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Abstract
Many approaches to explain machine learning models and interpret its results have been proposed. These include shadow
model approaches, like LIME and SHAP; model inspection approaches like Grad-CAM and data-based approaches like Formal
Concept Analysis (FCA). Explanations of the decisions of blackbox ML models using any one of these approaches has their
limitations as the underlying model is rather complex. Running explanation model for each sample is not cost-efficient. This
motivates to design a hybrid approach for evaluating interpretability of blackbox ML models. One of the major limitations
of widely-used LIME explanation framework is the sampling criteria that is employed in SP-LIME algorithm for generating
a global explanation of the model. In this work, we investigate a hybrid approach based on LIME using FCA for structured
sampling of instances. The approach combines the benefits of using a data-based approach (FCA) and proxy model-based
approach (LIME). We evaluate these models on three real-world datasets: IRIS, Heart Disease and Adult Earning dataset.
We evaluate our approach based on two parameters: 1) by measuring the prominent features in the explanations, and 2)
proximity of the proxy model to the original blackbox ML model. We use calibration error metric in order to measure the
closeness between blackbox ML model and proxy model.
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1. Introduction
Explainability is an important aspect for an AI system
in order to increase the trustworthiness of its decision-
making process. Many blackbox deep learning mod-
els are being developed and deployed for real-world
use (an example is Google’s Diabetic Retinopathy Sys-
tem [1]). For such blackbox systems neither the model
details nor its training dataset is made publicly avail-
able. Explanations of the predictions made by such
blackbox systems has been a great challenge.

Apart from post-hoc visualization techniques [2] (e.g.,
feature dependency plots), feature importance tech-
niques based on sensitivity analysis, there have been
three main approaches for explainability of AI systems:
i) Proxy or Shadow model approaches like LIME, SHAP
ii) Model inspection approaches like Class Activation
maps (CAM), Grad-CAM, Smooth-Grad-CAM, etc. and
iii) Data based approaches like Decision sets and For-
mal Concept Analysis [3, 4, 5, 6, 7]. Most of the re-
search work on explainability has followed one of the
above approaches [8]. However, each of these approaches
have limitations in the way the explanations are gen-

CIKM 2020 Workshops, October 19-20, 2020, Galway, Ireland
email: amit.sangroya@tcs.com (A. Sangroya); mouli.r@tcs.com
(M. Rastogi); c.anantaram@tcs.com (C. Anantaram);
lovekesh.vig@tcs.com (L. Vig)
orcid:
© 2020 Copyright for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

erated. In the proxy model approach, the data corpus
needs to be created by perturbing the inputs of the tar-
get blackbox model and then an interpretable shadow
model is built, while in the model inspection approach
the model architecture needs to be available for in-
spection to determine the activations, and in the data-
based approach the training data needs to be available.

Local shadow models are interpretable models that
are used to explain individual predictions of blackbox
machine learning models. LIME (Local Interpretable
Model-agnostic Explanations [9]) is a well-known ap-
proach where shadow models are trained to approxi-
mate the predictions of the underlying blackbox model.
LIME focuses on training local shadow models to ex-
plain individual predictions, wherein a prediction of
interest 𝑦𝑖 of the target blackbox deep learning model
 is considered and its related input features 𝑥𝑖 ’s are
perturbed within a neighborhood proximity to mea-
sure the changes in predictions. Based on a reasonable
sample of such perturbations a dataset is created and
a locally linear explainable model is constructed. To
cover the decision-making space of the target model
, Submodular Pick-LIME (SP-LIME) [9] generates the
global explanations by finding a set of points whose
explanations (generated by LIME) are varied in their
selected features and their dependence on those fea-
tures. SP-LIME proposes a sampling way based on
sub-modular picks to select instances such that the in-
terpretable features have higher importance.
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Figure 1: Example output of LIME after adding noisy fea-
tures in the Heart Disease dataset

Figure 1 shows a sample explanation output of LIME
for a binary classification problem on Heart Disease
dataset. The prediction probabilities are shown in the
left using different colors and prominent features that
are important for classification decision are shown in
the right. Important features are presented in a sorted
manner based on their relevance. Note that some noisy
features are also injected in the dataset and therefore
are present in the explanation (af1, af2, af3 and af4)
as well. In an ideal scenario, noisy features should
not be the most relevant features for any ML model
and therefore should be least important from an ex-
planation point of view. However, due to proxy model
inaccuracies and unreliability, sometimes these noisy
features can also come as the most relevant features
in explanations. In figure 2, we show an example sce-
nario that compares the calibration level of two proxy
models with a machine learning model. The x axis in
this figure is the confidence of model and y axis is the
accuracy. Assuming that we have a blackbox machine
learning model and a proxy model that explains this
model, we argue that these models should be closer to
each other in terms of their calibration levels.

