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Abstract. In this paper, we introduce a new interactive atomic-cluster
watershed-based system for lifelog moment retrieval. We investigate three
essential components that can help improve accuracy and support both
amateur and professional users to enhance their querying based on differ-
ent content and context hypothesis. These components are (1) the atomic
cluster function that clusters dataset to a set of time-consecutive images
that shares the same content and context constraints, (2) the text-to-
sample image generation that helps to overcome the gap between textual
queries of users and visual-based feature vectors database, and (3) The
interactive interface that assists users to imagine what they want to look
for better. The system is customized to meet the challenge of lifelog mo-
ment retrieval of imageCLEFlifelog2020. The evaluation and comparison
of our method to others confirm the stability of our method when people
want to retrieve a large number of results within 100 top results.

1 Introduction

Finding a moment in our past with a few hints or cues is the activity we probably
carry on almost every day. Except for extraordinary people who have a fantas-
tic memory that can recall every moment in their lives within a split-second,
ordinary people need more time to narrow down their searching scope from a
very abstract level to detail. The same situation happens when people want to
find their historical moment from their lifelog data. That leads to the fact that if
people can have an interactive system that can help them turn their queries from
an amateur sketch to an artist’s paint, they will retrieve their moment faster and
more precisely [1], [2]

Besides, turning a few keywords and less semantic contents of users’ text
queries to somethings that can be understood by the search engine is another
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challenge [3]. There is still a big gap between the natural language spoken by
users and machine language designed for search engines [4] that can prevent the
improvement of accuracy. Feature selection is another factor that can assist in
bridging this gap [5], [6], and in support of the well-organized dataset.

Based on the discussion mentioned above, we design an interactive atomic-
cluster watershed-based system for lifelog moment retrieval. This system is cus-
tomized to meet the lifelog moment retrieval (LMRT) challenge of imageCLE-
Flifelog2020 [7], a lab task of imageCLEF2020 [8].

Our system’s main contributions are:

1. We introduce an atomic cluster, a set of time-consecutive images that shares
the same content and context constraints.

2. We build the text-to-sample image generation to overcome the gap between
textual queries of users and visual-based feature vectors database.

3. We create an interactive interface to help users imagine what they want to
look for better.

We organize this paper as follows: Section 2 describes our method in de-
tails, Section 3 discusses the challenge and evaluates our results, and Section 4
concludes our paper and sketches our plan in the future.

2 Methodology

The principal idea of our method bases on the following observations:

1. daily activities of people can be divided into sequential atomic moments
whose content has a consensus of both content and context. In other words,
lifelog data recorded during a day can be divided into sequential atomic
clusters whose content reflects a unique semantic meaning with a consensus
of spatiotemporal dimension. These atomic clusters cannot be divided into
smaller clusters. Hence, if we could find one image that matches the query
(i.e., seeds), we can count in the atomic cluster the image belongs and the
neighbors of the atomic cluster (i.e., watershed).

2. people can decide which data do not satisfy their queries. In other words,
people can remove irrelevant data and modify their queries to get more rele-
vant data. Hence, if we can provide people a friendly interface for interactive
querying, people can improve the qualification of the querying system.

We call the system built upon these observations is an interactive atomic-
cluster watershed system. The system has four vital components (1) atomic-
cluster clustering (Cluster function), (2) text-to-sample image generation (At-
tention function), (3) querying by text-to-sample images (Query function), (4)
interaction (Interactive function), and (5) querying by user’s images (Query
function). Algorithm 1 and Figure 1 describe and illustrate how the system
works, respectively.



Fig. 1: An Interactive Multimodal Lifelog Retrieval System

2.1 Notations and definitions

There are several notations and feature vectors which are used for our system.
Thus, we define them below:

– Let Q denote the query sentence.

– Let I = {Ii}i=1..N denote the set of given images (e.g., lifelog).

– Let C = {Ck} denote a set of atomic clusters.

– Let S denote the set of samples for each query, and Si denote the status of
set S at the time i.

– Let BoV = {Vi−k}k=1..m
i=1..N denote the set of feature vectors of objects ex-

tracted from I, where Vi−k denotes the feature vector of the kth object of Ii
and BoVi denotes the set of all object vectors of Ii.

