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Abstract—Design smells are symptoms of poor solutions to
recurring design problems in a software system. Those symptoms
have a direct negative impact on software quality by making
it difficult to comprehend and maintain. In this paper we
compare the occurrence of design smells between different
technological ecosystems: windows/desktop and android/mobile.
This knowledge is significant for various software maintenance
activities such as program quality assurance and refactoring.
To supplement previous findings, our study aimed at (a) under-
standing if and how the relationship among design smells differs
across windows and mobile applications and (b) determining the
groups of design smells that tend to occur frequently together
and the magnitude of their occurrence in windows and mobile
applications. In this study, we explored the use of statistics and
unsupervised learning on a dataset consisting of twelve (12) Java-
based open-source projects mined from GitHub. We identified
fifteen (15) most frequent design smells across desktop and
mobile applications. Additionally, a clustering technique revealed
which groups of design smells that often co-occur. Specifically,
{SpeculativeGenerality, SwissArmyKnife} and {LongParameterList,
ClassDataShouldBePrivate} are observed to occur frequently
together in desktop and mobile applications.

Index Terms—Design Smells, Clustering, Software Quality,
Anti-patterns

I. INTRODUCTION

The concept of “design smell” was introduced by Fowler
[1] and defined as symptoms of poor solutions to recurring
design problems. The symptoms of design smells in a software
system are also referred to as anti-patterns. Design smells
are normally introduced in source code by developers during
their daily activities such as the implementation of user
requirements, developing important patches or during a “hack”
or “workaround” to obtain a sub-optimal solution to existing
problems [2]. According to previous studies, the existence
of design smells makes programs complex to comprehend,
summarize and modify [3], which poses a direct negative effect
on software quality [3], [4]. The existence of code smells in
any code-base calls for refactoring, which is a technique of
restructuring a program without changing its external behavior
to ensure that any further development is possible. However,
the cost of refactoring becomes expensive in terms of time
and resources, especially for today’s ever-evolving software
platforms.

This work was supported by Mak-Sida Project 381.

The need for effective detection of anti-patterns has attracted
a lot of research interests, both from academic and software
industry. As such, significant studies towards the realization of
effective design smell detection methods and tools have been
conducted over the last few years [3], [5], [6]. Software metrics
provide the backbone for most anti-pattern detection platforms
and approaches. They are applied to evaluate the internal code
quality and productivity, as well as maintainability of software.
For example; Imran [3] used an unsupervised spectral cluster-
ing tool guided by software metrics to detect design smells
across 3,306 classes of real-life open-source Java software.

Design smells are detected using a combination of software
metrics such as Depth of Inheritance Tree (DIT), Weighted
Methods per Class (WMC) and/or Coupling Between Objects
(CBO) among others. Understanding the diversity, distribution,
magnitude and co-occurrence of various design smells within a
source code could provide a good opportunity for optimizing
these metrics and consequently improving rule-based design
smells detection approaches. Moreover, this knowledge is
essential to developers in implementing various design smell
control and prevention mechanisms as well as guiding software
maintenance activities.

It is upon this motivation that we propose a method based
on statistics and machine learning to understand the diversity,
distribution, magnitude and co-occurrence of design smells
across desktop and mobile applications. We identified and an-
alyzed fifteen (15) most frequent design smells across twelve
(12) open-source object-oriented Java projects extracted from
GitHub. This paper makes the following contributions:

1) We present a comparison of occurrence of design smells
in desktop and mobile application with a focus on di-
versity, distribution, magnitude and co-occurrence using
a combination of heuristics, statistics and unsupervised
learning techniques.

2) We show that the aforementioned clustering approach
can be leveraged to expose hidden and non innate
relationships among design smells.

3) We discuss the implications of our study for researchers,
software industry and on the development of design
smell detection tools.

