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Abstract. Automating the detection of concepts from medical images
still remains a challenging task, which requires further research and ex-
ploration. Since the manual annotation of medical images poses a cum-
bersome and error prone task, the development of concept detection sys-
tem would reduce the burdens of annotation, interpretation of medical
images while providing a decision support system for medical practi-
tioners. This paper describes the participation of the CS department at
Morgan State University, Baltimore, USA (Morgan CS) in the medical
Concept Detection task of the ImageCLEF2020 challenge. The task in-
volves generating appropriate Unified Medical Language System (UMLS)
Concept Unique Identifiers (CUIs) for corresponding radiology images.
We approached the concept detection task as a multilabel classification
problem by training a classifier on several deep features extracted from
using pre- trained Convolutional Neural Networks (CNNs) and also by
training a deep Autoencoder. We also explored a Recurrent Concept Se-
quence generator based on using a multimodal technique of combining
text and image features for recurrent sequence prediction. Training and
evaluation were performed on the dataset (training, validation, and test
sets) provided by the CLEF organizer and we achieved our best F1 scores
as 0.167 by using DenseNet based deep feature.

Keywords: Medical imaging; Image annotation; Deep learning; Concept de-
tection; Multi-label classification

1 Introduction

Diagnostic analysis of medical images such as radiography or biopsy mostly
involve interpretations based on observed visual characteristics. In essence, vi-
sual characteristics or features from images can be mapped to its corresponding
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semantic annotations. Neural networks over the last two decades have been suc-
cessfully modeled to learn such mappings from data [1] and consequently this
paper involves the annotation of medical images to generate condensed textual
descriptions in the form of UMLS (Unified Medical Language System) CUIs
(Concept Unique Identifiers) [2] using the dataset under ImageCLEFmed 2020
concept detection task [3], which is a subset of a larger Radiology Objects in
COntext (ROCO) dataset [4]. The main objective of this challenge involves auto-
matically identifying the presence of concepts (CUIs) in a large corpus of medical
images based on the visual image features. The concept detection task began in
2017 under the ImageCLEF challenge [5] and the participants were tasked with
developing methods for predicting captions and detecting the multilabel con-
cepts over a range of medical and non-medical images in a corpus. For example,
our previous participation [6] in the ImageCLEFmed 2018 challenge involved
the use of LSTM architectures in creating models that approached the concept
detection task by developing a language model that predicts the probability of
the next word (concept) occurring in a text sequence from the features of an
image input and the words (concept) already predicted. This year, the task was
limited strictly to concept detection in radiology images [3]. Evaluation criteria
for the results obtained is given as the F1 score between the predicted concepts
and ground truth concept labels.

1.1 Dataset

The dataset contains 64,753 radiology images from different modality classes as
the training set, 15,970 radiology images as the validation and 3,534 radiology
images from the same modality classes as the test set [3]. The training images are
annotated with 3047 unique UMLS concepts serving as the image captions. The
maximum length of the concept annotation is 140 and the minimum annotation
is 1. The frequency distribution of the 3047 UMLS concepts across the training
images is represented in the Table 1.

Table 1. Concept Frequency in Training set.

Concept Group Frequency

> 1000 22
500 - 999 298
200 - 499 735
100 - 199 704
60 - 100 704
< 59 785



2 Methods

We approached the concept detection task by comparing elementary CUI mul-
tilabel classification and a recurrent CUI sequence generation using extracted
features from varying deep learning architectures. The multilabel classification
involves feeding the outputs from a feature extraction network into a fully con-
nected network to obtain a sigmoid activation output representing the CUI label
predictions.

2.1 Feature Extraction

Feature extraction is a critical component of medical image analysis. The descrip-
tiveness and discriminative power of features extracted from medical images are
critical to achieve good classification and retrieval performances. Instead of using
any hand-crafted features, transfer learning techniques can be used to extract
features of images from a relatively small dataset using pre-trained Convolutional
Neural Network (CNN) models [7].