Ideally, a proxy model which is used for explaining a
machine learning model should be as close as possible
to the original model

Motivated by the design of an optimized explana-
tion model, we design a hybrid approach where we
combine the shadow model approach proposed by LIME
with the data-based approach of Formal Concept Anal-

Figure 2: Example for Calibration of ML model and proxy
explanation models

ysis to explain the outcomes of a machine learning
model. We use LIME to interpret locally by using a
linear shadow model of the blackbox model, and use
Formal Concept Analysis to construct a concept lat-
tice of the training dataset, and then extract out impli-
cation rules among the features. Based on the impli-
cation rules we select relevant samples for the global
instances that we feed to SP-LIME. Therefore, rather
than using all instances (which is very costly for deep
networks) or random sampling (which never guaran-
tees optimal behavior), we use a FCA guided approach
for selecting the instances. Therefore, we call our frame-
work as Guided-LIME.

We show that Guided-LIME results in better cover-
age of the explanation space as compared to SP-LIME.
Our main contributions in this paper are as follows:

• We propose a hybrid approach based on LIME
and FCA for generating explanation by exploit-
ing the structure in training data. We demon-
starte how FCA helps in structured sampling of
instances for generating global explanations.

• Using the structured sampling, we can choose
optimal instances both in terms of quantity and
quality to generate explanations and interpret
the outcomes.Thereafter, using calibration error
metric we show that Guided-LIME is a closer ap-
proximate of the original blackbox ML model.

2. Background and Preliminaries

2.1. Blackbox Model Outcome
Explanation

A blackbox is a model, whose internals are either un-
known to the observer or they are known but uninter-
pretable by humans. Given a blackbox model solving



a classification problem, the blackbox outcome expla-
nation problem consists of providing an interpretable
explanation for the outcome of the blackbox. In other
words, the interpretable model must return the pre-
diction together with an explanation about the rea-
sons for that prediction. In this context, local inter-
pretability refers to understanding only the reasons for
a specific decision. In this case, only the single pre-
diction/decision is interpretable. On the other hand, a
model may be completely interpretable when we are
able to understand the global prediction behavior (dif-
ferent possible outcomes of various test predictions).

2.2. LIME Approach for Global
Explanations

SP-LIME algorithm provides a global understanding
of the machine learning model by explaining a set of
individual instances. Ribeiro et al. [9] propose a bud-
get 𝐵 that denotes the number of explanations to be
generated. Thereafter, they use Pick Step to select 𝐵 in-
stances for the user to inspect. The aim of this is to ob-
tain non-redundant explanations that represent how
the model behaves globally. This is done by avoiding
instances with similar explanations. However, there
are some limitations of this algorithm [10]:

• The SP-LIME algorithm is based on a greedy ap-
proach which does not guarantee an optimal so-
lution.

• The algorithm runs the model on all instances
to maximize the coverage function.

Data points are sampled from a Gaussian distribu-
tion, ignoring the correlation between features. This
can lead to unlikely data points which can then be
used to learn local explanation models. In [11], au-
thors study the stability of the explanations given by
LIME. They showed that the explanations of two very
close points varied greatly in a simulated setting. This
instability decreases the trust in the produced expla-
nations. The correct definition of the neighborhood
is also an unsolved problem when using LIME with
tabular data. Local surrogate models e.g. LIME is a
concrete and very promising implementation. But the
method is still in development phase and many prob-
lems need to be solved before it can be safely applied.