The rest of the paper is structured as follows: In section
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II we explain key concepts of design smells, their effect on
software maintainability and discuss related work. Next, in
section III, we provide a detailed explanation of the dataset
and methods used to conduct our study. Then, we present the
results and discussions in section IV. We end with discussing
implications in V, conclusions in VII and direction of future
work.

II. RELATED WORK

A. Design Smells

Design smells, also known as “anti-patterns" [7], “code
smells" [8] or “bad smells", are indicators of issues in source
code that can negatively affect maintainability of a software
system as well as various programming activities [9]. Techni-
cally, code smells do not stop the system from functioning but
can easily affect the development process, weaken the sustain-
ability of software and increase the probability of its failure
[10]. The existence of design smells in source code calls for
code refactoring which is a common programming task aimed
at improving the internal structure of existing software code
without affecting its observable behavior. It greatly enhance
software maintainability and generate a more manageable
internal architecture [10]. An earlier study by Fowler [1]
outlines 22 design smells and their corresponding refactoring
techniques. Those design smells are programming language-
independent but mostly targets object-oriented paradigm.

B. Design Smell Detection Techniques

The detection of harmful code smells which deteriorate the
software quality has attracted a lot of research interests, both
from academic and software industry. As such, significant
studies towards effective detection of code smells have been
conducted over the last few years. Sharma and Spinellis [11]
grouped design smells detection strategies in five broad cate-
gories, which include; Metrics-based, Rules/Heuristic-based,
History-based, Machine learning-based and Optimization-
based smell detection.

1) Metric-based design smell detection: Metrics-based is
the most common approach of design smells detection [12].
It is relatively easy to implement and normally follows three
generic steps; (1) take source code as input and prepare a
source code model such as Abstract Syntax Tree (AST). (2)
detect a set of source code metrics that capture the charac-
teristics of smells. (3) detect smells by a suitable threshold
value.

2) Machine learning-based design smell detection: Sev-
eral authors have applied machine learning in the detection
of code/design smells with a common focus on supervised
learning [6], [13]–[15] and cluster-based approaches [3].

Liu et al. [14] proposed a deep learning-based approach to
detect Feature Envy. Their approach relies on both structural
and lexical information. Labeled samples were automatically
generated from open-source applications. The gold dataset
is fed into two convolutional neural network layers and one
fully-connected layer to perform classification. More recently,
Barbez et al. [6] extended the approaches in [13] and [14]

using ensemble machine learning method called SMart Ag-
gregation of Anti-patterns Detectors (SMAD) to detect anti-
patterns. SMAD was designed by intergrating several detection
tools based on their internal detection rules to produce an
improved prediction from a reasonable number of training
examples. SMAD significantly outperformed other ensemble
methods especially for the detection of two well-known anti-
patterns i.e. God Class and Feature Envy in eight Java projects.

Although machine learning-based smell detection has
demonstrated a lot of potentials as recorded by different
authors, it is heavily dependent on a large amount of training
dataset and availability of such dataset is still a huge concern.

3) Optimization: Most studies in this category utilize op-
timization algorithms such as genetic algorithms to detect
anti-patterns in a software system. Saranya et al. [5] applied
a genetic algorithm for model-level code smell detection.
The motivation of their study was based on the limitation
of rule and metrics-based code smell detection approaches.
Specifically, defining the rules and identifying the correct
threshold value in rule-based code smells detection is a tedious
task and normally achieved through trial and error method. To
address this issue, this work introduced a Euclidean distance-
based Genetic Algorithm and Particle Swarm Optimization
(EGAPSO). The result of EGAPSO proves to be effective
when compared to other code smell detection approaches such
as DEtection & CORrection (DECOR) [16].

C. Impact of Design Smells on Software Maintenance

It is important to note that code smells are not errors and
therefore, they do not prevent the software from functioning. In
some circumstances, code smells are introduced by developers
while implementing important patches or developing a “hack"
or “workaround" as a sub-optimal solution to existing problem
[2]. According to previous studies, the existence of design
smells makes the program complex to comprehend, summarize
and modify [3], [17], which negatively affect software quality
[4].

