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Abstract. The number of bands of a spectral image makes its visual-
isation as a traditional colour image a challenge. Several directions are
investigated in the literature. The state-of-the-art solutions are all lim-
ited, either due to the reduced quantity of information displayed, or to
such a severe reduction in naturalness or image quality that it is hard to
analyse visually. This article surveys the different attempts and investi-
gates a direction that uses a pair of images rather than a single image.
We use the principle of metameric black to provide a dual image for
visualisation. One image is then a colorimetric image that encompasses
the fundamental metamer information, the other one is based on the
metameric black and contains extra information related to the spectral
nature of the signal. We show that in the case of metameric samples, this
visualisation is useful to provide additional information.

Keywords: Spectral image visualisation · Spectral imaging · Metameric
black · LabPQR.

1 Introduction

Spectral imaging is more and more used in several image related fields, from
remote sensing to close range imaging, and its use has led to improvements in
several applications such as medicine or precision agriculture. The spectral im-
agers vary in spectral resolution, but an accepted standard format of the related
data is as a normalised spectral radiance or spectral reflectance image. Much
effort has been put in image acquisition, but with the development of single-
shot imaging systems, e.g. [20], and the definition of a fully integrated imaging
pipeline, e.g. [19], having convenient and efficient ways to visualise spectral im-
ages has become of major importance.

Attempts to interact with spectral images are originally oriented to a pixel
manipulation, e.g. visualisation of a spectrum for a specific pixel, and band-
based, information-based or target-based image processing, such as [17].
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One traditional way to visualise spectral images in the visible range is to use
standardized colorimetry to compute or estimate a colorimetric value for each
of the acquired spectra. This process results in a colour image that can follow
the traditional colour imaging pipeline for visualisation. This can be done in real
time by the use of GPGPU [9], and more easily today thanks to the use of web
technologies [7]. There are several limitations to this approach:

– Information reduction, much information disappears from the visualisation
by the reduction of dimensionality, e.g. phenomenon of metamerism.

– Impact of the media characteristics, as in the traditional problem of colour
management and visual rendering of displayed or printed content that will
require the accurate modelling of the devices [8, 10, 29].

– Impact of the illumination for real-time aspect visualisation, the colorimetric
computation of colour data is dependent on the illumination, thus a white
balance process is required, referred to as spectral constancy in the literature
[16, 15].

Another approach is the reduction of the spectral dimensionality to three
bands based on information criteria, and then a visualisation in false colours of
the three bands containing the most relevant information. One can then perform
band selection [21, 28, 3, 24] and image enhancement [25], trying to maximise the
visibility in the resulting image. Techniques to maximise information content on
three false colour bands include PCA [14] or Wavelet [27] decomposition.

It is also possible to implement the fusion of several bands or information
channels until convergence to a colour or a panchromatic image [18]. More re-
cently, techniques that map the spectral information space to colour space re-
specting the expectation of human observers were developed: manifold align-
ment [23], moving least squares [22], etc.

Limitations of the approaches mentioned above are the assumption of a given
dimensionality to visualise the data, and the limitation in how intuitive the
combination of those data is in a given colour space. For example, labelling
concentrations of potatoes in blue and concentrations of cabbage in red will
result in some grades of purple, yielding the difficult question of what does purple
mean in terms of cabbage and potatoes?

Furthermore, other information visualisation strategies for spectral images
as a volume [26] or within a colour space [11] tried to escape from the image
format and to orient the problem toward general information visualisation, using
graphs or other hierarchical structures.

In this article we propose to use a pair of images rather than one single im-
age as a support to spectral image visualisation. One of these images is a colour
image, based on standard colour principles, that provides an intuitive represen-
tation of the scene. The other image is a false colour image, which conceptually
could be computed by any of the methods above. In this specific communication,
we chose to propose, as an example, to emphasise the complimentarity to colori-
metric information, and developed the use of an image based on the metameric
black concept.
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2 Metameric black

Fig. 1. Illustration of the decomposition of the spectral signal (yellow plain line) into
its fundamental metamer (dashed blue line) and its metameric black (semi-dashed dark
line) parts. We observe that the fundamental metamer is a positive signal, metameric
to the original signal, while the metameric black is having negative parts. We argue
that this last component would contain interesting information to help the visualisation
of spectral content.