2.3. Formal Concept Analysis
Formal Concept Analysis (FCA) is a data mining model
that introduces the relation among attributes in a vi-
sual form. It was introduced in the early 80s by Wille

Figure 3: Example of a formal context using samples from
IRIS dataset

Figure 4: Example of a concept lattice related to formal con-
text in Figure 3

(1982) to study how objects can be hierarchically grouped
together according to their common attributes. FCA
deals with the formalization of concepts and has been
applied in many disciplines such as software engineer-
ing, machine learning, knowledge discovery and on-
tology construction during the last 20-25 years. Infor-
mally, FCA studies how objects can be hierarchically
grouped together with their common attributes. A for-
mal context 𝐾 = (𝐺,𝑀, 𝐼 ) consists of two sets 𝐺 and
𝑀 and a relation 𝐼 between 𝐺 and 𝑀 . The elements
of 𝐺 are called the objects and the elements of 𝑀 are
called the attributes of the context. A formal concept
of a formal context 𝐾 = (𝐺,𝑀, 𝐼 ) is a pair (𝐴, 𝐵). The
set of all formal concepts of a context K together with
the order relation 𝐼 forms a complete lattice, called the
concept lattice of 𝐾 .

Figure 3 and 4 are examples from IRIS dataset (more
details in Section 4). In figure 3, we show a collection
of some objects and their attributes. For simplicity, we
choose only those objects where a particular attribute
is present or not. In real-world objects can have very
complex relationships with fuzzy values. Figure 4 is an
example concept lattice generated using this sample
data.



Figure 5: Overall workflow of Guided-LIME

3. Guided-LIME Framework:
Guiding sampling in SP-LIME
using FCA extracted concepts

In [9] SP-LIME has been used to generate global ex-
planations of a blackbox model. SP-LIME carries out
submodular picks from a set of explanations generated
for a given set X of individual data instances. The SP-
LIME algorithm picks out explanations based on fea-
ture importances across generated explanations. How-
ever, the data instances X from which explanations
are generated, are either the full dataset (called Full-
LIME) or data points sampled from a Gaussian distri-
bution (SP-LIME random), and ignore the correlation
between features in the dataset. Carrying out SP-LIME
for the full dataset (Full-LIME) is very time consuming
especially when the dataset is large. Carrying out SP-
LIME random on the dataset may end up considering
data points that are implied by other data points in the
explanation space. Thus it is important to analyze the
full data set and choose only those points for SP-LIME
such that the selected data points are representative of
the data space. In this work, we propose a mechanism
to determine the implication of features to guide the
selection of the instances X from the training dataset.
We use Formal Concept Analysis (FCA) to analyze the
training data and discover feature implication rules.
Using these feature implication rules, we pick appro-
priate instances to feed into SP-LIME. SP-LIME then

uses these instances to generate a set of local expla-
nation models and covers the overall decision-making
space. FCA provides a useful means for discovering
implicational dependencies in complex data [12, 13].

In previous work, FCA-based mechanism has been
used as an approach to explain the outcome of a black-
box machine learning model through the construction
of lattice structure of the training data and then using
that lattice structure to explain the features of predic-
tions made on test data [4]. In this proposed hybrid
approach, we use the power of FCA to determine im-
plication rules among features and using that to guide
the submodular picks for LIME in order to generate
local explanations. It provides the benefits of using
data-based approach and proxy model based approach
in a unified framework.

3.1. FCA-based selection of Instances
The goal of our FCA-based instances selection is to
take advantage of the underlying structure of data to
build a concise and non-redundant set of instances.
We hypothesize that most of the state-of-the-art ap-
proaches do not consider this information (to the best
of our knowledge). We shortlist sample instances us-
ing the following process:

1. We first binarize the training data in an ad-hoc
way. The binarization technique is applied to
discretize the continuous attribute values into



only of two values, 0 or 1. The binarization pro-
cess can be done in a more formal manner e.g.
chiMerge algorithm [14] which ensures that bi-
narization method does not corrupt the gener-
ated lattice. In the scope of current work, we
keep this process simple enough. Thereafter, we
generate concept lattice using standard FCA-based
approach. Each concept in the lattice represents
the objects sharing some set of properties; and
each sub-concept in the lattice represents a sub-
set of the objects.

2. We use ConExp concept explorer tool to gener-
ate lattice from the training data [15].

3.1.1. Generating Implication Rules from
Training Data

In order to find an optimal subset of samples, we gen-
erate implication rules from the given training data.
One of the challenge in generating implication rules is
that for a given domain and training data, the number
of rules can be very large. Therefore, we shortlist rules
based on their expressiveness e.g. we select the subset
of rules that have the highest coverage and lowest re-
dundancy.

When we generate association rules from the dataset,
conclusion does not necessarily hold for all objects.
However, it is true for some stated percentage of all
objects covering the premise of rule. We sort the rules
using this percentage and select the top 𝑘 rules. The
value of 𝑘 is emperically calculated based on a given
domain.

