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ABSTRACT
Clinical pathways describe the treatment procedure for a patient
from a medical point of view. Based on the patient’s condition, a
decision is made about the next actions to be carried out. Such
recurring sequential process decisions could well be outsourced
to a reinforcement learning agent, but the patient’s safety should
always be the main consideration when suggesting activities. The
development of individual pathways is also cost and time intensive,
therefore a smart agent could support and relieve physicians. In
addition, not every patient reacts in the same way to a clinical
intervention, so the personalization of a clinical pathway should
be given attention.
In this paper we address with the fundamental problem that the
use of reinforcement learning agents in the specification of clinical
pathways should provide an individual optimal proposal within the
limits of safety constraints.
Imitating the decisions of physicians can guarantee safety but not
optimality. Therefore, we present an approach that ensures com-
pliance with health critical rules without limiting the exploration
of the optimum. We evaluate our approach on open source gym
environment where we are able to show that our adaptation of
behavior cloning not only adheres better to safety regulations, but
also manages to better explore the space of the optimum in the
collective rewards.
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1 INTRODUCTION
Our work focuses on the use of reinforcement learning to optimize
and personalize clinical pathways, illustrated in Figure 1. Rehabil-
itation procedure, called „Clinical Pathway“, describes in detail
which activities are to be carried out for a patient within a course
of treatment[13].

Figure 1: clinical pathway recommender

The process of creating a clinical pathway tailored to an indi-
vidual patient spans several stages. To adapt a clinical pathway to
a patient’s needs, one starts from a disease specific blueprint and
later incorporates the patients clinical picture as well as his or her
individual preferences.
On an abstract level, the adaptation of a pathway can be modelled
as a decision process. A number of activities must be decided upon,
which in turn have interdependent effects among one another. Feed-
back on the effectiveness of the decisions made is often only given
with a delay or in aggregated form - for example during a control
visit to the doctor after a certain time. Reinforcement learning is
about optimizing processes that can be described as a feedback con-
trol loop. The application of RL to the individualization of clinical
pathways is therefore particularly well suited and promising.

The personalization of a clinical pathway is about identify-
ing the optimal combination of activities and treatments in reha-
bilitation for an individual patient. In this context optimality can
be considered from different viewpoints. On the one hand we see
the fundamental objective of proposing rehabilitation measures
that are safe from a medical perspective. On the other hand we
aim to support the recovery process in the best-possible way by ex-
ploring alternative rehabilitation activities. While there are generic
templates for different medical diagnosis - that are safe, there is
the need to go beyond and adapt the clinical pathway - to provide
tailored care plans to the individual patients.
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In order to address the objectives described above for clinical
path recommender systems, we present a safety-aware reinforce-
ment learning approach. On a conceptual level this means that
we have a state 𝑠𝑡 of our patient and our agent proposes an action
𝑎𝑡 - a rehabilitation measure - for our patient at time 𝑡 (Figure 1).

The agent receives a reward 𝑟𝑡+1 based on the change in the con-
dition of our patient 𝑠𝑡+1. While classical RL is based on try&error,
the healthcare application must guarantee the safety of the pa-
tient during the proposed activity. Imitation Learning is one of
the ways in which this is pursued. Here the agent is trained to
to „imitate“ an expert’s actions, i.e., to suggest a similar treatment
activity to the one a doctor would choose faced with the same pa-
tient profile. Current work in imitation learning [11, 12] focus on
efficiently learning from demonstrations while not paying special
attention on safety or exploration. Research identified the objec-
tive safety in imitation learning[18] based their concept on being
as close as possible to the examples shown. However, it is by no
means guaranteed that the doctor’s suggestion is optimal for the
rehabilitation of the individual patient.

Challenges:
• How can we emphasize the importance of safety in suggest-
ing rehabilitation treatments to a reinforcement learning
agent?

• How can an agent explore the individual optimum and still
remain within a safe and medically acceptable action space?

In answering the questions within this study we contribute to
the following: Contributions:

• a conceptual approach to extract safety relevant behavior
from expert demonstrations

• an adapted conceptual method for imitation learning that
emphasizes safety-critical thinking

• implementation, application and preliminary evaluation of
the concepts

Paper outline: After we position our work in the scientific related
work in section 2, we introduce the conceptual background of our
approach in section 3.1. While in section 3.2 we present the novel
concepts of our approach, in section 3.3 we focus on the explicit
application to optimize clinical pathways. In chapter 4 we outline
our evaluation method and discuss the results achieved in chapter
5. Our work is then completed by a conclusion (section 6) and an
outlook on future work in section 7.