Soh et al. [9] studied the effects of code smells at the
developer’s activity level i.e. code reading, editing, searching,
and navigating. The experiment involved six expert developers
performing maintenance tasks on four Java applications. Each
developer performed two tasks while logs were monitored. An
annotation schema was then defined to identify developers’ ac-
tivities and assess whether code smells affect his/her different
maintenance task. Result of their study indicated that code
smells indeed affect the effort of certain kind of activities but
the effect is contingent on the type of maintenance.

It is also noted that design smells are associated with the
occurrence of software bugs, which affect maintenance tasks.
Cairo et al. [18] carried out a systematic literature review
on published studies that provide evidence of the influence
of code smells on the occurrence of software bugs. In their
study, 24 code smells were found to be more influential in the
occurrence of bugs. Specifically, God Class, Shotgun Surgery
and God Method were found to be significant contributors and
positively associated with error proneness.



D. Design Smells in Desktop and Mobile Applications

A few previous papers carried out work closely related to the
study of design smells in desktop and mobile applications. To
begin with, Mannan et al. [19] conducted a study to understand
code smells in android applications and how they compare
with desktop application. Their study involved a large corpus
of desktop and android application collected from Github.

Habchi et al. [20] studied code smells in iOS by analyz-
ing 279 open-source iOS apps. In this paper, the authors
considered the presence of object-oriented and iOS-specific
code smells by analyzing 279 open-source iOS apps. Source
code was analyzed by extending PAPRIKA toolkit in order to
accommodate the detection of code smells in Objective-C or
Swift language. Their observation shows that iOS apps tend
to contain the same proportions of code smells regardless of
the development language, but they seem to be less prone to
code smells compared to Android apps.

Another interesting replication study by Palomba et al.
[21] focused on investigating code-smells co-occurrence using
association rule. This study was carried out on a dataset
composed of 395 releases of 30 software systems, capturing
13 code-smells. Their results highlighted some expected re-
lationships but also revealed some co-occurrences missed by
previous research.

Despite the results obtained from these study, the following
extensions can be made; The study by Mannan et al. [19]
focused mainly on code smells which tends to affect read-
ability and simplicity. The task of refactoring in this case
involves renaming or extracting to methods. Design smells,
on the other hand, tend to be more subtle. They usually affect
maintainability and flexibility. Next, their study [19] did not
look at the general co-occurrence of code smells and how these
co-occurrences varies across desktop and android application.
Palomba et al. [21] focused on general co-occurrence of code
smells in Java but not in mobile applications. Moreover, that
projects selected in this study comprise a mixer of Java desk-
top applications and libraries, whose internal implementation
slightly differs.

III. METHOD

In this section we discuss the approach taken to conduct
this study including data collection, preprocessing and analysis
techniques.

A. The Dataset

Our dataset is based on twelve (12) real-life open-source
Java projects mined from GitHub. Seven (7) of the projects
are mobile (android-based) applications and the other five (5)
are desktop applications. The android projects were selected
from a list of projects previously studied by Mannan et al. [19]
found here1. For our study, we focused on the latest releases
from GitHub. The selection criteria for desktop applications
was based on two significant characteristics:

1http://web.engr.oregonstate.edu/ mannanu/AndroidProjects.txt

• All projects rely on the Java Swing library for GUI
design.

• Cross-platform compatibility (i.e. can function on both
Windows, MacOS and Linux operation system) and de-
pended on Java Core libraries for the design of its back-
end logic.

The selected projects constitute a total of 1,601,369 Java Lines
of Code (LoC). We choose Java-based projects because they
account for a wide variety of open source projects hosted on
different code repositories and at the time of this research, Java
was among the top 3 popular programming languages within
the software industry. Moreover, Java is used by billions of
devices across the globe. The details of the selected projects
are shown in Table I.

TABLE I: Projects selected in this study including total LoC
and number of Design Smells (#DS) in each codebase.