– Let BoVDB denote the database stores all object vectors of all images in I.

– Let Seed and LMRT denote a set of seeds and lifelog moments, respectively.

– Let denote V oi is the 1024-D vector representation of the ith object region
in the photos.

– Let denote pi is output vector of the ith image.

– Let denote V wi
is word embedding vector of the ith word.



Algorithm 1 Query-to-Sample Attention-based Search Engine

Input: Q, {Ii}i=1..N

Output: LMRT
{ONLINE}

1: Sample⇐ ∅
2: if type(Q) == “text” then
3: Sample ∪Word− V isualAttention(Q, Iexternal)
4: end if
5: if type(Q) == “image” then
6: Sample ∪Q
7: end if
8: Vsample ⇐ FE(Sample)
{OFFLINE}

9: {Cm} ⇐ Cluster({Ii}i=1..N )
10: BoV ⇐ ∅
11: ∀i ∈ [1..N ], BoVIi ⇐ FE(Ii)
12: BoVDB ⇐ FAISS(BoV )
{ONLINE}

13: S ⇐ ∅
14: S0 = S ⇐ S ∪ {Vsample}
15: while Si 6= Si+1 do
16: S ⇐ S ∪Query(S,BoVDB)
17: i⇐ i+ 1
18: end while
19: seed⇐ {Ii|∀Vik ∈ S}
20: LMRT ⇐ {Ck|∀j ∈ ‖Seed‖ , Seedj ∈ {Ck}}
21: LMRT ⇐ Interactive(LMRT )
22: return LMRT

2.2 System Workflow

In this subsection, we give a detailed explanation about our Interactive Multi-
modal Lifelog Retrieval System depicted in figure 1 and the Algorithm 1.

There are two stages in our system’s workflow: (1) offline stage, and (2) online
stage.

The former stage is for data preprocessing. Firstly, we divide lifelog images
into atomic clusters by utilizing Clustering function, described in 2.4. Then, all
lifelog images are converted to Vsample by using Feature Extraction (FE) func-
tion, described in 2.3. In other words, Vsample contains feature vectors extracted
from images. To make use full of FAISS [9], we embed these Vsample into a unified
database by applying FAISS’s function.

The latter stage is for textual and visual querying. For textual querying, our
system activates Attention function, described in 2.5, to generate sample images
from texts. Then, sample images (and input images if users carry on visual
querying) are fed into the FE function to create related Vsample. The Vsample

is used to find the most similar feature vectors from the FAISS-based database
with the predefined similarity threshold. Next, we enrich Vsample by adding these



found feature vectors and re-querying upon FAISS-based databased until no new
feature vectors found. All images that have their features vectors appear in this
set are considered as the queried results and set as seeds. The final results are all
atomic clusters contained these seeds. Then, users use Interactive tools described
in 2.6 to polish the output, so they receive wanted results.

2.3 Feature Extraction

– V oi is extracted by using object detection model (Faster-RCNN backbone
Resnet) in scaled Visual Genome dataset [10] (removing semantic overlap-
ping classes)

– pi is extracted by utilizing place detection model described in 2.4
– V wi is built as follows: Hidden state 768-D vectors extracted from BERT [11]

are combined with one linear Conditional Random Field layer to construct
seq2seq model [12] and output keywords (from a long input query sentence)
with their representation vectors.

2.4 Atomic-Cluster Clustering

As mentioned in previous sections, an atomic cluster contains a set of consec-
utive lifelog images (and related metadata) whose content reflects a particular
activity constrained by location, time, and semantic meaning. We have the whole
dataset clustered into atomic clusters by two steps (1) enhance the quality of
metadata and (2) cluster multimodal data. The former applies a self-supervised
learning method to regenerate metadata. By utilizing SimCLR method [13], we
manually label place names for about 20k images and then train a new model
to label the remaining images in a dataset automatically. Finally, we strengthen
metadata’s location constraints by having more precise place names than the
original metadata. The latter utilizes the updated metadata and feature vectors
extracted from images as the input of the clustering method proposed in [14] to
form atomic clusters.

