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Abstract. Consulting web search engines has become an everyday pro-
cedure for many internet users. One specific task that gained attention in
recent work is the retrieval of arguments for controversial topics. Most of
the preexisting difficulties that search engines have to face also apply for
this task. However, certain challenges become even more important, such
as providing an appropriate heterogeneity in the result set. We present
an argument search engine for the argsme corpus. Our focus is on pre-
processing the corpus while also addressing the heterogeneity problem
and implementing a query expansion feature. Furthermore, we provide a
brief evaluation of our retrieval results.
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1 Introduction

Nowadays, search engines are used by everybody. Consulting a search engine is
the easiest way to find desired information like today’s weather, news articles
or just any arbitrary image. However, there are still some problems for which
modern search engines fail to deliver satisfying answers yet. One of these chal-
lenges is the search for arguments in large document collections, e.g. for debates
such as “Are plastic bottles good?” or “Are speed limits wrong?”. Search engines
that find arguments for these kinds of queries could be classified as argument
search engines. There are already some solutions available, e.g. Args.me [22] or
ArgumenText [20].

This report is created in the context of the Touché shared task on argument
retrieval [5]. Its goal is to develop an argument search engine that retrieves ar-

guments from the argsme corpus [2], which provides almost 390,000 arguments
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from over 55,000 online debates. We develop a search engine to find good ar-
guments in the corpus. This report describes our approach and evaluates its
performance.

First of all in Section 2, we summarize the state of the art of information
retrieval in the context of argument search engines. Section 3 introduces our
search engine’s architecture. Following, we give a short overview of the corpus,
describe some necessary preprocessing steps and show the ideas behind all sep-
arate components. In Section 4 we present the results of the final evaluation.

Argument search refers to collecting relevant premises and conclusions to a
given topic that is usually of controversial nature. The goal of such a search
engine is to provide the user with supported statements that help him to gather
knowledge about his topic of interest and potentially assist his decision making.

2 Related Work

Previous work has been carried out that tackled various tasks of argument search,
including automatically detecting evidence that support a given claim [19], de-
termining argument relevance [17] or acquiring a corpus of arguments [1]. The
latter one along with the work presented by Wachsmuth et al. [22] constitutes
the basis for this work.

2.1 Retrieval Models

The heart of an argument search engine is a proper retrieval model. The challenge
here is to find the best arguments w.r.t. a corpus and a free-text query.

Several argument search engines are e.g. args.me [22] or ArgumenText [20].
These engines are based on the retrieval model Okapi BM25. Potthast et al. [17]
performed a user study to evaluate different well-known retrieval models. In this
examination Lucene’s BM25, Terrier’s implementations of DPH [3], DirichletLM
[25], and TFIDF were considered. The retrieved arguments by the different re-
trieval models were rated by their relevance, rhetoric, logic, and dialectic quality.
DPH proved to yield the best results overall.

2.2 Preprocessing

Predicting argument quality is a challenging task. Wachsmuth et al. [21] discuss
the concept of argument quality. Wei et al. [24] rank argumentative reddit posts
in order to find the most persuasive ones. Their approach is machine learning-
based. The same applies for the approach proposed by Persing and Ng [16]. Pot-
thast et al. [17] provide a subset of the argsme corpus in which arguments were
manually annotated with a rating for the quality aspects defined by Wachsmuth
et al. [21]. Furthermore, an overall quality rating was assigned to each argument.



2.3 Query Expansion

Several different approaches have been explored that aim to improve the recall
for user queries [8]. Some examples are pseudo-relevance feedback (using terms
from the top ranked documents) or interactive query refinement that requires the
user to readjust his query. Another option is to use search query logs to obtain
rewritings that users perform to improve their query terms with respect to their
information need. However, some of these methods are out of the scope for this
work, or require additional data. For instance, search query logs are unavailable
for this task. Therefore, we focus on a few automatic query expansion (AQE)
methods based on word embeddings. Diaz et al. [12] and Zuccon et al. [26], for
instance, utilized such “model-based” approaches.

