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Abstract. Building a robust and accurate AI-driven system for auto-
matic snake species identification is an important goal for biodiversity
and global health. As the existence of such a system can potentially
help to lower deaths and disabilities caused by snakebites, we have pre-
pared SnakeCLEF2020: Automatic Snake Species Identification Chal-
lenge, which provides an evaluation platform and labeled data (includ-
ing geographical information) for biodiversity and health research pur-
poses. SnakeCLEF 2020 was designed to provide an evaluation plat-
form that can help track the performance of end-to-end AI-driven snake
species recognition systems. We have collected 287,632 images of 783
snake species from 145 countries. Here we report 1) a description of the
provided data, 2) evaluation methodology and principles, 3) an overview
of the systems submitted by the participating teams, and 4) a discussion
of the obtained results.
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1 Introduction

Creating an automatic and robust system for snake species identification is
an important goal for biodiversity, conservation, and global health. With re-
cent estimates of 81,410 - 137,880 deaths and 435,000 - 580,000 victims of per-
manent disability and disfigurement (globally each year) [38,40] caused by ven-
omous snakebite, understanding the geographical distribution of the more then
3,800 species of snakes and differentiating species from images (particularly im-
ages of low quality) can significantly improve epidemiology data and treatment
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Fig. 1. Four observations of the same snake species (Boomslang, Dispholidus typus)
with high visual dissimilarity related to sex and age (female top left and bottom right,
male top right, juvenile bottom left). ©Mark Heystek, iNaturalist, CC-BY-NC; ©Daniel
Rautenbach, iNaturalist, CC-BY-NC; ©Bart Wursten, iNaturalist, CC-BY-NC; ©Ma-
griet B, iNaturalist, CC-BY-NC.

outcomes. The goals and usage of image-based snake identification are comple-
mentary with those of other LifeCLEF challenges: 1) classifying snake species in
images, 2) predicting the list of species that are the most likely to be observed at
a given location, and 3) eventually developing automated tools that can facilitate
the integration of changing taxonomies and discoveries.

Having a system that is capable of recognizing or differentiating snake species
from images could significantly improve snakebite eco-epidemiological data and
snakebite clinical management (i.e., correct antivenom administration) and pa-
tient outcomes [4,6]. Although only about 20% of snake species worldwide are
medically-important [21], our knowledge of their epidemiological importance (i.e.,
how many snakebites each are responsible for in different areas) is incomplete.
Most people are not capable of accurately identifying snakes to species [7,11,42],
and trained herpetologists are relatively few in number. Thus, automated snake
species identification would have value in public health. There are only a few
initiatives that seek to identify snakes using computer vision techniques. So far,
a handful of computer vision and machine learning algorithms specific to snakes
have been developed, but these can only identify a few hand-picked species in
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Fig. 2. Randomly selected images from the SnakeCLEF 2020 training set. ©stewartb,
iNaturalist, CC-BY-NC; ©Jennifer Linde, iNaturalist, CC-BY-NC; ©Gilberto Ponce
Tejeda, iNaturalist, CC-BY-NC; © Ryan van Huyssteen, iNaturalist, CC-BY-NC; ©Jes-
sica Newbern, iNaturalist, CC-BY-NC.

the simplest cases [1,9,15,25]. Two larger-scale initiatives use computer vision
and machine learning algorithms to identify species of reptiles and amphib-
ians (HerpMapper’s Fitch bot1) or animals and plants more generally (iNatural-
ist2 [34]), both in connection with Visipedia3 [2], each include hundreds of species
of snakes but have not been evaluated specifically with snakes in mind. None of
these are yet usable in real-world situations where lives may be at stake.

Since snake species identification is a fine-grained visual categorization task,
the main difficulty of this challenge is high intra-class and low inter-class vari-
ance [29]. In other words, certain classes could be highly variable in appearance
depending on geographic location, sex, or age (Figure 1) and at the same time
could be visually similar to other species (e.g., mimicry) (Figure 3).