2.5 Text-to-sample Image Generation

The essential idea of this function is to replace a textual query with a set of
visual queries. First, we create a dataset of objects using open image datasets
(e.g., COCO, image365). It means that we have a set of object names, and each
object name links to a set of images that contains the object. Then, we parse a
textual query to extract the object’s names replaced by linked images. Notably,
we utilized the attention mechanism [15] to build our function, as described in
Algorithm 2. We firstly utilize Top-Down Attention LSTM in a two-layer LSTM
model for captioning images from feature vectors of regions detected by the
object detection model [16]. We then determine a useful feature transformation
from word vector space to visual space using a well-trained Bottom-up Attention
model.



Algorithm 2 Text-to-sample Image Generation

Input: Word set {Wordi}i=1..M , Object set {Objj}j=1..N

Output: {Wordi : Objj} map from word to relevant object.
1: {Vwi}i=1..M ⇐WordEmb(Word)
2:
{
Voj

}
j=1..N

⇐ FE(Obj)

3: Training bottom-up attention model as in [15].
4: for all k ≤ ‖Vw‖ do
5: v̂k ⇐

∑N
j=1 αk,jvj

6: j′ ⇐ arg maxj αkj

7: v̂k ⇐ vj′

8: v̂k is the optimized presentation for Wordk in visual space
9: end for

10: return {Wordi : Objj} where i = 1..M, j = 1..N

2.6 Interaction

After having the first results generated by the query by sample function, users
can filter the results using other metadata such as visible objects, places, and
time. These metadata are saved as text files using PostgreSQL and stored in
Logic Server, as described in 2.7. Besides, users can re-query by manually se-
lecting samples from results visualized on the system’s interface or add more
query categories by texts. Moreover, users can delete inappropriate images as
they think. These images are taken into account by the system to mark as out-
liers or unnecessary items for the next query. Algorithm 3 explained how the
interaction works.

Algorithm 3 Interactive Algorithm

Input: PostgreSQL for metadata P ,
I ⇐ LMRT

Output: I
1: while Interactive do
2: I ⇐ Remove(I) {Continue if there is no removed image}
3: F ⇐ Input filters
4: I ⇐ P.select(I, F ) {Continue if F is none}
5: I ⇐ I∪ Re-query(input images or text)
6: end while
7: return I

2.7 Interactive System Architecture

To build a flexible system, we design our system following three-tier and three-
layer architecture, depicted in figure 2. The first layer is the presentation layer



Fig. 2: The System Architecture

on a User Client, the second is the logic layer on Logic Server, and the last one
is the core layer on the Core Server.

At the first layer, it is a convenient web-based interface where users can
interact with our system. This interface can easily be installed in a wide range
of operating systems. It firstly allows users to type text queries, select filters, and
input sample images, which is a powerful tool for users to describe which images
they would like to retrieve. Then, these data, along with IDs of removed images
(in the case users delete the queried results of the previous interaction), will
be pushed to Logic Server. Next, the interface has responsibility for presenting
images sent from Logic Server. Before users re-query, they can modify their text
query, adjust filters, choose images from other sources, and remove unwanted
images. They can re-query until presented images satisfy user’s demand. Finally,
users use the export function to download images or image IDs.

At the second layer, Logic Server has responsibility for processing requests
from User Client. Firstly, this server converts query to a suitable form and send it
to Core Server. Then, Logic Server receives outputted results with IDs of images
and IDs of related atomic clusters. The result will be saved directly to Cache,
a temporary memory on Logic Server. At the following steps, depending on the
type of filters, this server will apply the filters on the whole dataset or only the
results stored in Cache. There are two types of filter (1) Extend Filter and (2)
Narrow Filter. With the former, Logic Server will find all images whose metadata
are matched to this filter before adding these image’s IDs to Cache. With the
latter, from IDs in Cache, Logic Server will select images whose metadata is



fitted to the filter. Finally, the server returns filtered images and ranked clusters
to User Client.

In terms of Core Server, it receives input from Logic Server and sends result
reversely after completely processing. Core Server is an always-on server where
AI components are deployed.

3 Experiments

In this section, we present our system’s experiment results when applying to the
lifelog dataset CLEF2020.