Visual Feature Extraction To perform deep feature extraction, we chose
Densenet169 [9] and ResNet50 [8] as our pre-trained CNN models. These mod-
els have been trained on the ImageNet [10] dataset consisting of 1000 categories.
The Densenet architecture consists of dense blocks of convolution layers - with
consecutive operations of batch normalization (BN)[14], followed by a rectified
linear unit (ReLU) [15], which provides direct connections from any layer in the
block to all subsequent block layers [8]. ResNet, short for Residual Networks is a
classic neural network, which is implemented with double - or triple - layer skips
that combine features within this residual block of layers and contain nonlinear-
ities (ReLU) and batch normalization in between [8]. We used the Densenet169
and ResNet50 pre-trained models which is a 169 layered dense network and a
50 layered residual network respectively. Both models have been trained on 1.28
million images [8, 9]. For feature extraction, both models are modified to exclude
the final 1000-D classification layer and the output before this classification layer
is saved. To obtain our deep features, the input images are first reduced to the
required input size of 224×224 and further preprocessed using the Keras [16] pre-
process input function, which preprocesses the input into the format the model
requires. Since the DenseNet model had been modified to exclude the final 1000-
D classification output, a 4096-D feature vector is obtained as the output from
the last Average Pooling layer. Also, a 2048-D feature vector was obtained by
passing the 224× 224 input images through the modified pre-trained ResNet50
model. The extracted features are utilized for transfer learning with multilabel
and recurrent CUI sequence classification models built on the Densenet features
and a feature fusion of the Densenet and Resnet extracted features.

Feature Fusion Feature fusion methods have been demonstrated to be ef-
fective for many computer vision-based applications [11]. Combining features



learned from various architectures creates an expanded feature learning space.
We combined the features obtained from the pretrained DenseNet169 and the
ResNet50 models by computing the partial least square canonical correlation
analysis (PLS-CCA) [17] of both feature vectors, the canonical correlation com-
putes a linear combination of the feature elements from both vectors such that
the correlation between the vectors is maximized. Before computing the PLS-
CCA, the ResNet50 based deep features are resized from the 2048-D vector to
4096-D output. Since the PLS-CCA required both vectors to be the same dimen-
sion the resized 4096-D vector is obtained by doubling each element from the
2048-D vector. The PLS-CCA is computed by combining the 4096-D DenseNet
with the resized 4096-D Resnet based deep features. For feature vectors X (4096-
D DenseNet) and Y (4096-D Resnet), first and second component vectors u and
v are obtained such that the correlation corr(X,Y ) is maximized [17]:

corr((X,u), (Y, v)) =
ut ·Xt · Y · v√

ut ·Xt ·X · u
√
vt · Y t · Y · v

(1)

Where, u = a1X1, a2X2 · · · anXn and v = b1Y1, b2Y2 · · · bnYn.
Vectors u and v are obtained by computing the weight vectors [a1, a2 · · · an]

and [b1, b2 · · · bn]. We selected the first component 4096-D feature vector from
the PLS-CCA computation. The result obtained is representative of the features
from the maximized correlation of the DenseNet169 and ResNet50 features.

Fig. 1. Encoder-Decoder Architecture

Feature Extraction based on Autoencoder We also use an encoder-decoder-
based framework (Fig. 1) to extract deep feature representations unique to the
dataset. Autoencoders are a type of unsupervised neural network (i.e., no class
labels or labeled data) that consist of an encoder and a decoder model [12]. When
trained, the encoder takes input data and learns a latent-space representation



of the data. This latent-space representation is a compressed representation of
the data, allowing the model to represent it in far fewer parameters than the
original data.

Fig. 2. Multilabel Classification Process Diagram

The encoder region contracts normalized pixel-wise data from input images
into smaller dimensional feature maps using sequential layers of 2D convolutions,
batch normalization and ReLU activation. The output from the convolutional
blocks is passed to a fully connected layer that represents a 256-D feature space.
The decoder expands the 256 fully connected output by applying transposed
convolutions that up sample the features back to the original input size. Batch
normalization and ReLU activation are also added at each step of the transposed
convolution sequence and the encoder filter sizes mirror the decoder filter sizes.
The 256-feature output from the encoder is given as the auto-encoded deep
feature representation of our input image. The Autoencoder was trained using
the Adam optimizer [18] and a mean squared error loss on the ROCO training
dataset for 20 epochs with a batch size of 50. The initial Adam learning was also
set to 0.001.

Text Feature Extraction The deep text features are extracted from the image
concepts by learning and mapping deep feature embeddings that represent the
sequence of image concepts. The embeddings are learned during training when
a fixed length of CUI sequence is passed to a neural embedding layer. Before
passing the CUI sequences to the embedding layer, for each input image, the
image concept sequence is tokenized using the Keras text preprocessing library.
Since a fixed length of tokenized CUI sequence was required for the embedding
layer the differences in CUI sequence length for different input images was ac-
commodated by zero-padding the tokenized sequence up to the maximum CUI
sequence length of 140. During training, the embedding layer uses a mask to
ignore the padded values and its output is passed to a long short-term memory



(LSTM) layer [13] with 256 memory units. The output from the text encoding
block of the embedding and LSTM layer is a 256-D vector holding recurrent
information that may be mapped back to the input concept sequence.