2 RELATEDWORK
Our work covers various areas of health care and machine learning,
which we would like to examine in greater detail.
Research has shown an increasing interest in applying machine
learning techniques to health care related tasks. From mod-
elling disease progression [2] to automated clinical prognostics
[1] methods of artificial intelligence have shown to be promising
approaches. In further applications algorithms are used to annotate
medical images and support doctors decision-making in a human-
ML collaborative way [9]. Overall, decisive questions are emerging
for the use of machine learning in the health sector. The decision
of a system must be validated and made comprehensible. Only if
the physician can be sure that the outcome of a machine learning
algorithm is understandable and, above all, guarantees the safety

of the patient, can systems prevail in the long term[16]. Pathway
- treatment Bica et al. [6] introduced Counterfactual Recurrent
Networks to estimate treatment effects by modelling treatment
time-dependent impact on covariates based on the patient clinical
history. Besides the topic-related relevant areas, various conceptual
fields from machine learning are of relevance to our approach.
Imitation Learning is about training an agent to mimic the be-
haviour of an expert. With approaches such as inverse RL, e.g. GAIL
- Generative Adversarial Imitation Learning - have recently achieved
remarkable success [12]. Beyond this, we have seen approaches
that attempt to reconstruct the expert’s objective by evaluating hy-
potetic behaviour of an agent [22]. Further adaptations of imitation
learning approaches are concerned with incorporating examples
of an expert during the active learning process [4]. However these
approaches neither have been adapted to learn from sub-optimal
examples nor do they emphasise safety-relevant aspects.
constraint RL: First considerations about setting boundaries to
the exploration of a reinforcement learning agent go back to the
year 2000[3]. Recent work applied constraints in form of predefined
threshold-values in continuous action spaces by adding a safety
layer that in case of constraint violation corrects the suggestion of
policy network [10]. Other then our approach, these concepts are
based on pre-defined limits that are not deduced from examples
and do not learn from experts.
safety RL:We have seen approaches that measure the similarity
between the novice and the expert choice of action to prevent the
agent from suggesting unsafe actions by considering the state dis-
tribution [19] or disagreement between multiple agents [7]. Follow
up research did consider the quantification of policy uncertainty
to model risk of exploration [20]. Lee et al. [15] proposed end-to-
end imitation learning, where safety is addressed by evaluating
the uncertainty of Bayesian convolutional network. Yet again, no
approach has been adopted to differentiate existing demonstrations
and adapt safety-relevant behaviour in a targeted manner.
multi criteria Laroche et al. [14] introduced a Multi-Advisor RL
where 𝑛 advisors are specialized on a sub task of the problem and
an aggregator is used to derive a global policy based on the indi-
vidual recommendations. While the safety of an RL problem can
be described as a multi-criteria problem, the question remains to
be answered how the approach described here can guarantee com-
pliance with safety constraints and foster exploration within these
limits.

3 OUR APPROACH
Contrary to previous imitation learning techniques, our approach
focus on avoiding unsafe states while still exploring safe states
to find the optimum. We teach the agent to handle safety critical
states by imitating expert actions in similar situation. In safe states
however the agent does not need to stick exactly with the behavior
observed in expert demonstration. In fact we encourage it to search
for the best personalized clinical path possible by exploration.While
current safety RL algorithms [14, 19] focus on choosing actions
that converge to the median of expert demonstrations that often is
not the optimum, our approach aims at encouraging the agent to
explore the state space while staying inside safe boundaries.
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3.1 Formal Description
At each step 𝑡 the agent selects an action 𝑎𝑡 ∈ 𝐴(𝑠) based on the
received representation of the environment state 𝑠𝑡 ∈ 𝑆 . Applied
in a health recommender system speaking about action and states
relates to recommendations for therapy activity and patients clin-
ical state respectively. The agent receives a reward, 𝑟𝑡+1, which
quantifies the development of the clinical condition and personal
well-being of the patient and a new state 𝑠𝑡+1 of the patient as a
consequence of its action. 𝜋𝑡 (𝑎 |𝑠) is the agents policy which is as-
signing a probability to each action at a given state and choices the
most promising. This part is to be trained during the exploration
or in the case of imitation learning during the expert observation.
Since the new state serves as the input for the next iteration the
agent keeps on interacting with the environment and creates a tra-
jectory 𝜏 = (𝑠𝑡 , 𝑎𝑡 ) |𝑡 ∈ [𝑡0, 𝑡ℎ] where 𝑠𝑡 is the state at a given time
and 𝑎𝑡 the action where 𝑡 includes all elements from the start time
𝑡0 to the time of termination 𝑡ℎ . The trajectory for an individual
patient directly relates to the configured pathway (actions 𝑎𝑡 map
to the parameterised treatment activities foreseen in the clinical
pathway) and the observed reaction of the patient (states 𝑠𝑡 ). The
objective function denoted as 𝐽 (𝜋) relates to