3.1.2. Generating Lattice Structure and
selecting Instances

Using the lattice structure and implication rules, we
select instances for guiding SP-LIME. We identify all
the instances that follow the implication rules. For
each rule in the “implication rules list", we calculate
if a given sample “pass" or “fail" the given criteria i.e.
if a particular sample 𝑠 follows implication rule 𝑟 or
not. Finally, we produce a sorted list of the instances
that are deemed more likely to cover maximally and
are non-redundant as well.

3.2. Guided-LIME for Global
Explanations

We propose structured data sampling based approach
Guided-LIME towards a hybrid framework extending
SP-LIME. SP-LIME normally has two methods for sam-
pling: random and full. In the random approach, sam-

ples are chosen randomly using a Gaussian distribu-
tion. On the other hand, full approach make use of all
the instances. We extend the LIME implementation to
integrate another method “FCA" that takes the samples
generated using lattice and implication rules.

Algorithm 1 explains the steps to perform structured
sampling using training data and pass to SP-LIME for
generating global explanations. The input to Guided-
LIME is training data used to train the blackbox ML
model. Data processing for finding the best samples
for Guided-LIME involves binarization of data. There-
after, a concept lattice is created based on FCA ap-
proach [4]. Using the concept lattice, we derive im-
plication rules. These rules are then used to select test
instances for Guided-LIME.

Algorithm 1 Sample selection algorithm using FCA
for Guided-LIME
Require: Training dataset 𝐷
Ensure: Samples and their ranking

for a given Training dataset 𝐷 consisting of data
samples 𝑠 do

Binarize numeric features
Generate concept Lattice using FCA
Find implication rules 𝑟
Generate samples and their ranking
Select top 𝑘 samples from each rule

end for
for all top 𝑘 samples from each rule do

Select samples using redundancy and coverage
criteria

end for

As we mentioned previously, there are various ex-
amples of using a single approach for explanation. This
can be done using any of the proposed techniques i.e.
proxy model, activation based or perturbation based
approach. However, we argue that none of these ap-
proaches provides a holistic view in terms of outcome
explanation. Whereas, if we use a hybrid approach
such as a combination of proxy model and data-based
approach, it can provide a better explanation at a much
reduced cost.

One of the question that arise in our hybrid approach
is whether the approach is still model agnostic such as
LIME. We argue that sampling step do not affect the
model agnosticity in any manner. It just adds a sam-
pling step which helps in choosing the samples in a
systematic manner.



Dataset Classes # of in-
stances

# of fea-
tures

Features

IRIS 3 150 4 sepal length, sepal width, petal length, petal width
Heart Disease 2 303 14 age of patient, sex, chest pain type, resting blood pressure,

serum cholesterol, fasting blood sugar, resting ECG, maxi-
mum heart rate achieved, exercise induced angina, ST de-
pression induced by exercise relative to rest, peak exercise
ST segment, number of major vessels colored by fluoroscopy,
Thal, Diagnosis of heart disease

Adult Earning 2 30000 14 age, workclass, fnlwgt, education, education-num, mari-
tal status, occupation, relationship, race, sex, capital-gain,
capital-loss, hours-per-week, native-country

Table 1
Summary of Datasets

4. Experiments and Results

4.1. Experimental Setup
We use the following publicly available datasets to eval-
uate the proposed framework: IRIS, Heart Disease and
Adult Earning dataset (See Table 1). IRIS dataset con-
tains 3 classes of 50 instances each, where each class
refers to a type of iris plant [16]. There are a total
of 150 samples with 5 attributes each: sepal length,
sepal width, petal length, petal width, class (Iris Se-
tosa, Iris Versicolor, Iris Virginica). Similarly, Heart
Disease dataset contains 14 attributes; 303 samples and
two classes [17]. Adult Earning dataset contains 48000
samples, 14 features across two classes. The machine
learning task for all three datasets is classification. We
use random forest blackbox machine learning model
in all our experiments.

4.2. Results
The goal of this experiment is to compare the proposed
Guided-LIME approach with random sampling of SP-
LIME. In the scope of this work, we do not compare
the proposed hybrid approach with full sampling of
SP-LIME. We perform a case study to find out which
approach is better in selecting important features for a
given blackbox model. As shown in Table 1, we main-
tain ground truth oracle of important features as do-
main knowledge [18, 19]. We train random forest clas-
sifier with default parameters of scikit-learn. In this
experiment, we add 25% artificially “noisy” features in
the training data. The value of these features is cho-
sen randomly. In order to evaluate the effectiveness
of approach we use FDR (false discovery rate) metric
which is defined as the total number of noisy features
selected as important features in the explanation.

