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Abstract Authorship verification, the task of identifying if two text excerpts are
from the same author, is an important part of evaluating the veracity and au-
thenticity of writings and is one of the challenges for this year’s PAN @ CLEF
2020 event. In this paper, we describe our PAN authorship verification submis-
sion system, a neural network that learns useful features for authorship verifica-
tion from fanfiction texts and their corresponding fandoms. Our system uses the
Longformer, a variant of state-of-the-art transformer models, that is pre-trained
on large amounts of text. This model combines global self-attention and local
self-attention to enable efficient processing of long text inputs (like the fanfiction
data used for PAN @ CLEF 2020), and we augment the pre-trained Longformer
model with additional fully-connected layers and fine-tune it to learn features that
are useful for author verification. Finally, our model incorporates fandom infor-
mation via the use of a multi-task loss function that optimizes for both authorship
verification and topic correspondence, allowing it to learn useful fandom fea-
tures for author verification indirectly. On a held-out subset of the PAN-provided
“large training” set, our Longformer-based system attained a 0.963 overall verifi-
cation score, outperforming the PAN text compression baseline by 32.8% relative.
However, on the official PAN test set, our system attained a 0.685 overall score,
underperforming the PAN text compression baseline by 7.6% relative.

1 Introduction

As more of us rely on online sources for our news and information, it becomes in-
creasingly important to vet their veracity and authenticity. One key component of this
vetting process is identifying the authorship of the information. Knowing the author of
the information can help us better ascertain its trustworthiness which is critical in light
of the growing amount of online misinformation propagated by so-called trolls, bots,
and other online agitators. There has been a lot of prior work on computational and sta-
tistical methods for determining the authorship of text writings based on writing style:
word choice, punctuation usage, idiosyncratic grammatical errors, and in more recent
digital texts the use of emoticons. One vibrant community in which these computa-
tional approaches to authorship identification are developed and evaluated is PAN [1].
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PAN hosts scientific evaluations for digital text forensics and stylometry, and one of
this year’s tasks in PAN @ CLEF 2020 is that of authorship verification [12], where the
goal is to determine whether two separate text excerpts come from the same author or
not. This notebook paper describes our team’s final submission system and some of the
experiments and alternative systems that we developed for the authorship verification
challenge.

PAN @ CLEF 2020 builds off of earlier evaluations in Authorship Identification
tasks [13] that used fanfiction [5] as the source material for the challenge. Milli, et
al. [18] describes fanfiction as “fan-created fiction based on a previously existing, orig-
inal work of literature.” Fanfiction is derived from the original work but extends or
changes certain aspects of the fiction like providing more development of minor char-
acters, adding additional characters, modifying the relationships between characters,
altering endings, etc. While fans may strive to write in the style of the original work’s
author, it is interesting to see if subtle writing style differences still make it possible
to distinguish between the original and fan authors as well as between different fan
authors. Our goal is to develop a system that can take two excerpts of fanfiction and
determine whether they come from the same fan or not. In addition to the text in these
excerpts, we are also given the fandom from which these excerpts derive.

Our approach is to use neural networks to learn text and fandom embeddings that
are useful for authorship verification. Our final submission system is built using a vari-
ant of state-of-the-art transformer models [26] that have recently been setting the pace
on a wide variety of natural language processing tasks such as translation, question-
answering, cloze tasks, and language modeling [8]. We use the Longformer model [3]
pre-trained on about 6.5 billion tokens of text from multiple online sources including
English Wikipedia, real news outlets, book versions of movies, and a subset of Com-
monCrawl dataset. The Longformer is a computationally efficient transformer model
for long text excerpts like the ones found in fanfiction. Our system augments the Long-
former with additional fully-connected layers for the authorship verification task as well
as a complementary fandom correspondence task.

The key contributions that we will cover in our PAN Notebook paper are the fol-
lowing:

1. We train our neural network models to incorporate auxiliary fandom information
using a multi-task loss function that combines both authorship and fandom corre-
spondence classification losses.

2. We investigate the effectiveness of large-scale text pre-training for authorship ver-
ification by building a system using the state-of-the-art Longformer model [3], a
transformer-based model [26] that efficiently models long text excerpts such as the
fanfiction data in the PAN 2020 Author Verification Challenge.