𝐽 (𝜋) = E [
𝜏∼𝜋

𝑅(𝜏)] = 𝑅(𝜏) =
∞∑
𝑡=0

𝛾𝑡𝑟𝑡 (1)

where 𝛾 ∈ [0, 1] is a discount factor. As we are dealing with the
complex task of adapting clinical pathways, the modelling of several
objectives and constraints gains in importance. constraints Con-
strained Markov Decision Processes (CMDPs) [3] limit the number
of policies to a subset Π𝐶 ⊂ Π that fulfill a set of constraints𝐶 such
that:

Π𝐶 = {𝜋 : 𝐽𝑐𝑖 (𝜋) ≤ 𝑑𝑖 ∀ 𝑖 = 1, . . . , 𝑘} (2)

𝐽𝑐𝑖 (𝜋)) = E [
𝜏∼𝜋

𝑐𝑖 (𝜏)] (3)

𝐽𝑐𝑖 is the estimation of the expected value for a cost function 𝑐𝑖
over the space of the trajectories achieved by the policy 𝑝𝑖 . The
resulting space of allowed policies is defined by the limitation that
it only includes policies that do not exceed a defined limit 𝑑𝑖 ∈ R
for all the defined cost functions.

3.2 Safety Imitation
Focusing onmodelling the safety of an reinforcement learning agent
we define 𝑐𝑠𝑎𝑓 𝑒𝑡𝑦 for brevity 𝑐𝑠 to approximate the safety of a given
state 𝑠𝑡 . The flexibility of the approach provides the possibility
to differentiate safety in several dimensions or to describe it as a
holistic unit. In the case of Imitation Learning from sub-optimal
but safe demonstrations we calculate the threshold value 𝑑𝑠 over
the distribution of expert trajectories, such that 𝑑𝑠 =𝑚𝑎𝑥 𝐽𝑐𝑠 (𝜋𝑒𝑥𝑝 )
from the observed in the expert demonstrations 𝑇𝑒𝑥𝑝 . Evaluating
the received expert trajectories we can now quantify how critical
the different states were in terms of safety by defining:

𝑇 𝜖
𝑒𝑥𝑝 = {(𝑠𝑡 , 𝑎𝑡 ) : 𝑠𝑡 ∈ 𝑇𝑒𝑥𝑝 ∧ 𝐽𝑐𝑠 (𝑠𝑡 ) ≥ 𝑑𝑠 − 𝜖} (4)

By focusing on the subset 𝑇 𝜖
𝑒𝑥𝑝 to train our agent we can assure

that it knows how to handle critical situations while preserving the
freedom of exploring safe states. The collected demonstration data
set is then weighted in such a way that the training data set for

imitation learning consists of safety-relevant trajectories (𝑇 𝜖
𝑒𝑥𝑝 ) to

a defined extent mixed with randomly sampled trajectories from
𝑇𝑒𝑥𝑝 . Trough out this paper we will refer to this weighing as safety
focus 𝛼 ∈ [0, 1].

𝑇 𝑡𝑟𝑎𝑖𝑛
𝑒𝑥𝑝 = {𝛼 ∗ (𝑠𝑡 , 𝑎𝑡 ) ⊂ 𝑇 𝜖

𝑒𝑥𝑝 ∪ (1−𝛼) ∗ (𝑠𝑡 , 𝑎𝑡 ) ⊂ 𝑇𝑒𝑥𝑝 \𝑇 𝜖
𝑒𝑥𝑝 } (5)

It is essential to highlight that the data set used for the training
of the agent is not extended by additional information such as the
security factor, but rather a subset of the demonstrations is deliber-
ately chosen for the training. The agent during imitation learning
is not told at any time whether the state action pair currently pre-
sented to him in the context of supervised learning is a security
relevant example. The approach changes solely the composition of
the training data set.