2 Dataset and Evaluation Protocol

For this challenge, we prepared a large dataset with 287,632 photographs belong-
ing to 783 snake species and taken in 145 countries. The majority of the data
were gathered from online biodiversity platforms (i.e.,iNaturalist4, HerpMap-
per5) and were further extended by data scraped from Flickr6. Furthermore,
we have assembled a total of 28,418 images from private collections and muse-
ums. The final dataset has a heavy long-tailed class distribution, where the most
frequent species (Thamnophis sirtalis) is represented by 14,433 images and the
least frequent by just 20 (Naja pallida). Such a distribution with small inter-class
variance, high intra-class variance, and a high number of species (classes) creates
a challenging task even for current state-of-the-art classification approaches.

1 https://whattheherp.com/
2 https://www.inaturalist.org/computer_vision_demo
3 https://vision.cornell.edu/se3/projects/visipedia/
4 https://www.inaturalist.org/
5 https://www.herpmapper.org/
6 https://www.flickr.com/
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Fig. 3. Medically important snake species (left) and similar-looking non-venomous
species (right). [a] Bibron’s Stiletto Snake (Atractaspis bibronii), [b] Common Purple-
glossed Snake (Amblyodipsas polylepis), [c] Variable Coralsnake (Micrurus diastema),
[d] Variegated False Coralsnake (Pliocercus elapoides), [e] Amazonian Palm Viper
(Bothrops bilineatus), [f] Guianan Green Snake (Xenodon werneri), [g] Rhombic Night
Adder (Causus rhombeatus), [h] African Egg-eating Snake (Dasypeltis scabra). ©Peter
Vos, iNaturalist, CC-BY-NC; ©Alex Rebelo, iNaturalist, CC-BY-NC; ©schooten, iNat-
uralist, CC-BY-NC; ©Iris Melgar, iNaturalist, CC-BY-NC; ©Jason Fantuzzi, iNatural-
ist, CC-BY-NC; ©William van Niekerk, iNaturalist, CC-BY-NC; ©Josh Vandermeulen,
iNaturalist, CC-BY-NC; ©Sébastien Sant, iNaturalist, CC-BY-NC.
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Table 1: Details of the SnakeCLEF 2020 dataset split into the training, validation
and testing sets.

Subset # of images % of data min. # of images/class
Training 245,185 85.24% 17

Validation 14,029 4.88% 2
Testing 28,418 9.88% 1
Total 287,632 100 20

2.1 Training and validation split

To allow participants to validate their intermediate results easily, we have split
the full dataset into a training subset with 245,185 images, and validation sub-
set with 14,029 images. Both subsets have similar class distribution, while the
minimum number of validation images per class is one. Example images from
the training subset are depicted in Figure 2.

2.2 Testing set

Unlike other LifeCLEF challenges, the final testing set remains undisclosed as
it is composed of private images from individuals and natural history museums
who have not put those images online in any form. A brief description of this
final testing set is as follows: twice as big as the validation set, contains all 783
classes, similar class distribution, and observations from almost all the countries
presented in training and validation sets.

2.3 Geographical Information

Considering that all snake species have distinct, largely stable geographic ranges,
with a maximum of more than 125 species of snakes occurring within the same
50 × 50 km2 area [24], geographical information probably plays a crucial role in
correct snake species identification [41]. To evaluate this, we have gathered two
levels of the geographical label (i.e.,country and continent) for approximately
80% of the data. We have collected observations across 145 countries and all
continents. A small proportion of images (ca. 1-2%), particularly from Flickr,
contain captive snakes that are kept outside of their native range (e.g., North
American Pantherophis guttatus in Europe or Australian Morelia viridis in the
USA). We opted to retain these for three reasons:

1. Users of an automated identification system may wish to use it on captive
snakes (e.g., in the case of customs seizures [12,19]).

