
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0)

Software Architecture and Software Usability: A

Comparison of Data Entry Form Designing

Configurable Platforms.

Lawrence Fatsani Byson

Computer Science Department

University of Malawi

Zomba, Malawi

lbyson@cc.ac.mw

Tiwonge Davis Manda

Computer Science Department

University of Malawi

Zomba, Malawi

tmanda@cc.ac.mw

Abstract--- The objective of the research was to discuss how

software architecture shapes the usability of configurable software
in data entry-form design. The research process was conducted in
three stages. The first stage focused on usability studies for DHIS2
custom form editor from which empirical data was collected from
11 participants. The second phase centred on experimentation
with Sketch2Code and Commcare. The final stage focused on
solution prototyping and evaluation. The research found out that
usability is enhanced in configurable platforms through the
availability of interface elements for achieving desired goals with
the platform without the need for writing code and meta-design.
Constraining factors to usability include lack of functionality to
advance the appearance of interfaces beyond the basic outlook and
having predefined functions with limited room for innovation
outside the predefined range. The research also found out that
software architecture enables software usability by providing
mechanisms for cross-platform compatibility with similar
applications, provision of boundary resources for further
customisation and through meta-design

Keywords---Usability, Software Architecture, Design,

Configurable Platform.

I. INTRODUCTION

Traditionally, software development has involved two sets
of distinct teams: software developers and end-users. Software
developers are people with a programming background,
involved in the design and implementation of software products.
In a traditional software development setup, end-users provide
software specifications and wait for software developers to
actualise the requirements into the desired software product.
Thus, end-users are consumers of the final product from the
software developers. This process of development has been
deemed costly in terms of human resources, time and money [1].
Good software developers are costly and limited in number.
Employing software developers also means that organizations
have to deal with an overhead of human resource management
issues. Further to this, the process of end-users giving software
specifications to software developers and then waiting for the
software developers to implement solutions is reported to take
time due to differences in priorities between the software
developers and end-users [1].

To address problems inherent to traditional software
development, organizations are progressively adopting
configurable software platforms. Configurable software

platforms provide for end-user software development, through
customization of software interfaces and behaviour via
interaction with graphical user interface (UI) elements and
configuration files [2], [3]. Thus, with the advent of configurable
software platforms, the implementation of software solutions is
shifting from total reliance on software developers towards
increased participation of end-users. In turn, providing for end-
user development of software applications may lead to reduced
software development time and costs [4], [5].

Despite their benefits, configurable software platforms are
not without challenges. A key challenge associated with
configurable software platforms is that they may have complex
interface designs a result of which users may experience
usability challenges, which may affect their productivity [6]–[8]
User interfaces are a common means through which users
interact with software, meaning they are a key to the acceptance
of software products. Thus, interface design issues may also
negatively impact user experiences for those working with such
configurable platforms [3], [7]. As such, to make these interfaces
effective for target user groups, it is critical to design them based
on principles of human interface design [9]. The three well-
known human interface design principles include Jakob Nielsen
– 10 usability heuristics for user interface design, Ben
Shneiderman – The eight golden rules of interface and Bruce
Tognazzini – Principles of interaction design [10].

This paper discusses how software architecture shapes the
usability of configurable software in data entry-form design. To
achieve this, the paper focusses on the utilisation of configurable
software platforms in Malawi’s health sector. There is an
increased uptake of configurable platforms in the development
of patient care and National Health Management Information
System (HMIS) solutions in resource-constrained settings such
as Malawi, which face a dearth of highly skilled software
developers. Notable configurable platforms in use include
Commcare and the District Health Information System 2
(DHIS2). Commcare is a mobile data collection platform where
a user does not need to write a single line of code. It has features
for offline data collection, tracking data over time, incorporating
multimedia and multi-language support [11]. DHIS2 is a
configurable web software platform developed for the
collection, validation, analysis, and presentation of aggregate
and patient-based statistical data [12]. It enjoys usage in over 60

mailto:lbyson@cc.ac.mw
mailto:tmanda@cc.ac.mw

2

countries (Malawi inclusive), most of which are developing
countries [13].