No. Domain Project Version #LoC #DS
1 Desktop SweetHome3d 5.6 104,059 206
2 Desktop Mars Simulation 3.1.0 255,459 875
3 Desktop ArgoUML 0.35.1 177,372 1,160
4 Desktop JEdit 5.5.0 124,164 605
5 Desktop GanttProject 2.9.11 66,709 394
6 Mobile K9 Mail 5.600 93,540 247
7 Mobile Bitcoin Wallet 6.31 18,079 50
8 Mobile KeepassDroid 2.5.9 17,916 156
9 Mobile Opentrip Planner 2.1.5 9,760 28
10 Mobile Telegram 6.1.1 541,694 540
11 Mobile Tweet Lanes 1.4.1 25,886 105
12 Mobile Text Secure 4.69.5 166,731 799

Total 1,601,369 —

B. Data Preprocessing

For the preprocessing task, we passed the project class
files as input to an anti-pattern detection tool. Particularly,
we used Pattern Trace Identification, Detection, and Enhance-
ment in Java (Ptidej) tool. It is a open source Java-based
reverse engineering tool suite that includes several identifi-
cation algorithms for idioms, micro-patterns, design patterns,
and design defects [22]. Using this tool, we were able to
detect and select fifteen (15) frequent anti-patterns across the
selected projects which includes: LongMethod, ComplexClass,
LongParameterList, BaseClassShouldBeAbstract, Speculative-
Generality, ClassDataShouldBePrivate, ManyFieldAttributes-
ButNotComplex, MessageChain, SpaghettiCode, RefusedPar-
entBequest, SwissArmyKnife, Blob, AntiSingleton, LargeClass,
LazyClass. Design smells are detected and stored in “.ini"
files. The file names are tagged with a specific design smell
type. For example, in the k-9 mail project, AntiSingleton
design smell is stored as “DetectionResults in K9 for An-
tiSingleton.ini". Our goal is to extract class names and the
corresponding design smell detected in that class.

We apply heuristics to determine the structure and pattern
of class names in the detected anti-pattern result files for the
different projects. We use python regular expressions to extract
class names and associated them with respective design smell
type. A value of 1 was assigned if a particular anti-pattern is



detected in a class otherwise 0 is assigned. Table II shows a
sample of the final output of the preprocessing tasks.

C. Data Analysis
We start by grouping the data to create a collection of

aggregated number of each design smells in specific project.
Next, we grouped the data according to whether the code-
base is a mobile (android) app or desktop software as shown
in Table III.

D. Clustering
Clustering is one of the most important concepts for un-

supervised learning in machine learning. In this study, we
used Powered Outer Probabilistic Clustering (POPC) [23].
The choice of this algorithm was based on the following
motivation: First, numerous clustering algorithms including
the popular k-means algorithm, require the number of clusters
to be specified in advance which is a huge drawback. Some
studies use the silhouette coefficient, elbow method, and
other approaches to determine the optimal number of clusters.
However, those methods have their limitations, for example:
sometimes the elbow method fails to give a clear “elbow
point”. Second, k-means is not very suitable for a binary
feature sets.

Using POPC, we do not need to specify the number of
clusters upfront. It tries to mitigate these drawbacks using
back-propagation. The algorithm is observed to work quite
well on binary datasets and converges to the expected (optimal)
number of clusters on theoretical examples as elaborated by
Taraba [23].

Based on the processed dataset in Table II, we constructed
two different datasets for the task of clustering. The first
dataset consist of desktop data while the second contain mobile
data. This was carried out to determine if there were any
observable differences in the cluster formation across the
datasets. The output of POPC clustering was used to group
design smells based on their occurrence in each set of data as
shown in Figure 4, using the following procedure:

1) First, we constructed a table of clusters and design
smells for both desktop and android- Table IV.

• For each cluster (c) of classes, we compute the total
number of each design smell.

