems the property called ‘strengthening of the antecedent’ (which is
a form of monotonicity) typically fails: there is no guarantee that an inference
from O(φ/ψ) to O(φ/ψ ∧ χ) is sound; however, alternative axioms and rules for
restricted monotonic inferences have been proposed (see, for instance, the survey
by Goble [5]). Despite its flexibility, the framework of dyadic deontic logic does
not provide a straightforward solution to the problem of detaching an actual
norm from a conditional norm and the truth of its antecedent; this is extensively
discussed by Straer [20]. For a useful introduction to some additional approaches
to defeasible deontic logic, we refer the reader to Nute [12].

Taking a computational stance, one notices that there are various tools imple-
menting defeasible reasoning in general, such as the LogicKEY system [2]. How-
ever, LogicKEY and related approaches rely on a higher-order formalism which
makes them less efficient than approaches based on a first-order or propositional
formalism. Furthermore, there are tools focused on a specific type of defeasible
reasoning (for the normative context, see, for instance, Governatori [6]).

Other popular implementations of defeasible reasoning are based on logic
programming. For instance, Prolog allows for the definition of defeasible rules
by means of negation-as-failure operators. The three sentences from the fence
example above can be respectively encoded in Prolog as follows (where ‘not’
denotes negation-as-failure, ‘ob’ obligation and ‘neg’ classical negation):
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– not(dog)⇒ ob(neg(fence))
– fence⇒ ob(white)
– dog ⇒ ob(fence)

One can support this approach with Answer-Set Programming in order to deal
with classical negations. Yet, Prolog does not offer a straightforward solution to
characterize the difference between exceptions and violations, which is essential
in the normative domain. Kowalski and Satoh [9] present a possible way of
overcoming the latter problem in abductive logic programming. Their solution is
based on the addition of explicit sanctions to the program. For instance,

– neg(dog)⇒ not(fence) ∨ sanction1
– fence⇒ white

Sanctions can thus be used to distinguish violations from exceptions of a norm.
In this paper we present a new framework for knowledge-based normative

reasoning which combines the two sorts of defeasible reasoning discussed above.
We describe a general method to formalize a set of norms as bimodal conditional
formulae; furthermore, we provide criteria to identify which norms constitute
exceptions or reparations of other norms within the formalized set. On top of
this, we use an agent’s information about a scenario to infer which norms can
be detached among those considered. In our approach, constants for sanctions
are used to capture the difference between (I) cases in which the violation of a
norm can be fully compensated by complying with a reparation norm and (II)
cases in which the violation of a norm leads to negative consequences regardless
of its possible reparations. Thus, the underlying idea is that reparation does not
entail compensation.

The main advantage of this framework lies in its potential computational
properties. While most of the existing implementations depend either on a
customized or a non-monotonic or a higher-order formalism, our approach is
based on a bimodal normal propositional logic, and there are many efficient
theorem provers designed specifically for normal multimodal logics, such as
MleanCoP [13].

Our presentation will be arranged according to the following structure. In
Section 2 we provide a detailed description of the proposed framework to combine
epistemic and deontic concepts. In Section 3 we discuss how to complete the
information provided by a reasoning agent on a certain scenario. In Section 4 we
use possible descriptions of a scenario in terms of known and unknown facts to
define the coherence of a normative theory. In Section 5 we discuss the way in
which the proposed framework could be implemented. In Section 6 we illustrate
how our framework deals with a very simple problem of normative reasoning.
Finally, in Section 7 we summarize the essential features of our approach and
specify some directions for future research.

2 Knowledge-supported normative theories

The formal framework we present here consists in a step after step construction
of deductive theories where deontic and epistemic modalities are combined. The
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sort of problem we want to address within this framework is the following: an
agent α wants to understand which are the normative consequences of a scenario
S that is regulated by a certain set of norms N . It might be that α has partial
information about S. In particular, she knows that some propositions mentioned
in N are true, some others are false and she is not aware of the rest. Furthermore,
α might have partial information about the meaning of norms in N , in the sense
that she might fail to notice conceptual dependencies among different norms.
Given the epistemic boundaries mentioned, how can α determine which norms
are in effect in the considered scenario and whether any sanction is applicable? In
this section we lie down the theoretical grounds for a procedure of logic-assisted
reasoning that in similar cases would allow an agent to derive all normative
conclusions needed.