2.4 Clustering

The aim of clustering here is to guarantee a diverse result set in order to present
the user a variety of different arguments. Carbonell and Goldstein [7] introduce
Maximal Marginal Relevance (MMR), a measure that allows building a ranking
incrementally. MMR balances the quality and heterogeneity of the result set.
Another approach to build a diverse ranking incrementally is proposed by
Kaptein et al. [15]. Deselaers et al. [11] describe a method to diversify image
search results using a "novelty” measure. A problem in diversifying search results
is that classic evaluation measures like (n)DCG do not take diversity of results
into account. Clarke et al. [9] thus propose an alternative evaluation framework.

3 Methods

Our argument search engine’s architecture is depicted in Figure 1. The cen-
tral module is the Apache Lucene Core? search library that realizes indexing
and retrieval. Before indexing, the corpus is preprocessed. During preprocessing,
quality ratings for all documents are computed.

At run time, the user’s queries are enriched by a query expansion module.
Then, after retrieving a set of relevant documents via the Lucene Core, results
are ranked considering both the scores obtained by the retrieval system and the
quality ratings. Eventually, the last component can perform clustering on the
top ranked results.

3.1 Preprocessing

The quality of the arguments contained in the corpus is heterogeneous. Some
documents do not contain arguments at all. Therefore we aim to assign ratings to
the documents indicating their argumentative quality. More formally, we create
a mapping

q:D —[0,1] (1)

* https://lucene.apache.org/
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Fig. 1. All components of the introduced pipeline can be changed independently.

where D is the corpus as a set of documents. If g(dy) > ¢(dz), the argumentative
quality of d; is considered higher than that of ds.

These ratings are then used in our retrieval model, as the user should only
receive arguments with high quality. To compute them, we employ a machine
learning approach. Argument quality is a rather elusive concept that can not be
quantified directly. Wachsmuth et al. [21] break it down into three aspects:

— Logical quality: are the premises acceptable and do they really imply the
conclusion?

— Rhetorical quality: is the argument formulated in a persuasive manner?

— Dialectical quality: does the argument contribute to resolving the issue?

Capturing the logical dimension of argument quality with computational fea-
tures is a hard task. Solving it is beyond the scope of this project.The dialectical
quality dimension is not available in our corpus either. Other than the corpus
of reddit posts used by Wei et al. [24], the argsme corpus does not contain in-
formation about replies to a post or citations of a post. Thus, the only quality
dimension we aim to quantify is rhetorical quality.

To achieve this, we compute 22 features for each argument. Most of them can
already be found in Wei et al. [24] and Persing and Ng [16]. In the following, the
features are briefly described.

Linguistic competence features aim at quantifying the argument’s author’s lin-
guistic skills: average sentence length, word length, type/token ratio, number of
punctuation marks per sentence, different POS-Tags (whole text), conjunctives
per sentence, modal verbs per sentence, emojis (Use of emojis might coincide
with rather colloquial language and lack of seriousness), non-stopwords ratio.

Sources and Examples: claims are more persuasive when they are supported
by examples and sources. The following rule-based features are intended to cap-
ture them: number of references per sentence, examples per sentence, URLs per
sentence, percentages per sentence, year specifications per sentence




Subjectivity, ad hominem and emotionality: Arguments are more persuasive
when they are presented in an objective manner, without anecdotal evidence or
attacking the opponent personally. We aim to quantify subjectivity and emo-
tionality with the following features:

— number of first person pl. pronouns per sentence indicate subjectivity. We do
not count first person singular words. Persing and Ng [16] argue that objec-
tive arguments frequently start with phrases like “I think...” or “I believe...”,
too.

— number of second person pronouns per sentence may indicate personal at-
tacks

— Sentiment Analysis is able to indicate high emotionality. We use VADER
(Hutto et al. [14]).