3. We compare our word-based Longformer system with two PAN-provided baselines
and a character-based convolutional neural network ((CN)?) with self-attention sys-
tem.



2 Related Work

Authorship verification and authorship attribution are related subfields within the larger
field of Forensic Authorship Analysis. Authorship verification seeks to determine if
two different writings are from the same author, while authorship attribution’s goal is
to identify who wrote a given writing. Both of these fields rely on the extraction of use-
ful text features for discriminating between different authors. Traditionally, researchers
have relied on linguistic style or stylometric features, such as the counts and frequency
of function words, average length of sentences, part-of-speech, characters, punctuation,
whitespace usage, and other low-level features [25].

More recently, with the advent of many successful end-to-end deep learning systems
in computer vision, speech recognition, and natural language processing, researchers
have begun exploring the idea of learning what features are most useful for both ver-
ification and attribution. Many researchers have explored using convolutional neural
networks (CNNs) and have successfully used them to extract text features [15] that
are helpful for attribution [10,23,24,2], where the CNNs learn author discriminative n-
grams of words and characters. In [10], researchers learn embeddings for both words
and parts-of-speech (POS) tags and show improved generalization performance. Word
level features are good at capturing an author’s word usage style and oft used phrases,
but they ignore other writing nuances such as punctuation, whitespaces, abreviations,
and emoticons. Character-based CNNs excel at modeling these aspects; [23] shows that
character based CNN perform especially well for large scale authorship attribution as
the number of authors increase. One of the systems that we explored for PAN, our
Character-based Convolutional Neural Network (CN)?, extends the work on character-
level CNNs by combining CNNs with self-attention [26] layers to hone in on the most
discriminative combinations of character-level n-grams.

Computational and neural network-based approaches for Natural Language Pro-
cessing (NLP) have seen a spike in the growth of their popularity mostly due to the ef-
fectiveness of their usefulness across a wide-range of NLP tasks. Simple word-embedding
techniques like Word2Vec [17] and GloVe [20], learn to “embed” or project words into
continuous feature vector spaces such that related words are proximal in feature space.
Subsequent classifiers can then use these pre-trained embeddings for NLP tasks such as
sentiment analysis, syntax parsing, semantic role labeling, etc. More recently, sophis-
ticated language models, some built using recurrent neural networks, like ELMO [21],
and others derived from the self-attention based Transformer models [26] making them
well-suited for efficient training on massive amounts of data, have attained state-of-
the-art performance on diverse sets of NLP tasks [9,8,16,3]. These models, trained on
increasingly large “Internet Scale” data (as in the case of [8]), learn features that can rep-
resent long sequences of text, and these features are then used in downstream NLP tasks.
For PAN, we wanted to see if these state-of-the-art language models pre-trained on large
amounts of data could be used for the authorship verification task. In section 3.4, we de-
scribe our word-based system that uses the Transformer variant specifically developed
to efficiently model long text excerpts like fanfics called the Longformer [3] which is
available through the Hugging Face’s excellent Transformer repository [27].

Many authorship verification systems have explored architectures other than CNNs
and Transformers. Some have sought to learn features using autoencoder-inspired ar-



chitectures from a variety of word and character n-grams and POS [11]. Recurrent Neu-
ral Networks (RNN) have also been successfully used. One particularly promising ap-
proach is the work of Boenninghoff, et al. [7], who use a Siamese Network setup for
transforming pairs of text excerpts to extract authorship features that can be compared
for determining whether the two excerpts are from the same author. Their Hierarchical
Recurrent Siamese Neural Network uses two Long Short-Term Memory (LSTM) lay-
ers trained using a modified contrastive loss function that seeks to project text from the
same author to nearby locations in feature space.

Finally, this year’s PAN baseline systems are two simple, yet effective approaches.
The “TFIDF” baseline computes the term frequency-inverse document frequency nor-
malized counts of character tetragrams of the pair of text excerpts, and then uses the
cosine similarities between them as an authorship verification score. The “Compress”
baseline is an adaptation of [6] to the verification task and uses a text compression tech-
nique based on Prediction by Partial Matching to compute cross-entropies between the
text pair for attributing authorship. According to PAN [1], “The mean and absolute dif-
ference of the two cross-entropies are used by a logistic regression model to estimate a
verification score in [0,1]”. This technique follows similar work using text compression
for building authorship profiles in [14].