We start by introducing the formal language that will be used within the
framework.

Definition 1 (Formal language) Let PRO be a set of propositional variables
and p an element in this set; furthermore, let SAN be a set of sanction constants
and s an element in this set. The language L over PRO and SAN is specified
by the grammar below:

φ ::= p | s | ¬φ | φ⇒ φ | Oφ | Kφ

Formulae of L not containing K or O will be said to be purely boolean for-
mulae. We take Oφ as meaning that φ is obligatory and Kφ as meaning that
φ is known (by the reasoning agent). Round brackets will be used as auxiliary
symbols when needed. Furthermore, the additional boolean operators ∨ (inclu-
sive disjunction), ∧ (conjunction) and ≡ (material equivalence) can be defined in
the usual way. Finally, we will use the label PC for the Classical Propositional
Calculus.

Definition 2 (Basic notation) The following notation will be used to repre-
sent relevant subsets of the language L:

– LPRO is the set of purely boolean formulae in L;

– LIT = PRO ∪ {¬p : p ∈ PRO} is the set of literals and a generic element
in this set will be denoted by l;

– L+
K = {Kl : l ∈ LIT};

– L−K = {¬Kl : l ∈ LIT};
– LK = L+

K ∪ L−K ;

– for any set X ⊆ L, K(X) = {Kφ : φ ∈ X}.

Definition 3 (Logical system) The logical system that will be used as a basis
for our theories is KTK⊗KDO, that is, the result of putting together the ax-
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iomatic basis of KT for the modal operator K and the axiomatic basis of KD
for the modal operator O.6

Definition 4 (K-conjunctive normal form) A formula of L will be said to
be in K-conjunctive normal form if and only if it has the form

∧
1≤i≤n ψi (for

some n ∈ N), where each ψi has the form
∨

1≤j≤m θj (for some m ∈ N) and
θj ∈ LK.

We assume the following notational convention: if n,m = 1, then
∧

1≤i≤n ψi = ψ
and

∨
1≤j≤m θj = θ.

Now we can introduce the deductive theories that constitute the skeleton
of our framework for logic-assisted reasoning on normatively relevant scenar-
ios. These will be called knowledge-supported normative theories, since all their
components exploit epistemic concepts.

Definition 5 (Knowledge-supported normative theory) We will say that
a knowledge-supported normative theory is a deductive theory having the follow-
ing five components (C.1–C.5):

(C.1) Conditional norms.
A finite set N of formulae of the form

φ⇒ (mod(χ) ∧ ξ)

where:

– φ is a formula in K-conjunctive normal form;
– mod is an expression having one of the following forms: either O or ¬O or

O¬ or ¬O¬, and is called a deontic modality;
– χ ∈ LPRO;
– ξ is a conjunction of sanction symbols;
– one among mod(χ) and ξ can be absent (so, as peculiar cases, we have norms

of the form φ⇒ mod(χ) and norms of the form φ⇒ ξ).

Any norm in N is thus represented as a material conditional of a specific type:
its antecedent is a conjunction of clauses, each being a disjunctive combination
of known and unknown facts, and its consequent is a conjunction of deontic
propositions and/or sanctions. To give an example: a formula in N may encode
the proposition expressed by the sentence “if we know that a patient has been
treated with aspirin or warfarin and has had three days of rest, then he/she
can be discharged”. The encoding consists in rearranging the logical structure of
the proposition so as to get a conditional where the antecedent (“if we know...
...three days of rest”) becomes expressible in K-conjunctive normal form, while

6 These two components are normal modal systems: KTK is obtained by adding the
axiom-schema Kφ ⇒ φ to system KK (i.e., K for the operator K), KDO by adding
the axiom-schema Oφ⇒ ¬O¬φ to KO (i.e., K for the operator O).
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the consequent (“then... ...discharged”) instantiates one of the deontic modalities
specified above.