— hedge words/phrases per sentence: these phrases may indicate a more po-
lite, indirect and differentiated formulation. We use a list® to identify such
phrases.

— number of definite articles / number of articles: Persing and Ng [16] argue
that a lack of definite articles often means a lack of specifity and objectivity

— average concreteness: Brysbaert et al. [6] provide ratings for word concrete-
ness obtained by crowd sourcing. This feature describes the average degree
of abstractness/concreteness in the argument.

— components of emotions: Words affect our emotions. According to Warriner
et al. [23], there are three components of each emotion:

e valence, i.e. “pleasantness” ([23]), ranges from “happy” to “unhappy”

e arousal is “the intensity of emotion provoked by a stimulus” ([6])

e dominance denotes “the degree of control exerted by a stimulus” ([23])
For each of these emotion components, Warriner et al. provide word ratings.
We build three features: average valence of words in the argument, average
arousal and average dominance.

Before normalizing all features we filter out odd documents based on rules.
To give an example, the average word length in an argument is expected to be
between 2 and 16. Odd documents are assigned the rating 0.0. Such documents
are typically spam or short meta-posts like e.g. “I accept”, “Vote Pro” etc.

As training data we use the Webis-ArgQuality-20 Corpus [13]. It contains
about 1600 arguments from the argsme corpus. Furthermore, it provides ratings
for all three argument quality dimensions as well as for combined/overall argu-
ment quality. These continuous ratings range from -4.0 (not an argument) to
4.0.

We train several several machine learning models: Linear Regression, Decision
Tree Regression and Support Vector Regression (SVR) with different kernels.
For each type of model we train one instance on rhetorical quality and another
instance on combined quality. Both instances’ parameters are optimized via grid
search.

% https://github.com/words/hedges



All models perform rather poorly, confirming that argument quality predic-
tion is a difficult problem. SVR with a quadratic kernel achieves the best results
(MSE of 1.641 for rhetorical and 1.475 for combined quality). Moreover, we train
an ensemble model (Linear Regression) using the predictions of all models as fea-
tures. As expected, it outperforms all single models (MSE of 1.468 for rhetorical
and 1.322 for combined quality).

An interesting detail is that all models, even those trained on rhetorical qual-
ity, perform better in predicting combined argument quality than in predicting
rhetorical quality. In other words, overall quality seems to be easier to grasp
than rhetorical quality, at least with our approach. This hypothesis is statisti-
cally significant for p < 0.01. One explanation may be that some of our features
also capture aspects of dialectical and logical quality: For example, providing
sources to support a claim could indicate logical correctness. Features related to
subjectivity and emotionality might at least be able to suggest low dialectical
quality, as a very emotional and/or subjective post is often unlikely to contribute
to resolving an issue.

Finally, to obtain the desired quality function g : D — [0, 1], we let the trained
models predict the combined quality of every argument in the argsme corpus.
We compute the predictions of the best single model (quadratic SVR trained on
combined quality) and the ensemble model, leading to two candidates gsyr, Gens
for g. Figure 2 shows the distributions of the ratings generated by both models.
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Fig. 2. Distributions of ratings produced by ensemble classifier (gens) and SVR classi-
fier (gsuvr)

We choose ¢, for ¢, even though the SVR model’s MSE is higher than that
of the ensemble method. The main reason for this decision is that there are
almost no “bad” arguments according to ge,s, which is certainly inaccurate.



3.2 Retrieval Model

Like the implementation of args.me we decide to use Apache Lucene for the
indexing and retrieval tasks. We index the extended corpus which is generated
during preprocessing. In the first step of query processing, stopwords are re-
moved from the query. Before results are retrieved, the query is extended using
additional query expansion methods. For the ranking, we implement different
methods. As a baseline, we use Lucene’s BM25 implementation. Furthermore,
we extend the Lucene search core with an implementation of the DPH concept
[4]. These retrieval methods do not consider the quality ratings ¢ of our extended
corpus. To gain a profit from g we perform a reranking. The scoring function for
a document d is given by:

score(d) = a-s'(d) + (1 — a) - q(d) (2)

where s’ is the normalized score of the retrieval model. A reasonable value
of a (o € [0,1]) can be determined empirically. Initially, we set o = 0.5.