3 Methodologies

Our work explores neural networks as a means for extracting discriminative features
directly from the text without any explicit feature engineering. Towards this end, we
explore two models: Character Convolutional Neural Network (CN)?, and Longformer.
More detail about each model will be given in Section 3.3 and Section 3.4.

At a high level, there are three components to our approach: text feature extraction,
topic embedding, and final classification. Of these three, only the text feature extraction
changes depending on which of the two models is being used. To embed the fandoms',
we apply an embedding layer E},,;. that maps each fandom identifier to a 512 di-
mensional vector. Then, the topic embeddings are combined with the text features and
passed to two multi-layer perceptrons Mgy inor and My for authorship verification
and topic correspondence respectively. The whole process is outlined in Figure 2 for
the (CN)? model.

3.1 Tokenization

Depending on which model is being used for text feature extraction, our tokenization
differs:

1. (CN)? - This model looks at the text from the standpoint of characters, including
all punctuation and white-space as tokens. This model can thus focus more on the
syntactic quirks of each author rather than the semantic meaning. The size of the

"' In this paper we refer to fandoms as “topics™ interchangeably since the fandom of a piece of
writing can roughly be considered to be its topic.
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Figure 1. This is an example of how we prepared the input for each network. In (CN)?, we take
5 random windows from each pair, map each character to its corresponding index, and stack all
windows on top of each other. In Longformer, we take one random window from each document,
map each word to its corresponding index, concatenate both windows side by side separating it
with the <SEP> token and prepend the <CLS> token.

character vocabulary is 2,500 and 4, 800 for the small and large version respec-
tively. In the case where a character in the validation set in unseen, we use an
“unknown” token.

2. Longformer - This model looks at the text from the standpoint of words and can
be thought of as placing more emphasis on the semantic meaning and particular
word combinations. Here, we tokenize our document using ROBERTa’s tokenizer
which has a vocabulary of size 50,265 tokens. More detail about this tokenizer can
be found in [16].

3.2 Model Input

Because the average length of the fanfiction excerpts is about 20,000 characters long
making it difficult for our models and their intermediate feature representations fit in
GPU memory, we chose to use multiple random windows from each excerpt as input.
The number and length of random windows varies depending on the model being used:

1. (CN)? - Uses 10 random windows, 5 from each pair, each composed of 1000 char-
acters.

2. Longformer - Uses 511 words from each pair, these are then separated using the
special <SEP> token, and the classification token <CLS> is prepended to learn the
document features that are most beneficial for authorship verification. See Figure 3
and Section 3.4 for more information.

Figure 1 shows an example of how we prepare the fanfiction documents for input to
our authorship verification systems.



3.3 Character Convolutional Neural Network + Recursive Self Attention
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Figure 2. Architecture diagram for the (CN)? system. Five sets of random 1000-character win-
dows are sampled from each input text excerpt and sent into the (CN)? network. We embed the
topic (i.e., fandom) information and fuse it with our text feature representations learned by the
(CN)? network. Finally, the multilayer perceptrons, Mauihor and Mi,pic predict author verifica-
tion scores and topic correspondence scores respectively.

As mentioned previously, the (CN)? model looks at the document from the stand-
point of characters. For input, we take in a set of 10 random windows, 5 from each
document. When each random window is embedded, we stack them on top of each
other along the channel dimension. Then, 1-D convolutions are applied over n-grams
of size one through five after which we maxpool over the length dimension. For each
n-gram, there are 512 different convolutional filters, and these filters essentially learn
the character n-grams that are most useful for authorship verification. Letting the output
of each 1-D convolution and maxpool be called C1, Cs, - - -, C5, where (' is the output
of the 1-D convolution and maxpool that looks at unigrams and C, - - - , C'5 are the ones
from higher order n-grams, we define an operation we call Recursive Self Attention:

out = SA(Cs & SA(Cy @ SA(C3 & SA(C, & C1)))) 1)

Where @ is the concatenation operation, and SA is the Self-Attention operation.
This allows the network to learn features in a hierarchical manner starting from the
smallest n-grams to the highest. Finally, the output of this process is passed through
a fully connected layer to generate the final documents’ feature vector of size 512.
The documents’ features are then concatenated with the fandom embeddings forming
a composite feature vector F', which is then sent to two separate two-layer multilayer
perceptrons: one for learning the probability that the two documents are from the same
author and the other for the probability that they come from the same topic (i.e., the
fandom of the fanfic excerpt). The system architecture is shown on Figure 2.