(C.2) Conceptual relations.
A finite set M of formulae of the form K(φ⇒ ψ), where φ, ψ ∈ LPRO are neither
tautologies nor contradictions of PC.

This can be regarded as the set of assumptions that are needed to understand
the conceptual relations between the norms in N . For instance, suppose that we
have a norm n1 ∈ N containing the proposition (p) that a patient is treated
with aspirin, and a norm n2 ∈ N containing the proposition (q) that the pa-
tient is treated with acetylsalicylic acid: since p and q should be known to be
equivalent, then the norms n1 and n2 should be treated as conceptually related.
We will say that an agent who knows all such relations is optimally informed
about the content of N ; clearly, this is not always the case for an actual rea-
soning agent. Therefore, the optimally informed agent is, somehow, an idealized
figure. However, since the set of norms is finite and contains a finite number of
terms, their conceptual relations are finite as well; this means that the amount of
knowledge that we expect an optimally informed agent to have is finite anyway.
The fact that the main boolean operator in a formula associated with a concep-
tual relation is a material conditional indicates that we are representing a rela-
tion of conceptual entailment among two propositions (conceptual equivalence is
straightforwardly obtained by putting together two material conditionals). The
fact that φ and ψ are neither tautologies nor contradictions ensures that concep-
tual relations are informative, that is, they only concern propositions which can
be true and can be false in different circumstances. We will say that N ∪M , for
a set of norms N and a set of conceptual relations M , constitutes a normative
theory.

(C.3) The reasoning agent’s explicit knowledge.
A finite set of formulae B ⊂ L+

K .

The reasoning agent’s description of a scenario S (e.g., the reasoning agent knows
that a patient has had three days of rest), which might fail to be sufficient to
properly assess which norms are in effect. Indeed, there might be propositions
mentioned in N that are neither known to be true nor known to be false in S
by the reasoning agent. We will say that B is an explicit knowledge box on S.

(C.4) The reasoning agent’s integrated knowledge.
A finite set of formulae B′ s.t. B ⊆ B′ ⊂ L+

K .

This corresponds with what the reasoning agent would know about S if she were
optimally informed about the meaning of norms in N , namely if she were aware
of all conceptual relations between the norms. We call B′ an integrated knowledge
box on S. This set might still represent an incomplete description of S.

(C.5) Ignorance claims.
A finite set U of formulae of the form ¬Kl for some l ∈ LIT .
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This constitutes the set of propositions mentioned in N on which the reasoning
agent would remain ignorant even if she were optimally informed about the
meaning of norms. Going back to our working example: if the reasoning agent
does not know whether a patient has been treated with aspirin (p) or warfarin
(w), U will contain ¬Kp and ¬Kw.

Logic-assisted reasoning results from the interplay between the five compo-
nents C.1-C.5: the conceptual relations (C.2) can be used to expand the explicit
knowledge box provided by an agent (C.3) and get an integrated knowledge box
(C.4); then, the addition of ignorance claims (C.5) leads to a sufficiently informa-
tive description of a scenario, and such description can be used to detach actual
deontic statements and sanctions from the conditional norms (C.1). The epis-
temic analysis of norms is revealed by the fact that detachment depends only
on what is known and unknown about a scenario; however, given that KTK

is closed under the schema T, that is, KA ⇒ A, then knowledge entails truth.
Furthermore, an important aspect in which the present approach turns out to
be simpler than other approaches used to capture non-monotonic reasoning in a
modal framework (such as autoepistemic logic [11]) is that in normative contexts
one does not have to take into account introspection: the fact that one knows
that she knows (or that she does not know) whether something is the case is
totally irrelevant with respect to norm detachment. This is the reason why we
choose the weakest normal modal system suitable for knowledge (KTK), rather
than its extensions S4K and S5K.

In the next section we will illustrate how to move from the explicit knowledge
box provided by the reasoning agent on a scenario S to an integrated knowledge
box which takes into account also the meaning of norms. Then, the addition of
a set of ignorance claims to the latter box completes the picture that is needed
to detach, from N , the deontic statements that are in effect and the sanctions
that are applicable in S, on the basis of the available information.