Fig. 3. Recurrent CUI Sequence Generator

2.2 Multi-label Classification

The high volume of classification (CUI) labels (3047) and imbalance in the label
frequency results in a huge bias towards the multi-label classification problem.
The concepts set was split into groups based on the concept frequencies (Table
1) and separate models were trained for classification within the concept set
groups. The DenseNet feature, fused DenseNet-ResNet feature and the Auto-
encoded feature are passed to a stack of fully connected layers for the multi-
label prediction in the different dataset groups as shown in Fig. 2. The fully
connected network is composed of Dense layers stacked together to learn weights
for a final sigmoid classification of the concept labels. The expected input for
the fully connected classifier is the deep encoded feature vector corresponding to
an image while the output is the binary multi-label classification of the concepts
associated with the input image features.

The fully connected classifier was trained over 20 epochs with a learning rate
of 1e− 3 for an Adam optimizer. Since the concept set was split into groups and
a different classifier trained for each concept group the overall CUI prediction



for an input image involves the combination of the predictions from all concept
group classifiers.

2.3 Concept Sequence Generation

The CUI sequence generator involves training a recurrent classifier on a fusion
of the extracted image features and the embedded textual features. The text
features are obtained by learning the embeddings at training time from the em-
bedding layer stacked with a LSTM layer to give a 256-D text feature output.
Since concatenating the image and text feature vectors would require equal fea-
ture vector lengths, to combine the 256-D text features and the 4096-D image
features, the 4096-D image feature is down-sampled to 256 by passing it through
a dense layer with 256 units to give a 256-D feature output. The 256-D image
feature and 256-D text feature is passed to a concatenation layer to obtain a 256-
D output that is passed to a final dense classification layer for the prediction of
the next word in the CUI sequence. The CUI sequence prediction begins when a
start signal is passed as the first element in the CUI sequence and the prediction
ends when a stop signal is predicted by the classification model as shown in Fig.
3. The recurrent classifier was trained over 30 epochs with a learning rate of
1e− 3 for an Adam optimizer and a batch size of 50.

3 Results and Discussions

Using the provided test dataset, multiple runs were submitted based on the
multi-label classification with DenseNet, DenseNet-ResNet and Auto Encoded
features. The result from the recurrent concept sequence generator with DenseNet
encoded features was also submitted and the F1 evaluations are represented in
Table 2. Our best result with a F1 score of 0.167 was obtained from the multi-
label classification of DenseNet feature.

Table 2. F1 scores of submitted run (test set).

Run Method F1 Score

MSU dense fcn Densenet169 + multilabel classification 0.167
MSU dense resnet fcn 1 (Densenet169 + Resnet50) + multilabel classification 0.153
MSU dense feat Densenet169 + multilabel classification 0.139
MSU dense fcn 2 Densenet169 + multilabel classification 0.094
MSU dense fcn 3 Densenet169 + multilabel classification 0.089
MSU autoenc fcn Autoencoder + multilabel classification 0.063
MSU lstm dense fcn Desnet169 + Recurrent concept generator 0.062

1. MSU dense fcn: This run utilized a multi-label classification model with
the training parameters (described in section 2.2) based on the features ex-
tracted from a pre-trained DenseNet169. The threshold for the prediction



score is set at 0.4 for the multi-label sigmoid classification which ranged
from 0 to 1. Concept labels with prediction scores less than 0.4 are consid-
ered irrelevant to the input image.

2. MSU dense resnet fcn 1: In this run, the PLS-CCA of DenseNet169 and
ResNet50 features ar computed to obtain fused features for the multi-label
classification. The prediction score threshold for this run is also set at 0.4
for the final multi-label sigmoid classification

3. MSU dense feat, MSU dense fcn 2, MSU dense fcn 3: These runs
are variations of the MSU dense fcn run with different prediction score
thresholds of 0.5, 0.3 and 0.25 respectively.

4. MSU autoenc fcn: The encoder-decoder model is utilized for this run to
obtain the encoded features of the input images. The multi-label classifi-
cation model (with parameters same as in runs 1,2 and 3) is trained on
the Autoencoded features. The threshold for the prediction score from the
classification model is also set to 0.4.

5. MSU lstm dense fcn: This run involved the recurrent generation of con-
cepts by utilizing image features extracted from DenseNet169 combined with
embedded concept sequences as described in 2.3. The obtained results clearly
show the concept prediction challenge as more of a classification problem
than a sequence generation task since all multi-label classification approaches
performed better.