3.4 Longformer
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Figure 3. Architecture diagram for the Longformer system. Two sets of random 511-word
windows are sampled from each input text, concatenated together with a separator token and
prepended with a classification token. These are sent into the Longformer network. We embed
the topic information and fuse it with our text feature representations embodied by the classifica-
tion token output by the Longformer network. Finally, the multilayer perceptrons, Mg.¢hor and
M:opic predict author verification scores and topic correspondence scores respectively.

The Longformer [3] is an extension of the Transformer [26] which has achieved
state-of-the-art results in many natural language tasks. The Longformer has the ad-
vantage of being pre-trained on approximately 6.5 billion word tokens and sets state-
of-the-art results on Wiki-Hot and Trivia-QA [3]. Whereas the original Transformer
architecture computed self-attention in O(n?) time, where n is the length of the input
sequence, the Longformer architecture introduces sliding window self-attention which
scales linearly instead of quadratically. The main insight is to compute the self-attention
locally instead of globally. Given a fixed window size of w, each token attends to %w on
each side thus resulting in an operation that can be computed in O(nw). Both the global
self-attention mechanism and the sliding window self-attention can be combined so as
to integrate both global and local context into the computation. This allows the Long-
former to take inputs that are much larger than those previously possible. See Figure 3
for a diagram of the architecture.

We continue training from the weights of the RoOBERTa model released by Beltagy,
et al. [3]. The weights of the embedding layer and the weights of the first ten encoder
stacks are frozen, only leaving the last two Encoder stacks for fine-tuning. We use a
local attention pattern with w = 512 for every token except the CLS token for which
we use a global attention pattern as in the original Transformer architecture. We take a
random window consisting of 511 words from each author, these words are then tok-
enized and the input to the model is “<CLS> <Excerpt 1 Tokens> <SEP> <Excerpt 2



Tokens>". Where CLS is the classification token and SEP is the separator token found
in the original BERT [9] architecture. Finally, the embedding of the CLS token of size
N x 768 is taken as our documents’ features, and the rest of the model flow follows as
in the (CN)? approach. Our Longformer system is shown in Figure 3.

3.5 Multi-Task Loss Function

During training, our models optimize two objectives: authorship verification and topic
correspondence. The joint loss function may be written as follows:

1
L(F,a,t) = N Z BCE(0(Mauthor(F3)), ai) + BCE(0(Miopic(F3)),t:)  (2)
i=1

Where N is the number of samples, F' € RN=3D are the features extracted from the
model, a € {0, 1} are the author labels, and ¢ € {0, 1} are the topic labels. The label a;
is 1 if the text pair is written by the same author and 0 otherwise; ¢ is analogous to a but
for topic correspondence. Given the features F', we map them to authorship verification
scores and topic correspondence scores using separate two-layer multilayer perceptrons
Myuihor and My, respectively. These scores are then bounded between zero and one
through the use of the sigmoid function o.

BCE is the binary cross-entropy loss function here defined for one sample:

BCE(x,y) = —ylog(x) — (1 —y)log(1 — x) 3)
Where « is a probability, and y € {0, 1} is the label.

3.6 Scoring

After training, the output of the neural networks My thor and Myopi. approximate the
posterior probabilities of the two excerpts being from the same author and being from
the same topic respectively. We use the same-author posterior probability, the output of
M uthor, as our authorship verification score and can be thresholded at 0.5 to decide
whether the pair of fanfic excerpts are from the same author or not.