3.3 Implication Health Recommender System
Our approach allows to learn effectively from demonstrations that
guarantee a safe state of the environment respectively of the patient,
but beyond that the actions not always show the optimal reaction
to the state. Furthermore we aim to train a reinforcement learning
agent with weighted expert demonstrations and thereby putting
safety or other evaluation criteria in the foreground. Applying the
approach on training a reinforcement learning agent to suggest
and parameterize treatment activities in a clinical pathway we train
the agent to explore the optimal recommendation while imitating
expert recommendations when facing critical states described by
constraint cost functions.

If the formal description is applied to the healthcare application,
the cost function evaluates the clinical condition of the patient. In
concrete terms, one could, for example, evaluate the deviation of
the measured pulse from rest or optimal pulse. One now look at
the expert’s demonstration, i.e. any number of pairs of the patient’s
condition and the proposed therapy measure, you can evaluate
for each demonstration what the cost function is, i.e. the safety
assessment of the patient’s clinical condition. It is crucial that the
costs are not per se included in the objective function but are used
as restrictions. As a result, an increased heart rate is not interpreted
as negative by our recommender, but we take care in the decision-
making process that the safety of this attribute is within certain
limits.

We are therefore aware that the heart rate drops out during a
therapeutic measure, and that this is one of the undesirable effects.
But we want to make sure that the proposals of our intelligent
system are within the limits of the experts’ opinions. So if we see
in the trajectories that the safety costs are below a certain level, we
want to make sure that our proposals do not exceed this limit. To
learn this, the demonstrations where the patient’s condition was
particularly close to the observed limit are particularly relevant.
In our approach we define a sub set of trajectories 𝑇 𝜖

𝑒𝑥𝑝 that have
a defined distance from the critical limit 𝜖 . From this sub set we
know that it is particularly relevant to learn how to avert critical
states. During the training process, our intelligent system should
accordingly pay special attention to adapting the expert suggestions
close to the critical states.
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4 EVALUATION
Although the concept presented here was developed out of the
motivation to individualize clinical pathways for patients, it can
be applied to various applications of reinforcement learning. For
this reason, and because clinical data was not available to the ex-
tent necessary for an analysis, the evaluation is based on common
and comparable safety problems in the directive. We use the gym
environment provided by OpenAI.

4.1 Gym Environment
The gym environment offers the possibility to run different task
scenarios for reinforcement agent and to extend the provided frame-
work. Especially atari games and two dimensional games such as car
racing are very popular and provide an excellent baseline to com-
pare results. Due to the parallel use of the car racing environment
as a recommender in the health care sector, the car racing environ-
ment is particularly suitable to demonstrate the functionality of
our approach. The car on the race track describes the condition of
the patient, who changes depending on the action - steering and
accelerating, or parameterization of the next treatment measure.
The more critically the condition of the patient - the position of the
vehicle on the track - is evaluated, the more relevant it is to behave
similar to the expert demonstrations. While we have described the
relevance of heart rate in the clinical environment above, safety
in this environment can be quantified with a cost function based
on the distance to the edge of the track. So while in the medical
case we can observe how a doctor behaves when the heart rate is
particularly high or exceptionally low, in this environment we can
quantify how far the vehicle is from the edge of the track.

Figure 2: safety critical and uncritical states in the evalua-
tion environment

To learn how to deal with critical conditions, we then look at
the demonstrations where the assessment of the condition was
particularly critical, as described in the formal description. The
subset used for imitation learning is selected upon those based on
equation 5.