2. Bites from captive snakes may occur (although the identity of the snake
would normally be clear in this case; e.g. [28,37]).

3. Captive snakes sometimes escape and can found introduced populations out-
side their native range (e.g. [5,17]).



2.4 Evaluation Protocol

The main goal of this challenge was to build a system that is autonomously able
to recognize 783 snake species based on the given image and geographical loca-
tion input. Every participant had to submit their whole solution into the GitLab-
based evaluation system (hosted on AIcrowd platform7), which performed evalu-
ation over the undisclosed testing set. Since data were secret, each participating
team could submit up to 5 submissions per day. The primary evaluation metric
for this challenge was the macro-averaged Dice Similarity Coefficient (DSC), also
known as macro-averaged F1 score (F1), which is not biased by class frequencies.
The Macro F1 score is defined as the mean of class-wise/species-wise F1 scores:

Macro F1 =
1

N

N∑
i=0

F1i ,

where i is the species index and N the number of classes/species. Final Macro
F1 is performed by first computing the F1 score for each class/species as har-
monic mean of the Precision and the Recall.

F1 = 2× Precision× Recall
Precision + Recall ,

P recision =
TP

TP + FN
, Recall =

TP

TP + FN
,

The secondary metric was calculated as Multi-class Classification Logarithmic
Loss e.g., Cross Entropy Loss:

L(p, q) = −
∑
x

p(x) · log(q(x)) ,

where x is the index of the class, p is the true distribution (onehot vector) and
q is the predicted distribution (softmax). This metric considers the uncertainty
of a given prediction based on how much it differs from the actual label. This
gives us a more subtle evaluation of the performance.

3 Participants and Methods

Out of 8 registered teams in the SnakeCLEF 2020 challenge, only two teams
managed to submit a working version of their recognition system that takes an
image and location as an input and returns softmax prediction values. Even
though participants were able to evaluate their system five times a day, we reg-
istered only 27 successful submissions. All submissions and their achieved scores
are reported in Table 1. Detailed description for each run, evaluated experi-
ments and used methods, techniques and experiments are further developed in
individual working notes (FHDO_BCSG [3], Gokuleloop [18]).
7 https://www.aicrowd.com

https://www.aicrowd.com


FHDO_BCSG, Germany, 25 runs, [3]: The FHDO_BCSG team approach
combined two stages. Firstly, they used a Mask R-CNN [10] instance detection
framework to extract regions where each snake species occurs. Secondly, the
different EfficientNet [31] models were utilized as a classifier over the extracted
regions resized to (128× 128). Lastly, they multiplied the softmax values for
each image by the species a priori probability for a given geographic location,
estimated from training and validation sets. Their best-submitted model was
an EfficientNet-B4 fine-tuned for 50 epochs from the ImageNet-1k pre-trained
checkpoint. This model achieved an F1 score of 0.404 and a Log-Loss of 6.650.
The high Log-Loss was achieved due to the application of softmax normalization
after the multiplication of the location data, which leads to small differences in
the predictions.

After the deadline of this challenge, the FHDO_BCSG team evaluated a few
more runs that were excluded from the competition but produced interesting
results. They experimented with higher input sizes (196 × 196, 224 × 224 and
380 × 380), another object detection model (trained on the extended dataset),
a longer training period (50 → 109 epochs) and a slightly different method for
geographical information integration (not performed for ”unknown” location).
By utilizing all of the above, they were able to achieve an F1 score of 0.594 and
a Log-Loss of 1.064.
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Fig. 4. Achieved F1 scores for all the submissions submitted into the SnakeCLEF 2020
Competition. Higher score is better.
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Fig. 5. Achieved Logarithmic Loss values for all the submissions submitted into the
SnakeCLEF 2020 Competition. Smaller score is better.