4 Experimental Setup and Results

4.1 Metrics

To evaluate our model, we used the script provided by the PAN organizers. This script
implements four metrics: AUC, F1-Score, C@1, and F_0.5u. C@1 [19] and F_0.5u [4]
are relatively new and have different properties. C@1 is a version of F1-score that re-
wards the system for leaving difficult problems unanswered, i.e., when the verification
probability to be exactly 0.5. In the case where there is a balance between correct an-
swers and non-decisions this metric approximates the traditional accuracy computation.
If the model is unsure about too many samples, the score tends towards zero.



F_0.5u places more importance on documents that come from the same author (i.e.,
true positives). This is in contrast to C@1 which treats both positive and negative ex-
amples with equal importance. Because of this, in F_0.5u the unanswered samples are
treated as false negatives resulting in worse performance for models that leave a lot of
samples unanswered. Finally, F_0.5u weights true positives higher compared to false
positives and false negatives. Although both C@1 and F_0.5u interact with unanswered
samples differently, we didn’t map any scores to 0.5 and simply used the raw same-
author posterior probability as our verification score.

4.2 Dataset

The PAN Authorship Verification 2020 datasets come in two flavors: small and large.
Each dataset was built by scraping fanfiction writings from fanfiction.net. Pairs of fan-
fictions along with their respective topic (fandom) were provided for training with the
classification of positive (same author) or negative (different authors) as ground truth.
For training our models, we used both the small and large versions of the dataset with
our final submission being based upon a model that was calibrated on the large dataset.

The differences between both datasets is highlighted in Table 1. There are 52, 655
samples in the small dataset and 278, 169 in the large dataset, thus the large dataset con-
tains about 5.28 times more samples. In terms of document length, the average number
of characters is approximately 21,400 and the split between negative and positive sam-
ples is close to 50% on both datasets. Finally, both the small and the large dataset share
the same 1, 600 fandom:s.

To validate our approaches, we split both the small and large dataset into training
and validation splits. To construct these splits, we performed the following steps:

1. Separate the positive and negative samples from each set.

2. Randomly choose 70% of the negative samples for the training set, and the remain-
ing 30% for the validation set.

3. We pick 15% of the authors randomly and use their positive samples in our valida-
tion set. If two or more positive pairs existed, we used half for our training set and
the rest for the validation set.

4. The positive samples of the remaining 85% of authors are used in the training set.

4.3 Results

Tables 2 and 3 show our evaluation results of the baseline systems, (CN)? and Long-
former, on the validation set for the small and large datasets respectively. Comparing
(CN)? and Longformer against the Compress Baseline on the small dataset (Table 2),
both models see an improvement on every metric except (CN)? on AUC. Overall, (CN)?
outperforms the baseline by 5% absolute, while the Longformer model outperforms it
by 14.5%. On the large dataset (Table 3), the improvement is even more pronounced.
(CN)? achieves an improvement of 12.7% while Longformer achieves an improvement
of 23.8%. Both (CN)? and Longformer benefit from having more data available which
highlights the possibility of further improving results by the addition of more data.



Table 1. PAN’s authorship verification statistics: small and large version.

Dataset Version Small Large
Average Size of Document (Character)| 21,441 21,428
Size of Character Vocabulary 2,542 4,811

Number of Negative Examples 24,767 127,787
Number of Positive Examples 27,834 147,778

Number of Pair Train Split 37,147 196,951
Number of Pair Validation Split 15,454 78,614
Total Number of Pairs 52,601 275,565
Number of Topics 1,600 1,600
Number of Authors 52,655 278,169

Table 2. Small dataset validation results (%).

Model AUC C@1 FO0.5u F1 Score Overall
TFIDF Baseline  0.789 0.731 0.699 0.7441 0.747
Compress Baseline 0.806 0.74 0.701 0.782 0.757
(CN)? 0.803 0.804 0.809 0.812 0.807
Longformer 0.898 0.897 0.914 0.898 0.902

Given these results, we chose the Longformer system trained on the large dataset as
our submission for the TIRA evaluation system [22]. Unfortunately, as can be seen in
Table 4, the model didn’t generalize well to the test dataset.