3 Completing the explicit knowledge box

Our purpose is to define a procedure to complete the information explicitly pro-
vided by a reasoning agent on a scenario in such a way that it can be implemented
in efficient tools for automated deduction.

The most important aspect of the knowledge-supported theories described
in Section 2 is that in representing information we need to use only a fragment
of the language of the bimodal system KTK⊗KDO, namely the fragment in
which K and O always have purely boolean formulae in their scope. In this part
we focus on provability in KTK. We explain how the explicit knowledge box B
provided by an agent on a scenario S can be used to build a description of S
that is sufficient to trigger all norms that an optimally informed subject (in the
sense specified in Definition 5) would identify as applicable in S on the basis of
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B; we will call the latter a normatively exhaustive description of S (depending
on B).7

Definition 6 (Normatively exhaustive description) Let M be a given set
of conceptual relations, B an explicit knowledge box on a scenario S, p ∈ PRO
and l ∈ LIT . If B] = {Kl : B ∪M `KTK

Kl} is the integrated knowledge box on

S and U∗ = {¬Kp,¬K¬p : Kp,K¬p /∈ B]} the set of ignorance claims, then the
normatively exhaustive description of S is B] ∪ U∗.

Now we show that a normatively exhaustive description of a scenario is consis-
tent whenever the union of the explicit knowledge box and the set of conceptual
relations from which it was generated is consistent.

Proposition 1 (Consistency preservation) If B is a knowledge box, M a
set of conceptual relations and B∪M is a KTK-consistent set of formulae, then
Σ = B] ∪U∗ (where B] and U∗ are as in Definition 6) is a KTK-consistent set
of formulae as well.

Proof. Consider the canonical model for the modal system KTK, M = 〈W,R, V 〉.
If B∪M is KTK-consistent, then there is a non-empty set X ⊆W s.t. all formu-
lae in B∪M belong to every state (maximal KTK-consistent set of formulae) in
X. We have that B] is the set of all formulae of the form Kl, for some l ∈ LIT ,
which belong to all states in X. Since neither ¬Kp ⇒ K¬p nor ¬K¬p ⇒ Kp is
provable in KTK, there will be at least one state w ∈ X s.t., for every p ∈ PRO
having the property that Kp,K¬p /∈ B], ¬Kp,¬K¬p ∈ w, whence Σ ⊂ w. By
construction, w is a maximal KTK-consistent set of formulae. Therefore, Σ is a
KTK-consistent set of formulae.

For the sake of brevity in the exposition, we will hereafter assume refer-
ence only to normatively exhaustive descriptions of scenarios that are KTK-
consistent.

4 Coherence of normative theories

We next illustrate how normatively exhaustive descriptions of scenarios can be
used to define the coherence of a normative theory. In order to do this we
first need to define some auxiliary notions. Depending on the purposes, we will
alternatively make reference to provability in KTK ⊗ KDO or in some of its
monomodal fragments. Furthermore, given a set of conceptual relations M , we
denote by MO the set {Oφ : Kφ ∈M}.
7 We observe once more that B might contain only partial information about S; hence,

the notion of a normatively exhaustive description of a scenario is distinct from the
notion of a total description of a scenario (the latter entails the former but not vice
versa).
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Definition 7 (Exception of a norm) Given two norms ψ = (φ⇒ (mod(χ)∧
ξ)) and ψ′ = (φ′ ⇒ (mod′(χ′) ∧ ξ′)) in N and a set of conceptual relations M ,
we say that ψ′ is an exception of ψ if and only if the following holds:

– MO `KDO
mod′(χ′)→ ¬mod(χ);

– If X = {Kl : `KTK
φ⇒ Kl} and X ′ = {Kl : `KTK

φ′ ⇒ Kl}, then X ⊂ X ′.

Thus, a norm ψ′ is an exception of a norm ψ if and only if they allow one to
detach conflicting deontic statements and the antecedent of ψ′ contains more
known facts than the antecedent of ψ.