gokuleloop, India, 2 runs, [18]: The Gokuleloop team approach was focused
on domain-specific fine-tuning. This approach was inspired by an extensive study
about the domain-specific image classification [16]. In a nutshell, Gokuleloop
experimented with different pre-trained weights and their impact on the final
performance. He fine-tuned the same CNN architecture (ResNet-50-V2) from
different checkpoints i.e ImageNet-1k and ImageNet-21k. Input size (456× 456),
hyperparameter settings and augmentations were kept the same. Model compar-
ison showed significant improvement in the case of ImageNet-21k checkpoint.
Accuracy over the validation set was increased by 11.09% (68.48%→ 79.57%)
and F1 score by 0.3113 (0.27→ 0.5813). Finally, location metadata were incor-
porated via a naive probability weighting approach that increased the F1 score
by 0.0206 over the validation set. The final system, which adopted a ResNet-50-
V2 architecture fine-tuned from ImageNet-21k weights and a naive probability
weighting approach, achieved a top F1 score of 0.625 while having a Log-Loss of
0.83.

4 Results and Discussion

All results achieved by the two successful participants of the SnakeCLEF 2020:
Automatic Snake Species Identification Challenge - organized within the Life-
CLEF 2020 Lab [14] - are reported in Table 2. Figure 4 and Figure 5 shows rear-
ranged scores for both validation metrics, F1 and Logarithmic Loss. The best F1
score of 0.62536 achieved by gokuleloop shows an interesting performance and
sets up the baseline for future research in this topic.



Table 2: Results of the SnakeCLEF 2020: Automatic Snake Species Identification
Challenge, including macro-averaged F1 score and Cross Entropy Loss.

Rank Team Name Run ID F1 Log Loss
#1 gokuleloop 68036 0.62536 0.82969
#2 FHDO-BCSG 68023 0.40354 6.64965
#3 FHDO-BCSG 67734 0.40334 6.64961
#4 FHDO-BCSG 67962 0.40313 6.64980
#5 FHDO-BCSG 67721 0.40005 6.65048
#6 FHDO-BCSG 67791 0.39997 6.64859
#7 FHDO-BCSG 67807 0.39810 6.64995
#8 FHDO-BCSG 67781 0.39631 6.65056
#9 FHDO-BCSG 67696 0.39167 6.65031
#10 FHDO-BCSG 67727 0.38870 6.64954
#11 FHDO-BCSG 67686 0.38363 6.65014
#12 FHDO-BCSG 67666 0.38266 6.65035
#13 FHDO-BCSG 67901 0.37658 6.64726
#14 gokuleloop 68011 0.37601 1.27955
#15 FHDO-BCSG 67705 0.36998 6.65164
#16 FHDO-BCSG 67882 0.36497 6.65741
#17 FHDO-BCSG 67635 0.35898 6.65168
#18 FHDO-BCSG 67700 0.35196 6.65104
#19 FHDO-BCSG 67675 0.33809 6.65178
#20 FHDO-BCSG 67703 0.32830 6.64953
#21 FHDO-BCSG 67624 0.26080 2.52722
#22 FHDO-BCSG 67599 0.11012 2.97812
#23 FHDO-BCSG 67903 0.10047 3.29237
#24 FHDO-BCSG 65082 0.02241 4.37263
#25 FHDO-BCSG 67461 0.02135 4.40436
#26 FHDO-BCSG 67201 0.02098 4.41450
#27 FHDO-BCSG 66524 0.00012 5.23012

4.1 Outcomes

Based on closer review of the participants’ solutions, we derived the following
outcomes:

Input resolution is related to CNN performance. As expected, input
resolution had a significant influence on CNN performance. In the case of snake
species recognition, with just subtle differences between species, resizing images
to smaller dimensions might remove important information. The experiment
performed by the FHDO_BCSG team showed that only a relatively small image
dimension increase (128× 128→ 196× 196) boosts the model performance F1
score by 0.083. Furthermore, gokuleloop used an input size of 456 × 456 and
outperformed the best FHDO_BCSG solution by 0.22182 in terms of F1 score.