We calculate the occurrence of noisy features in the
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Figure 6: FDR (False discovery rate) for IRIS dataset

generated explanations. Ideally, the noisy features should
not occur among the important features. Therefore a
lower FDR suggests a better approach for explanation.
We present the discovery of number of noisy features
for each explanation averaged over 100 runs. Each ex-
planation consists of a feature importance vector that
shows the importance of a particular feature. As we
see in Figures 6, 7, and 8, y axis is the number of noisy
features and x axis is index of noisy feature. We in-
clude the cases where a noisy feature is at first or sec-
ond place in the feature importance vector. AF-1_Imp-
1 represents artificial/noisy feature occurring at first
place in feature importance vector whereas AF-1_Imp-
2 represents artificial/noisy feature occurring at sec-
ond place. Guided-LIME sampling approach is consis-
tently better than basic SP-LIME.



Table 2
Expected Calibration Error of Blackbox Model and proxy models

Datasets
With artificial features Without artificial features

blackbox Guided-
LIME

SP-
LIME

blackbox Guided-
LIME

SP-
LIME

Full-
LIME

Adult
Earning

0.061 0.065 0.041 0.056 0.065 0.041 0.059

Heart
Disease

0.149 0.167 0.216 0.125 0.165 0.169 0.136

IRIS 0.106 0.042 0.033 0.038 0.006 0.08 0.031

Table 3
Maximum Calibration Error of Blackbox Model and proxy models

Datasets
With artificial features Without artificial features

blackbox Guided-
LIME

SP-
LIME

blackbox Guided-
LIME

SP-
LIME

Full-
LIME

Adult
Earning

0.187 0.372 0.428 0.19 0.353 0.219 0.344

Heart
Disease

0.428 0.485 0.326 0.681 0.546 0.475 0.297

IRIS 0.307 0.311 0.178 0.134 0.009 0.406 0.408
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Figure 7: FDR (False discovery rate) for Heart disease
dataset

4.3. Validating Guided-LIME using
calibration level

The objective of this experiment is to validate which
proxy model is a closer approximation to original black-
box model with respect to the prediction probabilities
of each model. In order to measure this closeness, var-
ious distance metric can be used e.g. KL divergence,
cross entropy etc. We use the well established ECE
(expected calibration error) and MCE (maximum cali-
bration error) as the underlying metric to detect the
calibration of both the models [20]. Calibration er-
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Figure 8: FDR (False discovery rate) for Adult earning
dataset

ror provide a better estimate of reliability of ML mod-
els [21, 22]. Moreover, the focus of our experiment is to
estimate the proximity of the shadow model w.r.t the
original blackbox model. Calibration error values are
therefore used to compare which model is the better
approximation of the original model. We hypothesize
that the proxy model with a ECE closer to the original
blackbox ML model shall be a closer approximate.

We perform experiment in two settings: 1) with orig-
inal data 2) by adding noisy features in the data. As
shown in Tables 2 and 3, in both scenarios, ECE and



MCE of Guided-LIME is closer to the original ML model
in comparison to the random SP-LIME. This justifies
the benefit of structured sampling. We also run ex-
periments with full samples of LIME. Although, this
can be a better approximate of original model, but tak-
ing all the samples in the proxy model is not a practi-
cal and economic choice for real world huge datasets.
Guided-LIME has a closer ECE to the original black-
box model. Hence, Guided-LIME is a better choice as
a proxy model to explain the original ML model.

5. Related Work
Various approaches for explainability of blackbox mod-
els have been proposed [8]. Broadly the existing tech-
niques can be classified into Model Explanation ap-
proaches; outcome Explanation approaches; Model In-
spection approaches. There are also example of works
that focus on designing transparent design of models.

In this work, we focus only on the outcome explana-
tion approaches. In the category of outcome explana-
tion, CAM, Grad-CAM, Smooth Grad-CAM++, SHAP,
DeepLIFT, LRP and LIME are the main approaches [23,
24, 25, 9, 26, 27, 28]. These methods provide a locally
interpretable shadow model which is able to explain
the prediction of the blackbox in understandable terms
for humans.