• If the total number of a given design smells is > 0,
we assign a value 1 in its row, otherwise, we assign
a value 0. The output of this operation is shown in
Table IV.

• We repeat this process for all the clusters.
2) Secondly, we extract the design smell rows and create a

binary matrix. This matrix is treated as an n-dimensional
array which is then passed to a dendrogram creation
function. We use the python Plotly package which
performs hierarchical clustering on data and represents
the resulting tree.

IV. RESULTS

In this section, we present and discussion the results of our
study. We answer the following research questions:

A. RQ: Does the type of application i.e. desktop or mobile
influence the variations in diversity, distribution and magni-
tude of design smells occurrence? If so, are these variations
statistically significant?

To answer this research question, we start by discussing
some of the key differences and similarities between mobile
and desktop applications. According to the dataset, both mo-
bile and desktop projects are based on Java programming
language and fundamentally obey the OOP programming
paradigm. However, some key notable differences exist, for
example, desktop applications mostly rely on the Java Swing
library for Graphical User Interface (GUI) design while mobile
(android) applications are based on XML as their underlying
language for the design of GUI [19]. Table V presents some of
these key notable differences. We believe that these differences
could influence the diversity, distribution and magnitude of
design smell occurrence.

1) Diversity of Design Smells: We found some interesting
variations in the variety of design smells that occur in desktop
and mobile applications. Generally, we observed that desktop
applications have a diverse type of design smells compared
to mobile applications. For example, looking at Table III,
we can observe that desktop applications account for up
to 93% of the total type of design smells detected in the
entire data set whereas mobile applications takes up about
73%. These variations are caused by the following design
smells: RefusedParentBequest, SpaghettiCode, MessageChains
and SwissArmyKnife that occurred in desktop applications
only while LargeClass was observed in only the mobile
applications.

We think these variations can be explained based on the dif-
ferences in the workflow of android and desktop applications
(as highlighted in Table V). Based on these differences, we
expect more types of design smells to occur in desktop than
in mobile applications. For example, android applications are
built upon the android frameworks which encapsulates low-
level functionalities of the Android OS. Thus, the developer
does not have to implement several classes at UI and activity
management level, thereby reducing the possibility of inducing
design smells

2) Distribution and Magnitude of Design Smells: The sec-
ond part of this research question focus on understanding
the distribution and quantity of design smells in desktop
and mobile applications. Figure 1 shows both the distribution
and magnitude of design smells across desktop and mobile
applications. We noticed that design smells are almost always
more in desktop applications than in mobile applications. This
difference can be observed in Figure 2 where desktop and
mobile applications account for 67.5% and 32.5% of the total
number of design smells in our corpus respectively. A rather
large variation exists in the quantity of Blob and Refused-
ParentBequest in desktop and mobile applications. Next, we
explored the relationship between lines of code (LoC) and
magnitude of design smells in desktop and mobile application.
Figure 3 shows a scatter plot of total LoC against magnitude



TABLE II: Sample output of processed design smell files.

No. FullClassPath LongMethod LazyClass Blob ComplexClass ...
1 k9mail.src.main.java.com.fsck.k9.controller.SimpleMessagingListener 1 1 1 0 ...
2 org.thoughtcrime.securesms.mms.AudioSlide 1 0 0 0 ...
3 org.telegram.ui.Components.GroupCreateSpan 1 0 0 1 ...
4 org.telegram.ui.Cells.TextSelectionHelper 1 0 0 1 ...
5 com.keepassdroid.database.PwDate 1 0 0 1 ...
6 com.tweetlanes.android.core.view.HomeActivity 1 0 0 1 ...

TABLE III: Diversity of design smells across desktop and
mobile applications.