The metamerism principle is that different radiant spectral power distribu-
tions will look alike to an observer under standard colorimetric conditions, since
the spectra will provide the same tristimulus values.

In the case of spectral imaging, its fundamental interest and advantage over
conventional colour imaging comes from the additional information contained
in the spectrum beyond that which can be described by colorimetry. Wyszecki
proposed that a set of metamers could be described by one fundamental spectral
distribution that provides the same tristimulus value, the fundamental metamer
and a rest, unique to each of the metamers, having a tristimulus value of (0, 0, 0),
the metameric black, i.e. lying in a space orthogonal to the space of the colour
mixture functions.

There are an infinity of ways to compute those components. Cohen and Kap-
pauf [6] proposed a method to decompose the spectral radiance into those two
components. We recall the result of the method, following their notations so it
is easier to relate to their article, by setting up N as the radiant spectral power
distribution, A a transformation matrix from spectral radiant power distribution
to tristimulus values and At its transpose, and T the tristimulus, such as:

AtN = T. (1)
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If we refer to N∗ the fundamental metamer and B, the metameric black, we
write

N−N∗ = B (2)

and
RN = N∗, (3)

where R = A(AtA)−1At, an orthogonal projector. This method is referred to
as Matrix R in the colour science literature [5]. Figure 1 depicts a spectrum and
its decomposition in fundamental metamer and metameric black. Note that the
metameric black curve is having negative values, that permit a tristimulus value
of (0, 0, 0).

From one spectral image of radiance, we can then compute, for every pixel,
a fundamental metamer image and a metameric black image. Metameric blacks
were used in numerous fields, including several colour imaging applications, such
as camera calibration [2], experimental physiology of vision [32], spectroradiom-
etry [30]. In spectral imaging, this is found in the literature for the specific ap-
plication of dimensionality reduction, and compression of spectral image data.
Of particular interest, we note the LabPQR proposal by Derhak and Rosen [12]
used in both spectral colour reproduction [31], and as a colorimetric-friendly
compression scheme for spectral image representation [4]. In this space, Lab is
the tristimulus computation from the fundamental metamer or the spectrum,
and PQR is the metameric black encoded generally as the three first compo-
nents of a Principal Component Analysis on the metameric black vector. The
way to compute the Eigenvectors that define PQR varies in the literature and
there is no international standard of PQR to our knowledge.

3 Method and experiment

We demonstrate our proposal for the problem of detecting different material
components that are metameric under one specific illumination. That means
that two different components will have the same colorimetric values and thus
will be undifferentiated in the colour image version. In general, an application
only interested in the detection of metameric patches can be easily solved by
consecutive measurement under different light sources, however in the context
of real-time computer vision applications, the two metameric materials can be
due to a diversity of reasons and be captured by only one frame by single-
shot imaging. In our scenario, we hypothesise that we have a spectral image,
whose associated true-colour image exhibits some metameric objects, and thus
a visualisation of the colorimetric version of this single image does not allow the
viewer to distinguish between the two materials.

We use the Metacows data [13] as an example. The Metacows is a set of
computer rendered cows, as shown in Figure 2, for which, each cow is composed
of a pair of materials, metameric under illuminant D65. The provided data are
spectral reflectance data in the shape of a spectral image. We use the sub-spatial
resolution data, mini-cows, for the demonstration. All data were resampled based
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Fig. 2. Colorimetric rendering of the cows under D65 illumination (or equivalently of
the fundamental metamer under the same illuminant). The observer is the 2 degrees
standard observer from the CIE. The tristimulus image is converted into an sRGB
image.

on linear interpolation in the spectral direction to generate 100 data points
between 390 and 760 nm (steps of 3.7374 nm) so that it complies with the other
data used from diverse sources (Munsell, illumination, CMFs, meta-Cows). This
diversity of sources and the resampling have generated slight changes in the way
the meta-cows are rendered, so they are not perfectly metameric in the end as
can be seen in some cows of Figure 2. Nevertheless, they are very similar and
this data are suitable for our demonstration.