Definition 8 (Norm violation) Given a norm ψ ∈ N , where ψ has the form
φ ⇒ (mod(χ) ∧ ξ) and a normatively exhaustive description of a scenario S,
denoted by Σ = B] ∪ U∗, we say that ψ is violated in S, in symbols Σ `KTK

vio(ψ), if and only if:

– mod = O and Σ `KTK
φ ∧ K¬χ;

– mod = O¬ and Σ `KTK
φ ∧ Kχ.

Clearly, violations only concern conditional norms whose consequent includes
either an obligation or a prohibition. Then, we need to associate norms to sanc-
tions.

Definition 9 (Sanction assignment) Given a set of norms N , a sanction
assignment is a (possibly partial) function f : N −→ SAN . If f(ψ) = s, then we
say that s is a sanction applicable for the violation of ψ.

The function f may be partial since it is not always the case that the violation
of a norm ψ in N leads to a sanction. Indeed, there can be a reparation norm
that fully compensates for the violation of ψ.

Definition 10 (Reparation norm) Given two norms ψ = (φ⇒ (mod(χ)∧ξ))
and ψ′ = (φ′ ⇒ (mod′(χ′) ∧ ξ′)) in N , we say that ψ′ is a reparation norm for
the violation of ψ whenever the following holds for every normatively exhaustive
description of a scenario Σ s.t. ¬Kχ′,¬K¬χ′ ∈ Σ:

– N ∪Σ `KTK⊗KDO
vio(ψ) only if N ∪Σ `KTK⊗KDO

mod′(χ′) ∧ ξ′.

Thus, ψ′ is a reparation norm for the violation of ψ if its consequent is detached
in all circumstances in which (I) ψ is violated, and (II) we have no information
about the fulfilment of ψ′. Moreover, we can say that a reparation norm ψ′ fully
compensates for the violation of ψ if and only if whenever ψ′ is observed, f(ψ)
cannot be detached.

We finally have all ingredients needed to define the coherence of a normative
theory (see Definition 5).
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Definition 11 (Coherent normative theory) Given a set of norms N and
a set of conceptual relations M , a normative theory N∪M is coherent if and only
if there is no normatively exhaustive description Σ of a scenario S satisfying one
of the following two properties:

– for some norm ψ = (φ⇒ (mod(χ) ∧ ξ)) ∈ N we have
(i) N ∪Σ 0KTK⊗KDO

vio(ψ);
(ii) N ∪Σ `KTK⊗KDO

f(ψ).

– N ∪Σ `KTK⊗KDO
⊥.

Thus, a normative theory is coherent if and only if under any normatively
exhaustive description of a scenario received as an input (I) it does not allow
one to detach that a sanction applies while the associated norm has not been
violated, and (II) it does not produce a contradiction, which would mean an
explosion of the set of deontic statements detached.

5 Remarks on implementation

Many theorem provers for deontic reasoning have been designed over the years,
and some of these are also able to deal with defeasibility problems (see, e.g., Lee
and Ryu [10], Governatori [6] and Steen [19]). The following part explains that
we can use state-of-the-art automated reasoning tools for modal propositional
logic in order to expand the explicit knowledge box provided by a reasoning
agent to get a normatively exhaustive description of a scenario. First, consider
the following fact.

Fact 1 (Derivability translation) Let φ be a formula in LPRO and X a set
of formulae in LPRO, then X `PC φ if and only if K(X) `KTK

Kφ

One direction of the biconditional follows from the deduction theorem for normal
modal logic and modal propositional reasoning. The other direction follows from
the Post-completeness of the Classical Propositional Calculus and the fact that
KTK is a consistent extension of it.

Fact 1 ensures that the transition from the explicit knowledge box to the
integrated knowledge box can be computed within a purely boolean level of anal-
ysis. This level is equipped with a broader set of computational tools, due to the
extensive variety of applications it has found over the years [4]. A model enumer-
ation technique was already introduced by Smullyan [18] via the construction
of a finite and closed tableaux for a finite set of formulae. However, given the
NP-completeness of the Boolean satisfiability problem, we cannot expect these
methods to perform efficiently in all cases.