No. Design Smells Desktop Mobile
1 LongMethod 3 3
2 ComplexClass 3 3
3 LongParameterList 3 3
4 LazyClass 3 3
5 Blob 3 3
6 ClassDataShouldBePrivate 3 3
7 RefusedParentBequest 3 7
8 AntiSingleton 3 3
9 BaseClassShouldBeAbstract 3 3
10 SpeculativeGenerality 3 3
11 SpaghettiCode 3 7
12 ManyFieldAttributesButNotComplex 3 3
13 MessageChains 3 7
14 SwissArmyKnife 3 7
15 LargeClass 7 3

for each selected project within the two ecosystems. We found
that there is an observable linear correlation between LoC and
magnitude of design smell. Particularly, design smells tend to
increase proportionally to the increase in project size, except
for a few cases. We think this result is interesting and worth
further investigation especially using various project releases.

Fig. 1: Comparison of the distribution of design smells in
desktop and mobile applications.

We also went further to study the distribution of design
smells using POPC clustering algorithm discussed in section
III. The motivation was to understand design smell distribution
from an unsupervised learning perspective. This way, we can

Fig. 2: Aggregated percentages of design smells across desktop
and mobile applications.

Fig. 3: Comparison of the lines of code with magnitude of
design smells.

observe pairs or groups of design smells that often occur
together and/or have a similar characteristics in desktop versus
mobile applications from the dataset.

The clustering results in Figure 4 reveal groups of design
smells that often co-occur in desktop or android applications.
Some of the clusters are expected while others are not obvious
and call for more study to understand the reason for their
appearance and relationships. For example; SpeculativeGen-
erality and SwissArmyKinfe both occur in the same cluster
for desktop and mobile applications. This is expected because
these design smells are theoretically related. Other similar
relationships in the clusters produced by desktop and mobile
data include: ComplexClass and LongMethod, ManyFieldAt-
tributesButNotComplex, MessageChains, SpaghettiCode.

3) Statistical Significance: To determine whether the vari-
ations in diversity, distribution and magnitude of design smell
across desktop and mobile applications is statistically signif-
icant, we conducted a statistical test using the Welch’s two-
sample t-test. The Welch’s t-test is a less restrictive version
of the student’s t-test and mostly recommended for dealing
with data of unequal variance and sample size, while maintain-
ing the normality assumption. We choose this particular test
because the number of projects we selected for desktop and



TABLE IV: An example of data constructed from the output of POPC clustering to create the Dendrograms in Figure 4.

No. DS C0 C1 C2 C3 C4 C5 C6 C7 C8 C9
1 LongMethod 0 0 1 0 0 0 0 0 0 0
2 ComplexClass 0 0 0 0 1 0 0 0 0 0
3 LongParameterList 1 1 1 1 0 0 1 0 0 0
4 LazyClass 0 0 0 1 0 0 0 0 0 0
5 Blob 1 1 1 0 0 1 1 1 0 0
6 ClassDataShouldBePrivate 1 1 1 0 1 0 1 1 0 1
7 RefusedParentBequest 1 1 1 1 0 1 1 0 0 0
8 AntiSingleton 0 0 0 0 0 1 0 0 0 0
9 BaseClassShouldBeAbstract 1 1 1 0 0 1 0 0 0 0
10 SpeculativeGenerality 0 0 0 0 0 0 0 0 1 0
11 SpaghettiCode 0 0 1 0 1 0 1 0 1 0
12 ManyFieldAttributesButNotComplex 1 0 0 1 0 1 1 0 0 0
13 MessageChains 1 1 1 1 1 1 1 1 1 0
14 SwissArmyKnife 0 0 0 0 0 0 0 0 0 0
15 LargeClass 1 1 1 0 0 0 1 0 0 0

(a) Desktop (b) Mobile

Fig. 4: Dendrogram showing groups of design smells that co-occur frequently.

mobile applications is not the same. We carried out this test
using the data in Figure 1 and obtained the following results:
Welch’s test: -1.201, p-value: 0.242. The result indicates
that, despite the various observable variations in diversity,
distribution and magnitude of design smell across desktop
and mobile applications, these variations are not statistically
significant. Therefore, we can not conclude that design smells
often occur more frequent in desktop or mobile applications.
This result is also consistent with previous papers focusing on
code smells, for example, the paper by Mannan et al. [19].