The paper uses DHIS2 a primary case, analyzing the
experiences of platform end-users in the configuration of data
collection forms. Based on noted challenges, the paper compares
the DHIS2 platform with other platforms (Commcare,
Sketc2Code) in regard to form design, in order to draw lessons
for design improvement. The choice of DHIS2 is motivated
based on the platform’s wide usage in Africa. At the same time,
literature shows that the platform can be complex to use. For
example, in Uganda, electronic forms for a health commodity
ordering system were reported to have use flexibility challenges
due to the poor design of the forms as the custom editor in
DHIS2 limited the extent to which designers could design forms
[14]. Our interactions with colleagues from other countries also
show that countries often rely on a small set of experts for
configuring national software products, due to platform
complexity and usability issues. It is therefore hoped that lessons
drawn herein will benefit other countries beyond Malawi.

A. Configurable Software Platforms

A Software platform is defined as a software-based product
or service that serves as a foundation on which outside parties
can build complementary products [15]. A software platform
provides the core functionality of what the platform is expected
to do, but it is extendable [8]. To facilitate the extension of
functionality, platforms include an interface that allows third
parties to develop apps that extend the functionality of the
platform [8]. Platform owners concentrate on the development
of the platform core and boundary resources, leaving the
development of the actual applications in which end-users will
interact with the third-party software developers.

Configurable software platforms inherit the properties of
software platforms but use the concept of configuration. The
word configure means “to arrange how something, such as a
computer system or software, is organized, so that it can be used
for a particular task”[16]. Thus, configurable software provides
end-users with possibilities to ‘configure’ them to fit the end-
users’ needs without custom programming. Configurable
software platforms achieve this by including one or more
configuration utilities that expose the application framework,
such that end-users may re-configure the application for any
purpose. Application frameworks provide a standard structure
through which graphical user interface (GUI) elements can be
created as they define the underlying code structure of the
application in advance. The application framework takes all the
complexities of interfacing with the platform core. In
configurable platforms, the importance of making user interface
components interactive, usable and flexible cannot be
overlooked as it affects users’ innovations and design processes
through the platform [17].

B. Challenges with Configurable software platforms

Despite the increasing use of configurable software
platforms, there are several challenges. One such challenge is
platform architecture design [6], [7], [18]. A good platform
architecture needs to have four desirable properties namely
simplicity, resilience, maintainability and evolvability. But in

balancing these properties there are always tradeoffs as some
properties are negatively correlated whereby increasing one
property decreases another property [18].

Another challenge with configurable software is the process
of testing [19]. On top of non-configurable software testing
challenges that exist like test case generation, test case selection,
and test case prioritization, configurable software platforms add
to the list the challenge of testing all possible configurations of
the system [19]. Another challenge is the actual development of
the software platform to satisfy more than one stakeholder
requirement at the same time and uncovering the potential
configuration for the software platform to satisfy requirements
[3]. Literature has also outlined software quality as another
challenge. Software developers cannot always conduct all
quality assurance to each possible configuration that users might
come up with [20].

Another key challenge associated with configurable
software platforms is that they can be complex and users may
experience various usability challenges which may affect their
productivity [6], [8], [21]. In turn, the complexity and interface
design issues in configurable software platforms may also
negatively impact user experiences for those working with such
platforms [3], [7]. To enhance designers’ experiences in
working with configurable software platforms researchers must
continue to investigate and correct usability challenges
associated with various configurable software platforms [22].

C. Software architecture and software usability

ISO/IEC 9126-1 defines usability as the capability of a
software product to be understood, learned, used and be
attractive to the user, when used under specified conditions.
Usability is a core aspect of the system development process to
improve and enhance system facilities and to satisfy users' needs
and necessities. Usability confirms if a software product has
good utility, is efficient, effective, safe, easy to learn, easy to
remember, easy to use and to evaluate and provides job
satisfaction to the users. Adopting these aspects in the system
development process, including the sustainable design will
measure and accomplish users' goals and tasks by using a
specific technology [23].

Software architecture is defined as a conceptual blueprint
that describes how the ecosystem is partitioned into a relatively
stable platform and a complementary set of modules that are
encouraged to vary, and the design rules binding on both [17].
Until the late ’90s, software usability and architecture were
taken as separate entities. As such, software usability only
focused on the presentation of interfaces elements and
functionality which resulted in architecture designers giving it a
blind eye when designing software architecture [24]. As more
research was conducted on software usability, it was found out
that many usability concerns reach deeply into the systems
architectural design [24].