3.1 Dataset and Evaluation Metrics

The CLEF2020 dataset has been captured by one active lifelogger for 114 days
between 2015 and 2018. It contains not only over 191000 lifelog images also
metadata, including visual concepts, attributes, semantic content, to name a
few. The training set has ten topics, and each topic is described by title and
description. These titles are: (1) Having beers in a bar, (2) Building Personal
Computer, (3) In A Toy Shop, (4) Television Recording, (5) Public Transport In
Home Country, (6) Seaside Moments, (7) Grocery Stores, (8) Photograph of The
Bridge, (9) Car Repair, (10) Monsters. The topic descriptions are used to explain
in detail about the content and context of each query. Similar to the training
set, the testing set has ten topics which are: (1) Praying Rite, (2) Recall, (3)
Bus to work - Bus to home, (4) Bus at the Airport, (5) Medicine cabinet, (6)
Order Food in the Airport, (7) Seafood at Restaurant, (8) Meeting with people,
(9) Eating Pizza, (10) Socialising.

The evaluation metrics are defined by ImageCLEFliflog 2020 as follow:

– Cluster Recall at X (CR@X) - a metric that assesses how many difference
clusters from the ground truth are represented among the top X results;

– Precision at X (P@X) - measures the number of relevant photos among the
top X results;

– F1-measure at X (F1@X) - the harmonic mean of the previous two.

3.2 Evaluation and Comparison

The ImageCLEFlifelog challenge has five participant teams including: (1) RRibeiro,
(2) FatmaBA RegimLab, (3) DCU Team, (4) BIDAL HCMUS (ourselves), (5)
HCMUS. We are ranked in the second position. Table 1 and 2 shows our results
running on the training and testing set while table 3 and 4 denote the comparison
to the other teams.Figures 3-12 illustrate our results of the testing stage.



Table 1: Results running on CLEF2020 Training Set

Query
Run 1 Run 2

P@10 CR@10 F1@10 P@10 CR@10 F1@10

1 0.7 0.50 0.58 1.00 0.75 0.86
2 0.60 0.50 0.55 1.00 0.50 0.67
3 0.30 0.50 0.38 0.70 1.00 0.82
4 0.70 0.67 0.68 1.00 0.67 0.80
5 0.20 0.11 0.14 0.90 0.44 0.60
6 0.60 0.50 0.55 0.80 0.50 0.62
7 0.50 0.44 0.47 0.80 0.78 0.79
8 0.30 0.50 0.38 0.40 0.50 0.44
9 0.60 1.00 0.75 0.80 1.00 0.89
10 0.30 1.00 0.46 0.30 1.00 0.46

Table 2: Results running on CLEF2019 Testing Set

Query
Run 9 Run 10

P@10 CR@10 F1@10 P@10 CR@10 F1@10

1 1 1 1 1 1 1
2 0.60 0.50 0.55 0.60 0.50 0.55
3 0.50 1 0.67 0.50 1 0.67
4 0.70 0.50 0.58 0.80 0.50 0.62
5 0.70 0.78 0.74 0.70 0.78 0.74
6 1 0.33 0.50 1 0.50 0.67
7 1 0.20 0.33 0.80 0.60 0.69
8 0.60 1 0.75 0.60 1 0.75
9 0.90 0.67 0.77 0.90 0.67 0.77
10 0.50 0.50 0.50 0.50 0.50 0.50

Table 3: Comparison to the other teams (F1@10 metric)

Query
F1@10

Baseline FatmaBA RegimLab RRibeiro DCU Team BIDAL HCMUS HCMUS

1 1 0.58 0.95 0.50 1 1
2 0.4 0 0 0.22 0.55 0.86
3 0.17 0.29 0.67 0.95 0.67 1
4 0 0.14 0 0.27 0.62 0.55
5 0.21 0 0.77 0.68 0.74 0.83
6 0.13 0.13 0.50 0.25 0.67 0.68
7 0.24 0 0.67 0.44 0.69 0.57
8 0 0 0.82 0.33 0.75 0.67
9 0.57 0.75 0.80 0.68 0.77 0.95
10 0.50 0 0 0.50 0.50 1