V. IMPLICATIONS

In this section, we present the implications of this study to
the researchers, software engineers and on the development of
design smell detection tools.

A. To Researchers

Despite the variations in diversity, distribution and magni-
tude of design smell between desktop and mobile, our result
indicates that almost all instances of design smells are well
represented in both software domains as shown in Figure 1.
Therefore, researchers studying design smells in one domain
have a high possibility of obtaining a representative set of

data which can easily be generalized for both domains. This
is also backed by our statistical significance test result which
indicates that there is no statistical difference in the number
of design smells across desktop and mobile applications.

The clustering results in Figure 4. provides some practical
confirmation of theories related to shared characteristics and
similarities among design smells. For example, we were able
to show, using unsupervised learning that Speculative Gen-
erality and SwissArmKnife are closely related. However, we
also found some unexpected relationship/similarities in the
clusters which require more research to understand them and
make recommendations. We, therefore, encourage researchers
to consider exploring this direction in future studies.

Our study also provides a good ground for software ed-
ucators to demonstrate various design principles to students.
As such, learners can practically observe examples of well-
designed and poorly designed systems for a wide range of
software systems.

B. To Software Developers

We discuss three significant implications of this study to
software developers as follows:



TABLE V: Notable differences between Java-based desktop
and Android applications.

No. Desktop Application Android Application
1 Application entry point is de-

pendent on the existence of a
special method i.e. the main
method.

There is no main method
when developing mobile appli-
cations. The entry points are
given by event-handlers such as
onCreate, onPause, onResume,
etc

2 Application’s underlying GUI
is designed using Java Swing
library (core Java language)

There is another layer of ab-
straction i.e. complete separa-
tion of the application logic
from its presentation. More-
over, the GUI is constructed
using eXtensible Markup Lan-
guage (XML).

3 Consist of all J2SE libraries,
Swing and JavaFX, etc.

Android does not have all J2SE
APIs, Swing or JavaFX.

4 It solely depends on OOP
paradigm

Although based on OOP, the
android mobile apps employ
reactive, event-driven program-
ming paradigm

5 The application directly bene-
fits from the host infrastructure,
which can be easily scaled ver-
tically or horizontally

Designed with resource limits
in mind. Some of the app’s
capabilities are constrained by
the underlying hardware infras-
tructures such as memory, stor-
age, processing power and pe-
ripherals.

6 Source code is compiled to
Java Bytecode

Source code is compiled to java
bytecode then to DEX byte-
code (two stages)

1) Software Design and Development: As shown in Figure
1, developers can know from the start of any new software
project that they should pay attention to specific implementa-
tion details of their application to mitigate common design
smells. For example; they can observe that LongMethod,
ComplexClass and LongParamaterList is most likely to occur
in an application. We also show groups of design smells that
frequently co-occur. These knowledge can help developers
to correctly plan their implementation and/or provide guide-
lines for contributors to mitigate these design smells, thereby
limiting future software failure due to sloppy or unintended
programming/implementation choices.

2) Quality Assurance: Software Quality Assurance (SQA)
is an essential aspect of software engineering that involves
processes and methods to ensure proper software quality such
as conformance to standards or models. This study provides
evidence to developers and quality assurance personnel of
the importance of design smell analysis in assessing the
quality of their systems by showing the diversity, distribution
and magnitude of design smell which can negatively impact
software maintenance effort.

3) Guided Code Review and Refactoring: Code review and
refactoring are common exercises carried out by developers to
(i) ensure code quality and (ii) improving the internal structure
of existing software code without affecting its observable
behavior [10]. However, the cost of reviewing and refactoring
source code becomes expensive in terms of time and resource,
especially for evolving software systems. Therefore, there is
a need for the simplification of those processes. As such, we

believe that our study results can guide developers by quickly
pointing them to specific features of a source code that often
result in poor software quality such as long method, complex
class or long parameter list.