Since the architecture is the blueprint for the software which
is to be developed, a lack of usability considerations at design
time may require extensive and costly re-architecting of
software systems, should usability issues be discovered during
use[24], [25]. When this happens, projects often cannot afford

3

the additional cost and ship products that are not as usable as
they could be [26]. Examples of usability requirements that are
affected by the architecture include the availability of shortcuts,
form field validation and recovery from failure.

II. METHODOLOGY

The research was conceptualised into three stages. The first
stage was usability studies for DHIS2 followed by
experimentation with Sketch2Code and Commcare. The final
stage was prototyping and evaluation.

A. Process 1 - Usability Evaluation

The research process involved usability studies with 11 users
from five organisations who actively use DHIS2. The study
participants were required to design a custom data entry form
for an HIV Testing and Counselling Combined Quarterly
Report. This task was to be accomplished using the DHIS2
custom form editor as shown in Figure II-1.

Study participants were split into two groups (first-time
users and experienced users) based on their proficiency in using
the DHIS2 custom form editor. The group of first-time users
comprised DHIS2 developers or implementers who had not used
DHIS2 custom form editor before. Those who had used the
editor before were grouped as “experienced users”. From the 11
respondents, 6 were experienced users while the remaining 5
were first-time users. Each group was assigned similar tasks to
accomplish (see TABLE I).

TABLE I: FORM DESIGN TASKS

Task

Number

Tasks For

Experienced

Users

Task For First-time

Users

1 Insert form name Insert form name

2 Add section

headers

Add section headers

3 Create Table with

rows for input

fields and labels

Create a table on each

section to hold the data

elements and input fields

4 Add the

corresponding data

element in each cell

Add form labels for data

elements

5 Styling form Attach the data elements

to each form label

6 Format the cell field to

have the same width and

height

Data were collected using video recordings, observations
and interviews. 11 videos were recorded from which data on
usability metrics were extracted. The following data were
collected: time taken to complete a specified task by a specific
designer (in seconds), the number of errors committed during
the process, the number of tasks completed by each designer,
most used functionalities through the different icons which were
used frequently. Structured interviews were also conducted
based on Nielsen’s 10 heuristics. Notes were taken while
observing how the study participants were designing the forms

B. Process 2 - experimentation with Sketch2Code and

Commcare

This step was carried out to explore other form editing
applications. Two applications were chosen: Microsoft
Sketch2Code, and CommCare.

Microsoft Sketch2Code is a solution from Microsoft which
uses (AI) to transform hand-drawn user interfaces sketches to
valid HTML mark-up code. Sketch2Code brought a new
dimension into the research as it involved the use of artificial
intelligence which is one of the fields in Computer Science
whose applications cannot be overlooked as it has revolutionised
the way things are done [27]. Regarding Sketch2Code, the first
author conducted experiments with three participants, who were
required to design part of the HIV Testing and Counselling
Combined Report. On top of the three software developers,
software and user manuals (Documentation) were used to get
insights into the software. These included Sketch2Code Lab
(Online Learning resource on how to use Azure Custom Vision
for Sketch2Code.

1) Sketch2Code Sketching process
Before testing with the users, the first author did a sample

test of Sketch2Code with the form fields that are on the HIV
Testing and Counselling Combined Quarterly Site Report. The
first trial started with scanning the form in use to picture format.
The scanned copy lost some quality as compared to the original
copy. After searching on the internet for a tool that could convert
a PDF to an image (.jpg), SmallPDF was found which is an
online tool used to convert files into different formats without
losing quality. When the generated form was run on the
Sketch2Code, the result was weird as the model could not
recognise most of the form features from the copy created due
to a couple of factors including conformity with the structure of
the copy with Sketch2Code.

To experiment with the users, the following procedure was
followed. The first step was to enquire from users on how they
design their data collection forms for different applications. The

Figure II-1: Designing a data entry from in DHIS2

https://smallpdf.com/pdf-to-jpg

4

next step was to explain how they could use Sketch2Code to
come up with digital prototypes from paper sketches. This
involved outlining how they could design the paper sketches to
conform to the structure of Sketch2Code.