5 Discussion

From the results we see that Longformer clearly outperforms both (CN)? and the PAN
baselines on our own held-out validation set. We surmise that there are three reasons
why the Longformer architecture won out over (CN)? on this held-out validation set:

1. It was pre-trained on about 6.5 billion tokens from multiple online sources.

2. Its deep architecture allows the model to learn more distant relationships of el-
ements in the text than just n-grams. In contrast, (CN)? is limited to exploiting
relationships of n-grams of size 1 through 5.

3. Because the grammar of fanfictions are relatively clean, the word-based Long-
former is more suited to the task as it exploits semantic relationships between the
words and the structure of the sentences. On the other hand, (CN)?, focuses more
on the syntactic features, thus we hypothesize that character-level features would
be better in a dataset with shorter, more informal excerpts where words aren’t nec-
essarily written correctly.

As of the writing of this paper, we’re still unsure as to why the Longformer model
didn’t generalize on the test set as can be seen in Table 4. We conjectured that our
validation set may not have sufficiently exhibited “the significant shift in the relation
between authors and fandoms” in the test set from those seen during training. To test



Table 3. Large dataset validation results (%).

Model AUC C@1 F0.5u F1 Score Overall
TFIDF Baseline  0.779 0.723 0.691 0.759 0.738
Compress Baseline 0.766 0.707 0.674 0.753 0.725
(CN)? 0.851 0.852 0.849 0.858 0.852
Longformer 0.964 0.964 0.96 0.965 0.963

Table 4. Test dataset results (%).

Model AUC C@1 F0.5u F1 Score Overall
Longformer 0.696 0.64 0.655 0.748 0.685

this hypothesis, we created a new dataset split such that the (author, fandom) pairs seen
in the validation set are unseen in the training set. For example, if an author wrote in
5 fandoms, we used his/her writings from 4 fandoms in the train set and reserved the
last for the validation set. This new validation set allowed us to test the most extreme
form of (author, fandom) shifts where there is no overlap between (author, fandom)
pairs between training and validation sets. Using this new train/validation data split, the
Longformer model achieved an overall score of 93.6% on the validation set. While this
score is less than that achieved in our previous validation set, it is still high, and thus
fandom shift does not fully explain our Longformer model’s failure to generalize on the
official test set.

6 Conclusion

In this paper, we described our approach to the authorship verification task in the PAN
@ CLEF 2020 challenge based on using neural networks for learning discriminative
features from the text as well as the fandom from which the text derives. We compared
two different neural network architectures. The first architecture, (CN)?, uses a convo-
lutional stack followed by a recursive self-attention stack to simultaneously learn useful
character n-grams and their combinations that are most useful for determining whether
the excerpt pair is from the same author. The second architecture leverages the state-of-
the-art text features learned by the Longformer model, pre-trained on text with about
6.5 billion words, and we fine-tune the last two encoder stacks to learn useful features
for authorship verification. By leveraging a powerful text modeling architecture like
the Longformer, we sought to investigate the effectiveness of a transfer learning ap-
proach that has shown great results for other NLP tasks. Both systems learn a separate
set of embeddings for the fandoms of both fanfic excerpts. The text based features and
the fandom features are concatenated and used to predict authorship and fandom cor-
respondences. We used a multi-task loss function to simultaneously optimize for both
authorship verification and topic correspondence, allowing it to learn useful fandom
features for author verification indirectly.

For our validation testing, we partitioned each of the PAN provided “small” and
“large” training sets into our own training and validation sets. We evaluated our (CN)?



and Longformer systems along with the two simple PAN baseline systems. Both of our
systems outperformed each baseline, but our Longformer system was the winner by a
wide margin, attaining a 0.963 overall verification score which is a 32.8% relative im-
provement over the best baseline system. Thus, we chose to submit our Longformer
model trained on the “large” training set as our submission system for PAN. Unfor-
tunately, this system failed to generalize on the official PAN test set, only attaining a
0.685 overall score and failing to outperform the baseline systems. Without access to
the PAN test set, we have started to diagnose the source of the generalization failure.
An initial experiment on a new train/validation split where (author, fandom) pairs do
not overlap between train and validation sets has shown that an extreme shift in (au-
thor, fandom) pairs may not be the most significant cause of performance degradation.
Our future work will further investigate this issue and seek to improve the Longformer
system’s generalization performance.
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