Most popular shadow model approaches for black-
box ML model explanations are Local Interpretable Model-
Agnostic Explanations (LIME) and SHAP. LIME can
explain the predictions of any classifier in “an inter-
pretable and faithful manner, by learning an interpretable
model locally around the prediction. In order to make
the predictions easily interpretable, LIME have two de-
sign goals: Easy to interpret and Local fidelity: This
means that outcomes of shadow model are easily inter-
pretable and the explanation for individual predictions
are locally faithful, i.e. it correspond to how the model
behaves in the vicinity of the individual observation
being predicted.

In contrast, SHAP (SHapley Additive exPlanations)
is distinctly built on the Shapley value. The Shapley
value is the average of the marginal contributions across
all permutations. The Shapley values consider all pos-
sible permutations, thus SHAP is a united approach
that provides global and local consistency and inter-
pretability. However, its cost is time — it has to com-
pute all permutations in order to give the results. SHAP
approach has speed limitations as it has to compute all
permutations globally to get local accuracy whereas
LIME perturbs data around an individual prediction
to build a model. For generating a global explanation,

SHAP need to run for every instance. This generates a
matrix of Shapley values which has one row per data
instance and one column per feature. We can inter-
pret the entire model by analyzing the Shapley values
in this matrix.

In CAM and Grad-CAM approaches, explanation is
provided by using a Saliency Mask (SM), i.e. a subset
of the original record which is mainly responsible for
the prediction. For example, as salient mask we can
consider the part of an image or a sentence in a text.
A saliency image summarizes where a DNN looks into
an image for recognizing their predictions. Although
these solutions are not just limited/agnostic to black-
box NN, but it requires specific architectural modifica-
tions.

Feature importance is well known approach to ex-
plain blackbox models. More recently, instance-wise
feature selection methods are proposed to extract a
subset of features that are most informative for each
given example in deep learning network. [29]. In [30]
authors make use of a combination of neural networks
to identify prominent features that impact the model
accuracy. These approaches are based on subset sam-
pling through back-propagation.

Ribeiro et. al. [9] present the Local Interpretable
Model-agnostic Explanations (LIME) approach which
does not depend on the type of data, nor on the type
of blackbox b to be opened. In other words, LIME can
return an understandable explanation for the predic-
tion obtained by any blackbox. The main intuition of
LIME is that the explanation may be derived locally
from the records generated randomly in the neighbor-
hood of the record to be explained. As blackbox the
following classifiers are tested: decision trees, logistic
regression, nearest neighbors, SVM and random for-
est.

In [31], authors find the global importance intro-
duced by Local Interpretable Model-agnostic Explana-
tions (LIME) unreliable and present approach based on
global aggregations of local explanations with the ob-
jective to provide insights in a model’s global decision
making process. This work reveal that the choice of
aggregation matters regarding the ability to gain reli-
able and useful global insights on a blackbox model.
We find this work as motivation to propose an hybrid
approach where aggregations can be generated using
knowledge of data through FCA-based system.

In contrast to model explanation approaches such
as LIME and SHAP [9, 26], our approach is comple-
mentary which can guide these approaches for select-
ing the optimal instances for explanation. Extracting
rules from neural networks is also a well studied prob-
lem [32]. These approaches depend on various factors



such as: Quality of the rules extracted; Algorithmic
complexity; Expressive power of the extracted rules;
Portability of the rule extraction technique etc. Our
approach also uses the knowledge of structure in data
however it is not dependent on the blackbox model.
Moreover, formal concept analysis based data analysis
provides a solid theoretical basis.

6. Conclusions and Future Work
In this paper,we proposed a hybrid approach for eval-
uating interpretability of blackbox ML systems. Al-
though Guided-LIME do not guarantee an optimal so-
lution, yet we observe that a single approach like LIME
is not sufficient to explain the AI system thoroughly.
There are limitations of deciding an optimal sampling
criteria in SP-Lime algorithm. Our approach combines
the benefits of using a data-based approach (FCA) and
proxy model based approach (LIME). Overall, our ap-
proach is complementary to SP-LIME as we provided
a structured way of selecting right instances for global
explanations. Our results on real world datasets shows
that false discovery rate is much lower with Guided-
LIME in comparison to random SP-LIME. Moreover,
Guided-LIME has a closer ECE and MCE to the orig-
inal blackbox model. In future, we would like to per-
form extensive experiments with diverse datasets and
complex deep learning models.
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