2) CommCare Evaluation Process

CommCare consists of two components namely CommCare
Mobile and CommCare HQ. CommCare Mobile is a mobile-
based portion of CommCare used for data collection and service
delivery. CommCare Mobile can be used on a phone or tablet
and, in rare instances, through a computer. Through CommCare
Mobile, a user can access a mobile application. While
CommCare HQ is a website that is used for application
management and reporting. Through the CommCare HQ
website, users can design applications, access data, and manage
mobile users. CommCare HQ receives the data submitted by
frontline workers using CommCare Mobile.

The evaluation of CommCare was done by designing a
similar form to which was designed in DHIS2.

C. Process 3 – Prototyping and Evaluation

For the third stage of the study, three designers were
involved of which two were from one organisation. The three
prototyped the following: Resizing table rows columns and
input fields; and grouping icons on the menu. First, the study
participants were asked to design their solutions using paper
(Sketches). From their designs, questions were asked on the
rationale for their proposed design. From the discussions that
ensued, challenges were noted and similar implementations in
other applications were researched to deepen our understanding
of how we could address noted challenges. For example, on
table designing an example of inserting tables in Google Docs
was used.

D. Additional Data collection

For all the platforms, the study also reviewed documentation
and feedback from user communities for the three platforms.
The focus in the documentation was on how the software is
designed, its architecture, software licence as well as user
manuals.

III. RESULTS

The research findings are presented in three sections based
on the three research process phase which were followed: Part 1
- Usability evaluation, Part 2 - experimentation with
Sketch2Code and Commcare and Part 3 – Prototyping and
Evaluation

A. Part 1 - Usability evaluation

1) Formatting Forms in DHIS2 CKEditor

It was found that the editor did not completely support form
styling, at times requiring designers to manually edit the actual
source code of forms they had designed. This was done by
clicking the ‘source’ option on the CKEditor menu. From the
source code, designers could edit wherever they wanted to and

the changes would then reflect on the forms designed. It should
be noted that editing source code requires someone to have a
computer programming background which is against the core
principle of configurability, where the goal is that designers
should create their solutions on using a configurable platform
without the need for programming skills.

2) Challenges with Table Dimensions

It was found out that tables had an auto fixed width by
default, which could be changed by specifying the size in pixels
after right-clicking a table. When one wanted to add a data
element to a specific cell in a row, other cells in the row shrunk
in size, which made it difficult for designers to select shrunk
cells. Based on experience working with other editors, designers
tried to increase the width and height by clicking and dragging
the cell borders, but to their surprise, nothing happened.

3) Formatting forms

To circumvent form editing limitations such as above-
mentioned, some designers reported that they use Microsoft
Excel or LibreOffice Calc spreadsheet applications to design
forms, after which they copy and paste the designs in DHIS2’s
CKEditor. The rationale for choosing these applications was that
they offer the flexibility to merge cells, hide columns, resize cell
width and height.

B. Part 2 – Comparisons between different configurable

platforms that aid inform design

This section presents findings on how the three selected
configurable platforms compare in aiding form designing. These
three tools include DHIS2, Sketch2Code and CommCare. A
comparison was done in terms of design flexibility, software
licensing, available functionality and complexity of
technologies in use.

1) Findings on Sketch2Code

Most of the time when software developers want to design
data entry forms, the first steps involve designing the form on
paper as it helps them to discuss and gather requirements as well
as agree on the design before they start the actual development.
Then they write HTML (for structure) and CSS (styling)) code
as a way of translating the agreed paper sketches into first digital
prototypes of the form. When transforming paper sketches with
the AI different results were produced. Going through each
generated output, it had a well-defined HTML structure
(elements, attributes) and bootstrap 4, a CSS framework was
added as well to the file. Figure III-1 shows a paper sketch and
an HTML form generated by Sketch2Code. During the
designing and testing process three constraints were noted:

 The image quality of sketches affected the result of
sketches generated by Sketch2Code.

 The environment in which pictures of sketches were
taken affected the quality of sketches (lighting, shadows,
etc.).