4 Conclusions

This article describes the strategies of the participation of the Morgan CS group
for the concept detection tasks of ImageCLEF2020. We performed multi-label
classification of CUIs in different deep feature spaces. We achieved comparable
results considering the limited resources (computing and memory power) we had
at the time of the submission. Since the ROCO data set is grouped into different
modalities, we plan to perform separate multi-label classification for the different
modalities in future.
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M. Friedrich, A. Garćıa Seco de Herrera, V. Ninh, T. Le, L. Zhou, L. Piras, M.
Riegler, P. Halvorsen, M. Tran, M. Lux, C. Gurrin, D. Dang-Nguyen, J. Chamber-
lain, A. Clark, A. Campello, D. Fichou, R. Berari, P. Brie, M. Dogariu, L. Daniel
S, tefan, M. Gabriel Constantin : Overview of the ImageCLEF 2020: Multimedia
Retrieval in Lifelogging, Medical, Nature, and Internet Applications In: Experimen-
tal IR Meets Multilinguality, Multimodality, and Interaction. Proceedings of the
11th International Conference of the CLEF Association (CLEF 2020), Thessaloniki,
Greece, LNCS Lecture Notes in Computer Science, 12260, Springer, September 22-
25, (2020).

6. M. Rahman : A cross modal deep learning based approach for caption prediction and
concept detection by CS Morgan State. Working Notes of CLEF 2018 - Conference
and Labs of the Evaluation Forum, Avignon, France, September 10-14, 2018, CEUR
Workshop Proceedings, 2125, CEUR-WS.org, (2018)

7. K. Simonyan, A. Zisserman: Very Deep Convolutional Networks for Large-Scale
Image Recognition. CoRR, abs 1409.1556 (2014)

8. K. He, X. Zhang, S. Ren and J. Sun :Deep Residual Learning for Image Recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las
Vegas, NV, pp. 770–778, (2016) https://doi.org/doi: 10.1109/CVPR.2016.90.

9. G. Huang, Z. Liu, L. Van Der Maaten and K.Q. Weinberger :Densely Connected
Convolutional Networks. 2017 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), Honolulu, HI, pp. 2261–2269, (2017) https://doi.org/doi:
10.1109/CVPR.2017.243.

10. J. Deng, W. Dong, R. Socher, L. Li, K. Li and L. Fei-Fei:ImageNet: A
Large-Scale Hierarchical Image Database. 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition, Miami, FL, pp. 248-255, (2009).
https://doi.org/10.1109/CVPR.2009.5206848

11. T. Akilan, Q. M. J. Wu, Y. Yang and A. Safaei :Fusion of transfer learning features
and its application in image classification. 2017 IEEE 30th Canadian Conference
on Electrical and Computer Engineering (CCECE), Windsor, ON, pp. 1–5, (2017)
https://doi.org/doi:10.1109/CCECE.2017.7946733.

12. P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio and P. Manzagol: Stacked denois-
ing autoencoders: Learning useful representations in a deep network with a local
denoising criterion. The Journal of Machine Learning Research. 11, pp. 3371–3408
(2010)

13. S. Hochreiter and J. Schmidhuber : Long short-term memory. Neural Computation.
9(8), pp. 1735–80 (1997), https://doi.org/DOI: 10.1162/neco.1997.9.8.1735

14. S. Ioffe and C. Szegedy: Batch Normalization: Accelerating Deep Network Train-
ing by Reducing Internal Covariate Shift. ICML’15: Proceedings of the 32nd In-
ternational Conference on International Conference on Machine Learning. 37, pp.
448—456, (2015)



15. R.H.R. Hahnloser, R. Sarpeshkar, M.A. Mahowald, R.J. Douglas and H.S.
Seung: Digital selection and analogue amplification coexist in a cortex-
inspired silicon circuit. Nature. 405, pp. 947–951 (2000). https://doi.org/doi:
https://doi.org/10.1038/35016072

16. F. Chollet: keras, GitHub. https://github.com/fchollet/keras. Last accessed
29 Jul 2020

17. H. Hotelling : Relations Between Two Sets of Variates. in Breakthroughs in Statis-
tics: Methodology and Distribution, S. Kotz and N. L. Johnson, Eds. New York,
NY: Springer, pp. 162—190 (1992)

18. D.P. Kingma and L.J. Ba : Adam: A Method for Stochastic Optimization.
arXiv:1412.6980 [cs.LG] International Conference on Learning Representations
(ICLR), (2015)