Avg 0.32 0.19 0.52 0.48 0.69 0.81



Table 4: Comparison to the other teams (F1@50 metric)

Query
F1@50

Baseline FatmaBA RegimLab RRibeiro DCU Team BIDAL HCMUS HCMUS

1 0.63 0.46 0.99 0.17 0.33 0.33
2 0.49 0.03 0 0.77 0.19 0.32
3 0.04 0.34 0.95 0.31 0.65 0.33
4 0 0.07 0 0.16 0.39 0.32
5 0.17 0 0.65 0.62 0.61 0.70
6 0.04 0.04 0.17 0.29 0.38 0.23
7 0.09 0 0.85 0.50 0.67 0.27
8 0 0.04 0.97 0.08 0.80 0.18
9 0.18 0.49 0.76 0.28 0.60 0.37
10 0.50 0.53 0 0.50 0.50 1

Avg 0.21 0.15 0.53 0.37 0.51 0.41

When comparing the results evaluated by F1@10 and F1@50 metrics, we
found that our scores are less fluctuation than the others (some other teams have
a massive reduction in their scores), as described in table 3 and 4. That probably
could lead to the conclusion that our proposed method is stable, especially if the
user wants to retrieve a large of images.

In some queries, we have worse scores because of misunderstanding the con-
tent and context of queries. For instance, query 5 has the title: ’Medicine cabinet’
and description: ’Find the moment when u1 was looking inside the medicine cab-
inet in the bathroom at home’, we very confused when trying to confirm whether
the lifelogger really looks inside the medicine cabinet or appear nearby (i.e., the
medicine cabinet is captured by lifelog camera, but the u1 does not look at it).
The result of query 5 is shown in figure 7.

Furthermore, we found that the ground truth could have some incorrect
points. We have verified with the organizers that the ground-truth might not
be precise. For example, the image ID b00000986 21i6bq 20150225 161718e (in
query 9) and the image ID 20160904 120624 000 (in query 5) should have been
in the ground-truth. Figures 7 and 11 illustrate the results of queries 5 and 9,
where the red rectangle denotes mentioned images. That probably makes our
results not precise enough as we expected.



Fig. 3: The top ten results of query 1 ”Praying Rite” (F1@10 = 1)

Fig. 4: The top ten results of query 2 ”Recall” (F1@10 = 0.55)

Fig. 5: The top ten results of query 3 ”Bus to work - Bus to home” (F1@10 =
0.67)



Fig. 6: The top ten results of query 4 ”Bus at the airport” (F1@10 = 0.62)

Fig. 7: The top ten results of query 5 ”Medicine cabinet” (F1@10 = 0.74)

Fig. 8: The top ten results of query 6 ”Order Food in the Airport” (F1@10 =
0.67)



Fig. 9: The top ten results of query 7 ”Seafood at Restaurant” (F1@10 = 0.69)

Fig. 10: The top ten results of query 8 ”Meeting with people” (F1@10 = 0.75)

Fig. 11: The top ten results of query 9 ”Eating Pizza” (F1@10 = 0.77)



Fig. 12: The top ten results of query 10 ”Socialising” (F1@10 = 0.50)

4 Conclusions and Future Works

We introduced a new interactive atomic-cluster watershed-based system for
lifelog moment retrieval. The system is specially customized to meet the re-
quirement of the imageCLEFlifelog2020 challenges. The system first indexes the
database based on atomic clusters that contain similar data based on our similar-
ity measure. The reason behind the atomic clusters is that whenever one image
is found, its atomic cluster counts in. We store feature vectors extracted from
data in FAISS database for further querying. We convert all textual queries into
visual queries by using the attention mechanism approach. The system provides
a friendly interactive interface that allows users to select precise results and
re-query with modification. Our results are evaluated and compared to other
participants with positive accuracy. We will investigate the atomic clustering
function to improve the consensus and compact of atomic clusters in the future.
Moreover, we will consider wrapping spatiotemporal information to the query-
ing engine by strengthening semantic constraints. Last but not least, we will
focus on feature engineering and similarity measures to have a higher accuracy
of querying.
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