5

 Sketch2Code has its defined structure of icons and
options which it can recognise, implying when designing
sketches, designers had to conform to that standard
syntax. It was noted that if the sketches did not conform
to the standards one would get undesired results

A notable positive aspect with Sketch2Code was that HTML
source code generated by the platform could be imported into
the DHIS2 CKEditor, created largely well-structured forms.

2) Form Designing Process in CommCare

As has been outlined in the section above, to design the form
for data collection one uses the CommCare HQ app. One needs
to register first before they can create their application. To create
a form, one has to specify an application name and whether they
want to collect data as a survey (Collect data once) or as a Case
list (Track items over time). After selecting one’s preference,
one can add questions to their survey or case list.

When adding a question one needs to specify the datatype of
the values that will be collected on a specific data element and
those options are presented when ones click on the Add
Question button. After selecting a preferred data type, one is
required to fill in details for the Display Text/Label, Question
ID and indicate whether the question is mandatory or not. To the
right of the designing window, is a phone simulator where

designers can log in and test the look and feel of the form being
designed.

3) CommCare vs DHIS2

Much as both platforms are used for creating and designing
data entry forms, there are differences in terms of how they
handle some activities. The differences are on how one can
design a form on both platforms, the target devices for the
designed forms and preview function.

When creating a data entry form in DHIS2 one has to go
through the maintenance app, to create a data element and then
create a data set, after which they can proceed with designing a
form. Thus to get to the point of designing a form, one has to go
through three app interfaces. In Commcare, everything is done
within the same window. Literature shows that presenting data
and information on one page increases systems efficiency [28].

The target device for the final usage of the form for
CommCare is a mobile phone which has limited screen size for
while DHIS2 custom forms are rendered only on a computer and
not on a mobile application which renders only default forms.
As such the focus when designing in CommCare is the order in
which the variables will appear and the logic behind. For
DHIS2, the designer often designs custom forms with the
thought that the forms will be used on a computer with a large
screen and it has to be presented on a single window.

Further to the above, in CommCare one can easily preview
the form being designed using the phone simulator and test the
logic and the interaction before you publish it (see Figure III-2).
DHIS2 has the preview option but it does not give the look and
feel of the final product and you cannot add data to it. The only
way to see what you have done if they work is to save it and go
to the Data Entry app to see the changes.

Paper Sketch

 Sketch2Code

HTML Form

Figure III-2: Preview of a form being designed in CommCare

Figure III-1: Paper Sketch to HTML form

6

C. Part 3 - Prototyping and Evaluation

After looking at the different tools for designing data entry
forms, the first author came up with prototypes to discuss with
designers as a way of designing with users. The focus was on
the following tasks: resizing rows, columns and input fields,
dragging and dropping data elements and grouping of icons on
the menu were prototyped. Both paper and software prototypes
were created on this stage.

1) Paper Prototypes

Resizing rows, columns and input fields and grouping icons
on the menu were paper prototyped.

a) Resizing rows, columns and input fields

Most of the challenges which are faced with the DHIS
CKEditor editor are to do with form formatting. For example, to
reduce or increase cell width, designers have to go to the source
code and add styling to the code. When asked on how this can
be implemented, two solutions were brought forward, the first
one was to allow users to edit both the height and width of a cell.
While the other was of the view to resize the width only as there
are rare cases in which they edit the height of rows, columns or
input fields.

b) Group icons on the menu

On this part, different options on how to present the grouping
of our menu icons were presented as categories. Presentation of
menu options as icons was preferred by everyone with a
suggestion to display tooltips on the icons when one hovers over
an icon.

2) Software Prototype

After the above experiments, a software prototype was
developed. On the menu, most of the icons were removed to only
remain with those that are applicable to form designing to
maintain a minimalist design and not to clutter the screen with
unused components.

As a way of removing confusion in the handling of rows and
columns, the insertion of tables was implemented similar to
most word processors like Google Docs, Microsoft word where
there is a visual representation when inserting a table. Instead of
entering the number of rows and columns, the designer hovers
over graphics which symbolise a table with rows and columns.

Another element that was developed was the drag and drop
functionality. In this solution, the designer does not have to type
the form field name as it was witnessed during the usability
studies. This solution automatically picks the data element name
which was defined in DHIS2 as the default name and provides
the possibility of editing it. This reduces the time spent in
entering the form labels when creating the custom forms.