4.2 Experiment Set Up
In the following we will describe the dimensions and parameters
used for our evaluation in more detail: Demonstrations:All exper-
iments were carried out on the same demonstration data set of size
|𝑇𝑒𝑥𝑝 | = 4692 ∗ (𝑠𝑡 , 𝑎𝑡 ), for further detail see Appendix A.
Imitation learningwas performed as supervised learning of a ten-
sorflow model with same architecture for every experiment. The
agent was trained for 2000 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 , pairs of (𝑠𝑡 , 𝑎𝑡 ) respectively.
Cost function: In our evaluation we consider three cost function
that quantify the cars position in the environment. Since the cars
state represents a patients clinical state this can be seen as three

different clinical parameters that are monitored during expert train-
ing. The cost functions considered quantify the cars position by
evaluating the game frame received as a state representation. In the
three directions 𝑙𝑒 𝑓 𝑡 , 𝑓 𝑟𝑜𝑛𝑡 and 𝑟𝑖𝑔ℎ𝑡 we calculate the distance to
the unsafe state - the green besides the road. Evaluating these three
cost functions for each state observed during the demonstration
we develop a representation of the states safety. The parameter 𝜖 ,
which indicates how early a state should be classified as safety-
relevant is set to 𝜖 = 5. To calculate we move from the edge of the
distribution of expert examples in the dimension of a constraint - in
this case the safety - to the centre of the distribution. Visually this
parameter defines how wide the edge of the distribution is, which
is classified as safety critical as shown in Figure 3.

Figure 3: distribution safety demonstration

Agent testing After the weights of the reinforcement learning
agent were trained via imitation learning the agent is evaluated in a
newly generated gym environment. Here we observe the agent for
two whole episodes to collect information about its performance
and its safety. Depending on the individual performance of the
agent this relates to ≈ 2000 state action pairs.

5 PRELIMINARY RESULTS
In the following we want to present the preliminary results of ap-
plying our approach to the safety critical decision process described
in 4.2. Different values for 𝛼 in equation 5 has shown significant
influence on the performance of the agent with respect to the safety
as well as the reward as shown in table 1.

Table 1: preliminary results safety focus

safety focus 𝛼 safety mean safety std reward mean

0.0 13.05 16.41 139.50
0.1 17.30 12.87 228.88
0.5 21.37 11.12 697.41
0.8 20.94 14.08 549.51

The results show that the safety focus has a significant impact
on the agent’s performance. The agent trained with the unweighted
expert demonstrations achieves an average safety rating of 13.05
for its proposals, and the variation in safety over the ≈ 2000 state
action pairs of 16.41 should be noted. The approach of pre-selecting
and weighting the demonstrations based on the distribution of the
cost function shows a positive impact. The security evaluation of
the conditions caused by the agent can be raised to a level of 17.3 by
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a weighting of 𝛼 = 0.1, and by a weighting of 𝛼 = 0.5 it can achieve
a value of 21.37. In addition, the weighting of the expert trajectories
in these cases also leads to a more robust reinforcement learning
agent, which is reflected in the standard deviation of safety.

To make the results presented more comprehensible, Figure 4
provides a visualization.Training the agent with different safety
focuses 𝛼 results in safety and reward shown on the y-axis and
the standard deviation represented by the dots size.

Figure 4: impact safety focus on episode reward and safety

Taking a closer look at comparing the cost function values for
two agents - one trainedwithout safety focus (5) and one trained
with a safety focus 𝛼 = 0.8 (6) - emphasising the safety critical
trajectories 𝑇 𝜖

𝑒𝑥𝑝 in the expert demonstrations can significantly
raise the safety of the actions recommended by the agent. While
the performance of the agents is already reflected in the values
listed in table 1, the reasons for this can be identified in Figures 5
and 6.

Figure 5: no safety focus

The non safety focus runs where not able to obtain a critical dis-
tance to the critical states„ while the safety focus runs successfully
learned to avert critical states in an expert reaction manner.

While the agent without safety focus was not able to learn the
correct handling of safety critical conditions during imitation learn-
ing, our approach was successful in adapting the expert’s handling
of critical states. By pre-selecting the expert examples without pro-
viding any further information during the training process, the
agent with safety focus was able to avert safety critical conditions
similar to the expert’s behaviour.