3.3 Query Expansion

A query is a short representation of the user’s information need. However, these
few words may not be sufficient to encompass the entire concept that the user
wants to express. This can lead to highly relevant documents not being found by
the retrieval system due to vocabulary missmatch. That is, the user may choose
terms for his query that do not appear in a relevant document. To mitigate this
gap, automatic query expansion methods can be used. In this section we briefly
describe the components of AQE and our implementation.

For our query expansion component we decided to use one simple baseline
approach and two more sophisticated concepts. As baseline, we employ WordNet
to fetch semantically similar words for each individual query term. This method
can not grasp the concept of the entire query as one unit. However, as many of
the queries provided for the shared task only consist of few terms, such as “speed
limit” or “nuclear weapons”, this simple AQE method can potentially provide a
useful enhancement.

The other two expansion procedures both rely on word embeddings. We use
fastText® to obtain vector representations from the argsme corpus. We com-
bine these locally trained representations with pre-trained embeddings offered
by fastText. Then, we adapt a query expansion method as proposed by Diaz et
al. [12]. This model-based expansion procedure searches the word embeddings
for semantically similar terms in order to estimate an alternative to the original
query by interpolating the query language model p, with that of the expansion
language p,+ as follows:

pé (w) = Apg(w) + (1 = X)pg+ (w) (3)

5 https://fasttext.cc/



All newly found terms are then weighted and the best ones (matching the mod-
eled language) are selected to augment the query.

Even though the work presented by Zuccon et al. [26] does not directly focus
on AQE, we also use their insights to realize another expansion method. They
investigate different ways to estimate translation probabilities for terms that
belong to the same language model. Similarly, our goal for AQE is to find words
w that are likely to be "translations” of the initial query terms:

pr(wlg) = Zyeqpi(wlu)p(ulq) (4)

where p;(w|u) describes the probability of translating term u into w which can
be approximated by a normalized cosine similarity.

Naturally, both expansion techniques operate on each query as a whole to in-
corporate their relatedness. Eventually, the expansion terms and their respective
weights are returned to our search core. Note that for the current implementation
only one expansion method is used at a time.

3.4 Clustering and Reranking

A more experimental component of our search engine is the clustering/reranking
module.

In retrieving arguments, not only the argumentative quality of the returned
results is important. Another aspect of an argument search engine’s utility is
the heterogeneity of the returned arguments. In every use case, the user benefits
from receiving a wide variety of semantically different arguments.

A problem of the argsme corpus is that an argumentative document usually
contains more than one argument. Nevertheless, documents may often be seman-
tically similar. Moreover, optimizing heterogeneity can conflict with optimizing
quality. Both goals need to be balanced.

As the Touche task is evaluated using nDCG, we first make sure that our
results are of high quality (w.r.t to the query and the argumentation quality).
Then, the top 8 results are clustered and reranked in order to diversify the top
results.

Semantic clustering is implemented using Latent Semantic Analysis (Deer-
wester et al. [10]) for 3 topics. This provides a vector of size 3 for each of the top
8 documents. Now, the distance dist(dy,ds) = 1—SIM(dy,ds), i.e. dissimilarity
between two documents d; and ds can be described in terms of the 3-dimensional
vectors generated by LSA.

In the following, let R be the ranking and R[i] the document with rank
i in R. Similar to Deselaers et al. [11], we employ a notion of a document’s
novelty. Novelty of a document RJ[i] is related to R[i]'s predecessors in the ranking
R[1]...R[i — 1]:

Now(R[i]) := E,i;llédist(R[i], RJi — k]) (5)
We weight the dissimilarity depending on the number of ranks between R[j] and
R[j — k]: documents should not be similar to their immediate predecessor.