IV. DISCUSSION

A. Enabling factors of usability

Usability is defined as the degree of a product's (in this case
a software application) potential to accomplish the goals of the
user [30]. It is also defined as the ease of use and learnability of
application software for the end-user [6]. Relating these two
definitions to how designers designed the forms in DHIS2, the
available interface design elements made the editor usable as all
the designers were able to achieve the goal of designing the
form. The built-in capabilities of the editor enabled designers to
customise the forms which agree with [27] and [31] findings on
the extent to which DHIS2 allows customisation flexibility as an
enabling factor.

In the software platforms that were investigated, HTML +
CSS code generated in Sketch2Code when used in DHIS2 editor
was able to create a structured form similar to the one generated
in Sketch2Code. Also, experienced designers reported using
other software to design forms like Microsoft Excel, Google
sheets to design form and only to paste the designed forms into
DHIS2. These different workarounds attest to Li's (2018)
findings that the existence of a workaround happens when the
technical design fails to meet established work routine and
contextual conditions as DHIS2 custom form editor has design
flaws.

B. Constraining factors of usability

The usability of the DHIS2 custom form editor application
was negatively affected through limited functionality that
different the editor provided. In a configurable platform, the goal
is to equip the designer with all tools which will enable them to
create a solution without the need for a software developer [34].
DHIS2 custom form editor was not able to provide all the
required functionality on the user interface like changing cell
width as such designers were forced to change by specifying
pixels which was challenging to designers who do not have a
programming background. This agrees with the findings of [35]
where he pointed out that the DHIS2 custom form editor
provides a minimum fit between the system interface and the
desired forms due to the limited functionality of the editor. In
configurable platforms, users are supposed to create applications
from the resources that are available on the user interface
without having to twerk the source code to get desired results.
This usability challenge could be argued to stem from the
constraints of software architecture design

Still on architecture, Sketch2Code and DHIS2 custom form
editor provide a set of predefined functions or constructs which
the designer chooses when designing. Thus, if the structure of
the form field does not conform to the predefined design the
designer will have to redesign the form which frustrates the user
and affects productivity [36]. Available functionality in the form
design editors centres on the assumption that the designer has a
programming background as witnessed in DHIS2 where
technical terms are used as well as the need for writing code to
tweak form User Interface. In Sketch2Code also, the whole
process assumes that the one doing the design has a
programming background.

7

C. Software architecture design in shaping usability

Software Architecture specifies how a software system
should be organized and the overall structure of that system. It
identifies the main structural components in a system and the
relationships between them [9].

1) Cross-platform compatibility
Cross-platform compatibility focuses on developing an

application/system which can work seamlessly across other
platforms. The capability of cross-platform compatibility is
dictated in software architecture as it provides the constraints
and enablers for compatibility. DHIS2 allowed elements defined
in other platforms to run inside it due to the flexibility of the
architecture in providing cross-platform compatibility. This
enhances productivity among designers as they can still achieve
their goal of designing a form in DHIS2 for data collection even
though they have to use different platforms and integrate the
results.

2) Predefining elements
Meta-design is focused on objectives, techniques, and

processes that allow users to act as designers. As such the
software architecture should provide constructs on which
designers can design their innovative solutions. CommCare
provides a predefined list of elements as input fields. While in
DHIS2, one does not specify the type of input field that one
wants when creating a form, it is picked automatically based on
how the data element was defined.

3) Boundary resources
Boundary resources provide mechanisms on how software

application developers can extend functionality and
improvements on existing applications. DHIS2 has an API that
gives access to resources within the platform core. The
architecture provides flexibility for customisation which further
echoes what literature says on how the platform architecture
shapes usability through provision on room for customisation
[35], [37]. This enabling factor enabled the research to come up
with a prototype. The created prototype used the API to get data
elements from DHIS2. The data element name was
automatically added to the form as a label when a specified data
element was selected in the designed editor. This improved the
time taken to design the forms as with the built-in CKEditor
designers have to rewrite names of data elements or form fields
on form designs, instead of picking the default name which was
given to the data element as it was created.