Figure 6: safety function 0.8 safety focus

6 CONCLUSION
The motivation for this work is derived from the medical context,
in which the objective is to adapt clinical pathways to a patient’s
needs in the best possible way. while this scenario can be aptly
described as a reinforcement learning problem, as discussed in the
introduction, it is important to limit the exploration and thus the
parameterisation of therapies and activities to a safe range of action
from a medical point of view. the imitation learning approach offers
a suitable approach to imitate the behaviour of experts. However,
two central questions have arisen in reinforcement learning. Firstly,
the question arose as to how an agent imitating an expert can con-
centrate on learning safety relevant actions. Furthermore, we asked
ourselves whether an agent can be given the opportunity to explore
the optimum within the action space while still maintaining a focus
on safety.
To answer these questions, we have developed an approach that
learns from expert demonstrations and concentrates on adapting
the safety-relevant behaviour of the expert by appropriately weight-
ing the examples provided. Our approach defines two parameters
that determine how to deal with the state action pairs observed
among experts. On the one hand, we have parameter 𝜖 , which in-
dicates how early a state should be classified as safety-relevant.
On the other hand we have safety focus 𝛼 forcing the agent to
train on a subset of expert trajectories, where 𝛼 of the examples
are classified as safety relevant under a given value 𝜖 .
Our approach for imitation learning was able to outperform equiv-
alent agents trained on balanced demonstrations with regard to
the safety as well as the reward. The generic conceptual approach
underlying the work can be applied to a wide range of RM tasks.
It is especially relevant for domains where expert knowledge is
available, which defines how one should behave to be safe, but
where it is not sure exactly what the optimal behaviour may look
like. This is the case in the personalization of clinical pathways.
while physicians can precisely advise which activities to suggest
as rehabilitation under certain clinical conditions of the patient,
it is not certain whether these suggestions are the optimal choice.
with our approach we provide an important basis for exploring
the optimum when proposing individually parameterized activities
without violating the limits of the safety-relevant parameters.
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7 FUTUREWORK
Besides the further exploration of the parameter combinations of 𝜖
and 𝛼 , the transfer to additional RL problems is pending. Evaluating
the approach on further 2D games in the gym environment is a
logical next step. Additionally, teaching robotics to safely interact
with their environment is relevant application [8]. Moreover, the
approach is to be evaluated in more complex RL tasks that focus
on the safety aspect, for which the recently published safety gym
is available [21].
Future research should also consider how to completely avoid
safety-critical examples that are dealt with by experts. One possible
approach to this could be the simulation of responsibilities and the
evaluation of possible reactions by an expert, using human in loop
approaches as feedback for the system, see [17] and [5].
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A INSIGHT ON EXPERT DEMONSTRATIONS
Following we show the cost function calculated for the expert
demonstrations. In 7 we see the to cost functions calculating the
safety for 𝑙𝑒 𝑓 𝑡 and 𝑟𝑖𝑔ℎ𝑡 .

Figure 7: demonstration safety function left and right

In addition we evaluated the safety cost function in the dimen-
sion 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 , as shown in 8.

Figure 8: demonstration safety function straight

B ABLATION STUDY
In the following we provide further insights on the agents perfor-
mance trained on different levels of 𝑠𝑎𝑓 𝑒𝑡𝑦𝑓 𝑜𝑐𝑢𝑠𝛼 .

Safety Focus 0.0 To complete the report on reinforcement agent
performance with no safety focus besides 5 we provide the cost
function referring to the safety evaluation 𝑓 𝑟𝑜𝑛𝑡 . Training the agent
with 𝛼 = 0.0 results in the cost function to the front shown in Figure
9.

Figure 9: safety function front no safety focus

Safety Focus 0.1
Training the agent with a safety focus of 0.1 results in the cost
function shown below. Safety estimation to cost function sides is
shown in Figure 10 and function front in Figure 11 respectively.

Figure 10: safety function side 0.1 safety focus

Figure 11: safety function front 0.1 safety focus

Safety Focus 0.5
Training the agent with a safety focus of 0.5 results in the safety
function shown in Figure 12 for side safety estimation and 13 for
𝑐 𝑓 𝑟𝑜𝑛𝑡 safety.

Figure 12: safety function side 0.5 safety focus

A Safety focus of 0.5 not only emphasises behavior to return
from safety critical states with respect to the 𝑙𝑒 𝑓 𝑡 and 𝑟𝑖𝑔ℎ𝑡 safety
constraint but also the 𝑓 𝑟𝑜𝑛𝑡 safety.

Figure 13: safety function front 0.5 safety focus
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Safety Focus 0.8
In addition to the safety function values for 𝑙𝑒 𝑓 𝑡 and 𝑟𝑖𝑔ℎ𝑡 shown
in 6 we provide the cost function for 𝑓 𝑟𝑜𝑛𝑡 . Training the agent with
a safety focus of 𝛼 = 0.8 results in the cost function to the front
shown in Figure 14.

Figure 14: cost function front 0.8 safety focus
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