We compute the fundamental metamers for each pixel as described in Sec-
tion 2. The result is rendered for a colorimetric rendering as shown in Figure 2.
Then we compute the metameric black part, and we address the question on how
to visualise this data? The question is not trivial due to the presence of negative
values and on the abstract interpretation of the metameric black.

One tentative answer is to use the LabPQR proposal. We computed the
transform from the black metamer to PQR as the three first components of a
Principal Component Analysis on a set of 1600 glossy Munsell patches spectral
measurements from University of Eastern Finland in Joensuu [1]. This is one of
the possibilities studied by Derhak and Rosen [12] for colorimetric applications.
This is a reasonable choice, rather than for instance computing the PCA on
the meta-cow data itself, that will guarantee some stability and reproducibility
of our experiment, and it is also much faster. Then we projected the metameric
blacks onto those components. The colour rendering is based on normalised false
colour in Figure 3. Because the PQR space is not a visual encoding of RGB, we
tentatively applied a gamma correction of 1.8 to improve the visibility, as shown
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Fig. 3. Rendering based on a linear PQR space precomputed on the 1600 Munsell
Glossy samples measurements. The metameric blacks are projected on the PQR space
and visualised as false colour in RGB.

Fig. 4. Rendering based on PQR space with a gamma of 1.8 precomputed on the 1600
Munsell Glossy samples measurements. The metameric blacks are projected on the
PQR space and visualised as false colour in RGB corrected by an ad-hoc gamma value.
This helps to improve the visibility.
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in Figure 4. Note that the choice of 1.8 for the gamma correction is based on
an ad-hoc image-enhancement considerations based on visual investigation. We
also tried different white balancing or image enhancement approaches to remove
the yellow colour-cast but the results were not solving the problem and there is
still some work to be done to figure out a good encoding of PQR to generate a
pleasant visual representation.

Fig. 5. Rendering based on a positive quadratic version of the black metamers before
to be processed as radiant spectra. The observer is the 2 degrees standard observer
from the CIE. The black-tristimulus resulting image is converted into an sRGB image.

We also propose to make the metameric blacks positive, and then to process
them as normal (positive) spectra for colorimetric rendering. For that, we simply
squared the values. This is also a straightforward benchmark choice. Other pos-
sibilities would also be interesting to investigate, e.g. to compute the absolute
value. The result is shown in Figure 5, where we can observe a good distinction
between the different metameric materials. Future work should be conducted to
investigate how to optimally visualise the metameric black parts.

4 Analysis and Discussion

Generally, the proposed visualisation strategy is exhibiting clearly the presence
of metameric materials. If this image is paired with the colorimetric image, then
we do not lose the semantic natural content of the image.

Figure 6 shows a typical case where the difference in materials is highlighted
clearly by both the proposed methods.
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(a) Colour (b) PQR (c) Quadratic

Fig. 6. Close example on Cow 3.4: On the left the colour image, in the middle the
image based on linear PQR, and on the right the quadratic metameric black as black-
tristimulus.

(a) Colour (b) PQR (c) Quadratic

Fig. 7. Close-up example of Cow 1.1: On the left the colour image, in the middle
the image based on linear PQR, and on the right the quadratic metameric black as
black-tristimulus.

Figures 7 and 8 show cases where the two materials are less clearly separated.
Note that for one of those PQR images, the false colour versions are different than
from the large cow panels, because the normalisation of the image rendering was
conducted locally. This emphasises the need for a standard transform into PQR
and a specific definition of encoding colour in this case for consistent analysis.

5 Conclusion

We have suggested the use of a dual image to visualise spectral images. One
of this image is a natural colour image, the other one is an information based
image. In our demonstration we used the metameric black to generate the sec-
ond image, but any other strategy could be considered. The use of metameric
black to visualise metameric material distinction is shown to be efficient, but
the visualisation strategy needs to be further developed and optimised for good
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(a) Colour (b) PQR (c) Quadratic

Fig. 8. Close-up example of Cow 3.2: On the left the colour image, in the middle
the image based on linear PQR, and on the right the quadratic metameric black as
black-tristimulus.

performance. One future direction is to define a colour space based on PQR,
where the colour difference correlates with a metamerism index.
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