V. CONCLUSION

Software architecture affects the usability of the software.
Cross-platform compatibility provides users with the flexibility
of achieving their goals regardless of the platform they are
working on provided that what they will design will also run on
other platforms. Also, the availability of boundary resources
encourages development and innovation beyond a configurable
platform’s core developers. As such different software
developers can create workarounds on how they can improve
usability through apps and functionalities which can be used by
designers thereby enhancing the usability of the platform.

VI. REFERENCES

[1] S. W. Zhang and Z. H. Li, ‘A Configurable Platform of Application System

and its End-User-Oriented Configuration-Developing Pattern’, AMR, vol.
219–220, pp. 1415–1418, Mar. 2011, doi:

10.4028/www.scientific.net/AMR.219-220.1415.

[2] J. Toman, ‘Learning to Adapt: Analyses for Configurable Software’,
University of Washington, 2019.

[3] A. Misaka, ‘Requirement analysis technique for configurable platform :

case study’, Master of Applied Science, Carleton University, Ottawa,
Ontario, 2013.

[4] M. Carr, ‘Configurable software solutions— Change is good, right?’, Locus

Technologies, Aug. 25, 2016. https://locustec.com/blog/configurable-
software-solutions-change-good-right/ (accessed Apr. 22, 2019).

[5] L. P. Herman, ‘Usability and use documentation in a health information

system: The case of District Health Information System 2 in Malawi’,
University of Oslo, 2016.

[6] L. Battle and L. Chessman, ‘Designing Configurable and Customisable

Application’, presented at the UPA Conference, Jun. 06, 2012, Accessed:
Aug. 27, 2019. [Online]. Available:

https://www.designforcontext.com/insights/designing-configurable-and-

customizable-applications.
[7] G. Fischer and E. Scharff, ‘Meta-design: design for designers’, in

Proceedings of the conference on Designing interactive systems processes,

practices, methods, and techniques - DIS ’00, New York City, New York,
United States, 2000, pp. 396–405, doi: 10.1145/347642.347798.

[8] A. Tiwana, Platform Ecosystems Aligning Architecture, Governance, and

Strategy. Elsevier, 2014.
[9] J. Morrison, ‘Interface Design & Usability’, netzstrategen, Nov. 22, 2018.

https://netzstrategen.com/koennen/user-experience/interface-design-

usability (accessed Apr. 07, 2019).
[10] B. Birch, ‘10 principles that form my user interface design strategy’,

Together Incredible | Improve the digital experience, Jan. 03, 2019.

https://togetherincredible.com/10-principles-that-form-my-user-interface-
design-strategy/ (accessed Apr. 22, 2019).

[11] Dimagi, ‘CommCare by Dimagi | Data Collection App’, 2019.

https://www.dimagi.com/commcare/ (accessed Jun. 23, 2019).
[12] dhis2, ‘Overview’, Jan. 01, 2018. https://www.dhis2.org/overview

(accessed May 20, 2018).

[13] DHIS2 Documentation Team, ‘DHIS2 Implementer guide’, Aug. 23, 2018.
https://docs.dhis2.org/2.30/en/implementer/html/dhis2_implementation_

guide_full.html#d0e2872 (accessed Aug. 23, 2018).

[14] M. Li, ‘Utilising the Space for User Participation’, University of Oslo, 2018.
[15] A. Ghazawneh and O. Henfridsson, ‘Balancing platform control and

external contribution in third-party development: the boundary resources

model: Control and contribution in third-party development’, Information
Systems Journal, vol. 23, no. 2, pp. 173–192, Mar. 2013, doi:

10.1111/j.1365-2575.2012.00406.x.

[16] ‘CONFIGURE | meaning in the Cambridge English Dictionary’.
https://dictionary.cambridge.org/dictionary/english/configure (accessed

Apr. 22, 2019).

[17] A. Tiwana, B. Konsynski, and A. A. Bush, ‘Coevolution of Platform
Architecture, Governance, and Environmental Dynamics’, Information

Systems Research, vol. 21, no. 4, pp. 675–687, Dec. 2010, doi:
10.1287/isre.1100.0323.

[18] A. Tiwana, ‘Platform Architecture - an overview | ScienceDirect Topics’,

2014. https://www.sciencedirect.com/topics/computer-science/platform-

architecture (accessed Oct. 30, 2019).