C. On The Development of Design Smell Detection Tools

Design smell detection tools are significant not only for
research purposes but also ensuring high-quality software
design. The good news is that judging from Figure 1, detection
tools developed for desktop application will probably always
work for android applications as well. However, we believe
that further improvements such as metrics optimization and
enhancing code linting can significantly boost design smell
detection tools as discussed below.

1) Metrics Optimization: Design smells are detected using
a combination of software metrics. However, Metrics-based
smell detection method has some known limitations such as
its inability to detect many smells using only commonly known
metrics. Besides, metrics-based strategies heavily depend on
the choice of best threshold value by the researcher, which
is normally a significant challenge since this choice is almost
always empirical and trial-and-error [11]. This research pro-
vides an opportunity for design smell detection tool developers
to review those metrics and tailor them for the detection of
specific design smell or combination of design smells based
on the way they occur across desktop and android application.
Moreover, developers can use the knowledge in Figure 4 to
optimize design smell detection tools to become more efficient
through the use of just a few metrics to detect a combination
of design smells.

2) Improve Code Linting: A large percentage of software
engineers (both junior and senior) embrace the use of code
linters in their daily development activity. A linter analyzes
source code to detect flaws, check style conventions, potential
bugs and other code constructs [24]. However, most linters
cannot flag design smells. We believe that the results of this
study can motivate design smell detection tool builders to
integrate design smell detection capability in linters as an
extension or plugin.

VI. THREATS TO VALIDITY

A. Construct Validity

Our goal was to compare the occurrence of design smells in
desktop and mobile applications. We believe that we were able
to achieve this goal by comparing the two groups in regards to
diversity, distribution, magnitude and co-occurrence of design
smells.

B. Internal Validity

In this study, we realized solely on ptidej tool suite for
the detection of design smells. Therefore, the accuracy of our
results also depends on the accuracy of this tool. However, the
efficacy of ptidej has been evaluated in previous study [25].
Besides, ptidej tool suite is freely available and able to detect
a large number of design smells.



We carried out our analysis on just a single version of each
selected project. It is possible that the results can vary if
historical data is considered. However, since our focus was
not on the analysis of software change history, we consider
this threat acceptable and an opportunity for future work.

C. External Validity

Regarding the generalizability of our result, first, we are
aware that we carried out this study on Java-based applica-
tion only. Other platforms that use OOP languages exist for
example; windows mobile based on C#, Apple iOS based on
Objective-C/Swift, etc. However, we believe that the methods
used in this study can be generalized to other OOP systems in
various programming languages because the principle of OOP
is consistent regardless of the implementing programming
language.

The dataset used in this study was generated from only
12 GitHub projects. Although we believe that the size of our
dataset is considerable, using a larger-sized dataset would give
more confidence to the results presented in this paper.

VII. CONCLUSION AND FUTURE WORK

In this paper, we conducted an exploratory study to compare
design smells in desktop and mobile application using a sizable
dataset of twelve (12) Java-based open-source projects. We
reported empirical evidence on the variations in diversity,
distribution, magnitude and co-occurrence of design smells
using statistical methods and unsupervised learning. The result
of the study indicated that desktop and mobile application are
quite similar in term of design smell occurrence. We also found
pairs/groups of design smells that often co-occur. Some of the
pairs/groups are expected (e.g. SpeculativeGenerality, Swis-
sArmyKinfe), while others (e.g. LongParameterList, Class-
DataShouldBePrivate) require further study to understand any
innate relationships.

We plan to extend the study to include class role-stereotypes
[26]. It is quite intuitive that both design smell and role-
stereotype play major roles in the design and maintenance
of a software system. It would be interesting to see how
design smells vary across role-stereotypes in desktop and
android application. We are also interested in understanding
the variation of design smells in cloud-native versus tradi-
tional applications. We find this important because numerous
software development activity has now shifted to the cloud.
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