Data cleaning did not improve the performance. FHDO_BCSG team
performed an in-depth data analysis and revealed that the provided training
dataset contains approximately 4,000 duplicate images and about 4,000 images
without a snake species in it. Interestingly, duplicate removal experiments over
the testing set were inconclusive. In one iteration the system performance drops
significantly; in a second, the system performed slightly better [3]. As the testing
dataset was rigorously curated and does not include duplicates or images without
snake species, the different behaviour does not have a clear explanation. One
could perhaps assume that a small number (∼3%) of False Positive images helps
to prevent overfitting. Others have also found that machine learning algorithms
are surprisingly robust to annotation errors if the training set has sufficient
size [35].

There exists a significant impact of the pre-trained model. The ex-
periment evaluated by gokuleloop showed that CNN performance in the do-
main of snake species recognition depends strongly on the pre-trained weights.
Fine-tuning the same ResNet-50-V2 architecture from ImageNet-21k pre-trained
weights rather than from ImageNet-1k increased the system performance by
0.3113 (F1 score) to the final value of 0.5813). Such a significant increase is re-
markable, and the impact of pre-trained weights should be studied in greater
depth.

Overall performance is relatively poor. Considering that current state-
of-the-art methods are already capable of automatically detecting and recog-
nizing a large number of plant [36] and animal species with human-level accu-
racy [20,23,30,33,39], the final F1 score of 0.62536 showed that snake identifica-
tion is a much harder task with a lot of room for improvement.

Usage of geographical information showed a performance boost. In con-
trast to previously published research related to automatic snake identification,
usage of geographical information was an essential part of the SnakeCLEF 2020
competition. Both teams significantly improved the system’s performance by uti-
lizing various techniques that used the provided location metadata. Gokuleloop
improved his F1 score by 0.0206 and FHDO_BCSG by 0.125 (based on their
post-competition experiment).

Some interesting ideas were evaluated. Experiments performed by both
teams showed that recent state-of-the-art regularisation techniques have the po-
tential to improve the overall performance. Additionally, two interesting ideas
were tested. Namely:
Mixup augmentation [43]: Mixing two ground truth samples by the linear

interpolation of their images and labels (one-hot labels). The interpolation
is managed via alpha compositing.

Binary image branding [22]: Integration of the location information directly
into the image. This is done via 8 binary boxes that encode the location.



5 Conclusions and Perspectives

This paper presents an overview and results of the first edition of the SnakeCLEF
2020: Automated Snake Identification Challenge organized in conjunction with
the Conference and Labs of the Evaluation Forum (CLEF8) and LifeCLEF9 re-
search platform. For this competition, we have used the largest and most diverse
snake image dataset to date, covering 783 snake species with 245,185 training
images, 14,029 validation images and 28,418 testing images. This dataset rep-
resents the most challenging dataset for automated snake species recognition in
existence to date.

The final results showed that even current state-of-the-art machine learning
approaches with advanced regularisation techniques are not capable of recogniz-
ing many similar-looking species. Considering that the best system submitted
into the competition achieved a maximum F1 score of 0.62536, and that the
783 snake species in our training dataset represent only about one fifth of the
totality of currently-described snake biodiversity [32], there remains ample room
for further improvement.

In future editions, we would like to specifically target medically important
scenarios [4], i.e., venomous species that are easily confused with non-venomous
species. Additionally, more in-depth performance evaluation should be done to
understand better which body parts of a snake (e.g., head, body, tail, eye) or
visual features contribute the most to the system’s decision [26]. Moreover, com-
paring AI-driven systems with human experts will reveal how far automated sys-
tems are from human expertise [8]; note that humans should remain in the loop
for health applications [13]. Finally, the current dataset will be further extended,
with priority for new species as well as additional images for those species repre-
sented by the fewest images, with help from citizen scientists and experts [27,35].
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