[19] X. Qu, ‘Testing of Configurable Systems’, in Advances in Computers, vol.

89, Elsevier, 2013, pp. 141–162.
[20] M. Große-Rhode, R. Hilbrich, S. Mann, and S. Weißleder, ‘Achieving

Quality in Customer-Configurable Products’, in Relating System Quality

and Software Architecture, Elsevier, 2014, pp. 233–261.
[21] G. Fischer, ‘Symmetry of ignorance, social creativity, and meta-design’,

Elsevier Science B.V., vol. 13, no. 7–8, p. 5, 2000.

[22] M. de Reuver, C. Sørensen, and R. C. Basole, ‘The Digital Platform: A
Research Agenda’, Journal of Information Technology, vol. 33, no. 2, pp.

124–135, 2017, doi: 10.1057/s41265-016-0033-3.

[23] H. M. K. Abdoasslam, ‘Measuring Usability For Application Software
Using The Quality In Use Integration Measurement Model’, Universiti

Tun Hussein Onn, Malaysia, 2016.

8

[24] B. E. John and L. Bass, ‘Usability and software architecture’, Behaviour &

Information Technology, vol. 20, no. 5, pp. 329–338, Jan. 2001, doi:

10.1080/01449290110081686.

[25] I. Sommerville, Software Engineering, 10th ed. England: Pearson Education

Limited, 2016.
[26] B. E. John, N. Juristo, L. Bass, and M. Sanchez-Segura, ‘Avoiding “We

can’t change THAT!”: Software Architecture & Usability’, p. 104, 2004.

[27] R. Khanna, ‘How is Artificial Intelligence changing the Manufacturing
Industry in 2018?’, Ishir, Jul. 05, 2017.

https://www.ishir.com/blog/4654/artificial-intelligence-in-

manufacturing-industry.htm (accessed Apr. 19, 2019).
[28] Microsoft, ‘Microsoft AI lab’, Aug. 23, 2018.

https://www.ailab.microsoft.com/ (accessed Nov. 20, 2018).

[29] B. Hellard, ‘Microsoft’s AI-powered Sketch2Code builds websites and apps
from drawings’, Alphr, Aug. 30, 2018.

https://www.alphr.com/go/1009840 (accessed Nov. 20, 2018).

[30] J. Melin, ‘Making data useful to health workers by increasing usefulness
and usability of their tools An experiment to increase health workers

ability to detect symptoms of health issues with the District Health

Information System (DHIS2) Tracker Capture Android app’, University
of Oslo, Norway, 2018.

[31] S. Krug, Don’t Make Me Think. United States of America: New Riders,

2014.
[32] Kirakowski, J. and McNamara, N, ‘Functionality, Usability, and User

Experience: Three areas of Concern.’, Interactions, vol. 13, no. 6, pp. 26–

28, Nov. 2006.
[33] Z. Ismanov and I. Ni, ‘Patient information system for specialized newborn

care units in Malawi Mobile implementation of DHIS2 Tracker in neonatal
hospital wards’, University of Oslo, Norway, 2018.

[34] N. Hansson and T. Vidhall, Effects on performance and usability for cross-

platform application development using React Native. 2016.
[35] M. Wäljas, K. Segerståhl, K. Väänänen-Vainio-Mattila, and H. Oinas-

Kukkonen, ‘Cross-platform service user experience: a field study and an

initial framework’, p. 10, Jul. 2010.
[36] A. A. Gizaw, B. Bygstad, and P. Nielsen, ‘Open generification’, Information

Systems Journal, vol. 27, no. 5, pp. 619–642, 2017, doi: 10.1111/isj.12112.

[37] R. A. Majid, N. L. M. Noor, W. A. W. Adnan, and S. Mansor, ‘Users’
Frustration and HCI in the Software Development Life Cycle’, IJIPM, vol.

2, no. 1, pp. 43–48, Jan. 2011, doi: 10.4156/ijipm.vol2.issue1.5.

[38] L. K. Roland, T. A. Sanner, and E. Monteiro, ‘Architectures of large-scale
participatory design’, Scandinavian Journal of Information Systems, vol.

29, no. 2, pp. 3–33, 2017.