In addition, we note that problems of normative reasoning are usually trans-
posed in a computational setting following two phases. In the first phase, one
formalizes a normative text, while in the second phase one reasons over the text
in combination with a specified scenario. This suggests that the computational
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issue of enumerating all relevant minimal models can be addressed at once and
“offline”, that is, when one formalizes the normative text. Then, given a specific
scenario, one just needs to consider those minimal models which are also models
of that scenario.

With reference to the process of completing a reasoning agent’s knowledge,
one should further note that in many formal frameworks for epistemic reasoning
this process is cyclic, since one looks for a fixed point construction, taking into
account also positive and negative introspection (namely, that an agent knows
that she knows/ignores something). In our case, instead, we expand the explicit
knowledge box of an agent B, which is a finite set, by adding only formulae of
the form Kl, for some l ∈ LIT , obtained by combining B and a finite set of
conceptual relations among norms M . Similarly, we then expand the integrated
knowledge box with a finite amount of formulae of the form ¬Kp and ¬K¬p,
for some p ∈ PRO, to get the exhaustive description of a scenario needed for
normative detachment. Thus, the resulting set of known and unknown facts will
always be finite.

Finally, normative detachment can be automatically performed via an effi-
cient theorem prover for propositional multimodal logic, such as MleanCoP [13].

6 A test case

In the present section we exploit the formal framework developed to represent
a very simple example. Consider the following set of sentences (letters within
brackets will be used below for the formalization of atomic propositions that can
be obtained from parts of the sentences):

(n1) you ought not to enclose your land (e);
(n2) if there is a fence for animals (f) in your land, then it must be white

(w);
(n3) in case of animals (a) living in your land, you must build a fence;
(n4) in case goats (g) are living in your land, you are obliged not to build a

fence;
(n5) in case your dogs are used for herding (h), you are permitted not to

build a fence;
(n6) if you enclose your land without a justified reason for that, you have to

pay a fine of AC500 (s1);
(n7) if you have a fence for animals and it is not white, you have to pay a fine

of AC200 (s2);
(n8) if you only have animals that are different from goats and herding dogs,

and you do not have a fence, you have to pay a fine of AC600 (s3);
(n9) if you have goats and you build a fence, you have to pay a fine of AC100

(s4).

In addition, we have the following conceptual relations:
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(r1) if you build a fence for animals in your land, this entails that you enclose
your land.

(r2) dogs (d) are animals;
(r3) goats are animals.

Violations are assigned via a function f which is entirely described by the follow-
ing list of ordered pairs: (n1, s1), (n2, s2), (n3, s3), (n4, s4). A plausible formal-
ization according to Definition 5 is illustrated below:

(n1∗) (¬Ka ∨ K¬a) ∧ ¬Ke ∧ ¬K¬e⇒ O¬e
(n2∗) Kf ∧ ¬Kw ∧ ¬K¬w ⇒ Ow
(n3∗) Ka ∧ (¬Kg ∨ K¬g) ∧ (¬Kh ∨ K¬h) ∧ ¬Kf ∧ ¬K¬f ⇒ Of
(n4∗) Kg ∧ ¬Kf ∧ ¬K¬f ⇒ O¬f
(n5∗) Kh ∧ ¬Kf ∧ ¬K¬f ⇒ ¬Of
(n6∗) (¬Ka ∨ K¬a) ∧ Ke⇒ s1
(n7∗) Ka ∧ K¬g ∧ K¬h ∧ Kf ∧ K¬w ⇒ s2
(n8∗) Ka ∧ K¬g ∧ K¬h ∧ K¬f ⇒ s3
(n9∗) Kg ∧ Kf ⇒ s4
(r1a∗) K(w ⇒ f)
(r1b∗) K(f ⇒ e)
(r2∗) K(d⇒ a)
(r3∗) K(g ⇒ a)