Based on novelties, we define a measure for R’s diversity /heterogeneity:
1
heterogeneity(R) := E;ingov(R[j]) (6)
J

The likelihood that a user actually looks at a document d decreases with d’s rank.
Because of that, our heterogeneity measure weights each document’s novelty
depending on its rank.

Next, heterogenity of a ranking R needs to be balanced with R’s quality. To
achieve this, we compute a reranking R’ of R that maximizes

v * quality(R') + (1 — 7) * heterogeneity(R') (7)

We use nDCG with our retrieval model’s ratings to compute quality(R').
Note that the problem of finding an optimal R’ can be framed as Mixed Integer
Program. However, since we restrict ourselves to reranking only the top 8 doc-
uments, we find an optimal solution using brute force. Table 1 shows the effect
of our reranking on a dummy corpus.

Table 1. Examples for reranking on a dummy subset of the argsme corpus, for different
values of v in Equation 7. In Brackets the dummy quality value for each “argument”.

Initial ranking (y = 1.) v =0.5 v=0

Vote Con! (1.0) Vote Con! (1.0) Vote PRO. (0.625)

Vote Con (0.875) Vote for Con. (0.75) Please extend ... (0.25)
Vote for Con. (0.75) Extend my arg... (0.375)|vote for pro (0.5)

Vote PRO. (0.625) Vote Con (0.875) extend all arg... (0.125)
vote for pro (0.5) Please extend ... (0.25) |Vote Con (0.875)
Extend my arguments. (0.375) vote for pro (0.5) Vote for Con. (0.75)
Please extend all arguments (0.25)|Vote PRO. (0.625) Extend my arg... (0.375)
extend all arguments (0.125) extend all arg... (0.125) |Vote Con! (1.0)

The hyperparameter v € [0, 1] in Equation 7 could be set by the user. Alter-
natively, v could be further investigated in order find a reasonable value. This is
beyond the scope of our project. For the evaluation, we turn off the clustering
component (i.e. set v to 1), because nDCG does not consider heterogeneity.

4 Evaluation and Results

For the final evaluation of our system, we decide to use the combination of DPH
and baseline query expansion. Additionally, we augment the scoring function
with our quality ratings as described in Equation 2 using o = 0.5. The clustering
component is not used, since it can not be expected to have a positive impact on
nDCG scores, as pointed out in Section 3.4. Among the various retrieval models,
DPH should show the best performance according to the findings of Potthast
et al. [17]. Moreover, some quick experiments with manually labelled test data



have shown that among our query expansion methods, the baseline expansion
achieves the most satisfying results.

The result of the final run which was evaluated via tira.io [18] reaches a sound
nDCG@5 of 0.804. For the older version of the corpus, this run was the best
performing among all participants’, indicating that the employed combination
could be suitable to perform argument search tasks. We did not submit a run
for the more recent corpus version.

5 Conclusion and Outlook

We implemented an argument search engine for the argsme corpus. The results,
however, are not very convincing yet. We suppose they could be improved in
future work, considering the following aspects. As the search engine proved to
benefit from our argument quality ratings, these ratings could be further inves-
tigated. More sophisticated features and models could be tested. What is more,
the weighting of the ratings in our retrieval model, i.e. the hyperparameter « in
Equation 2, could be optimized. One of the major downsides of our approach is
that it does not analyse the semantics of potentially relevant documents. Thus,
the precision is often rather low. Future work could tackle this issue. A closer
investigation of the query expansion component (e.g. investigating more queries)
would probably improve our search engine’s results, too. We implement a rerank-
ing component to diversify the top-ranked results. However, we were not able to
evaluate its quality within the scope of this work. What is more, the reranking
component is only implemented in a proof-of-concept style, limited to the top 8
documents.

To conclude, we aimed to address the complex problem of argument retrieval
using several different methods. There is much space for extending and enhancing
our approach in order to improve its performance.
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