Our formalization can be generated from the set of norms by first transform-
ing the proposition actually expressed by each norm into an equivalent proposi-
tion having the conditional structure described in Definition 5. An unconditional
norm n, such as the one expressed by “you ought not to enclose your land” (n1),
is transformed into a conditional one by taking for its antecedents claims that
either (I) represent the fact that n is not already known to be fulfilled or violated
(in the specific case of n1, these are ¬Ke ∧ ¬K¬e) or (II) are obtained from the
analysis of the other norms in the set and represent conditions which comple-
ment those triggering exceptions to n (in our case ¬Ka ∨ K¬a, given that the
exception to n1 is triggered by Ka). According to Definition 7, we can recognize
directly in the formalism that n3 is an exception to n1. Furthermore, we can
recognize, for instance, that n6 is a reparation norm for the violation of n1, and
that the proposed reparation does not compensate for the violation (indeed, s1,
which is f(n1), can be detached).

Consider a scenario in which one knows that there are both goats and herding
dogs in her land. From this information we can infer that she is obliged not to
build a fence. In the given scenario, the reasoning agent’s explicit knowledge is
Kg and Kh and her integrated knowledge is Ka and Kd. The ignorance closure
contains ¬Kf ∧¬K¬f , ¬Ke∧¬K¬e and ¬Kw ∧¬K¬w. By putting together the
exhaustive description of the scenario and the set of norms, one can derive O¬f
and ¬Of . No other outcome is derivable.

Consider, instead, a scenario in which the agent’s explicit knowledge contains
only Kg and Kf , i.e. she knows that there are goats and a fence. The integrated
knowledge is Ka and Ke and the ignorance closure is ¬Kd∧¬K¬d, ¬Kh∧¬K¬h
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and ¬Kw∧¬K¬w. We can now derive only s4, meaning that the fourth norm —
saying that in case you have goats, you should not build a fence— was violated,
and a sanction is applicable. Note that we are no longer able to derive that one
should not build a fence.

7 Conclusion and Future Work

In this article we addressed the issue of representing normative reasoning under
partial information about a scenario. We introduced a preliminary formal frame-
work based on deductive theories of propositional bimodal logic which consist
of five components: a set of norms (C.1), represented as material conditionals
whose antecedent contains epistemic notions and whose consequent contains de-
ontic notions and/or reference to sanctions; a set of entailment relations among
propositions, which clarify conceptual dependencies among norms (C.2); a set
of facts known by the reasoning agent, also called an explicit knowledge box
(C.3); a set of facts that the reasoning agent would know if she were optimally
informed about the meaning of norms, also called an integrated knowledge box
(C.4); a set of facts that remain unknown (C.5).

This framework can be implemented via efficient monotonic reasoning tools,
while offering the possibility of simulating non-monotonic reasoning. More pre-
cisely, the deductive theories described in this work satisfy norm monotony but
do not satisfy factual monotony, two properties discussed by Parent and van der
Torre [15]. Indeed, consider a set of norms N and two exhaustive descriptions of
a scenario Σ and Σ′ obtained by completing two explicit knowledge boxes B and
B′ such that B ⊂ B′; it might be that Σ and Σ′ trigger different sets of norms in
N . Not only this, but the framework is also able to capture the specific kind of
defeasible reasoning that plays a central role in the normative domain, namely
the distinction between exceptions of norms and reparation norms. Within the
category of reparation norms we can further distinguish between those norms
that offer a full compensation for the violation of another and those that do not.
Two types of monotonic reasoning tools can be used for an implementation: a
classical propositional model enumerator and a bimodal propositional theorem
prover; see, for instance, Jabbour et al. [8] and Otten [13].

Finally, the envisaged future directions to extend and refine the present work
include: (I) testing the computational properties of the proposed formalism in
comparison with those of other approaches suitable for automated deduction
that have been developed in the literature, and (II) applying our formalization
procedure to rigorously represent normative theories that can be extracted from
larger portions of natural language texts, such as fragments of legal codes. As
far as the second direction is concerned, we plan to move from the current
modal propositional setting to a modal first-order setting, which would allow
for explicit reasoning on relations among different normative parties. Such an
extension would be still supported by provers like MleanCoP.
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