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Abstract
Deep Neural Networks (DNNs) have achieved remarkable performance on a range of tasks. A key step to further empowering
DNN-based approaches is improving their explainability. In this work we present CME: a concept-based model extraction
framework, used for analysing DNN models via concept-based extracted models. Using two case studies (dSprites, and
Caltech UCSD Birds), we demonstrate how CME can be used to (i) analyse the concept information learned by a DNN model
(ii) analyse how a DNN uses this concept information when predicting output labels (iii) identify key concept information
that can further improve DNN predictive performance (for one of the case studies, we showed how model accuracy can be
improved by over 14%, using only 30% of the available concepts).
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1. Introduction
The black-box nature of Deep Neural Networks (DNNs)
hinders their widespread adoption, especially in indus-
tries under heavy regulation with high-cost of error
[1]. As a result, there has recently been a dramatic
increase in research on Explainable AI (XAI), focusing
on improving explainability of DL systems [2, 3].

Currently, the most widely used XAI methods are fea-
ture importance methods (also referred to as saliency
methods) [4]. For a given data point, these methods pro-
vide scores showing the importance of each feature (e.g.,
pixel, patch, or word vector) to the algorithm’s deci-
sion. Unfortunately, feature importance methods have
been shown to be fragile to input perturbations [5, 6]
or model parameter perturbations [7, 8]. Human ex-
periments also demonstrate that feature importance
explanations do not necessarily increase human un-
derstanding, trust, or ability to correct mistakes in a
model [9, 10].

As a consequence, two other types of XAI approaches
are receiving increasing attention: model extraction ap-
proaches, and concept-based explanation approaches.
Model extraction methods (also referred to as model
translation methods) approximate black-box models
with simpler models to increase model explainability.
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Concept-based explanation approaches provide model
explanations in terms of human-understandable units,
rather than individual features, pixels, or characters
(e.g., the concepts of a wheel and a door are important
for the detection of cars) [10, 11, 12].

In this paper we introduce CME1: a (C)oncept-based
(M)odel (E)xtraction framework2. Figure 1 depicts how
CME can be used to analyse DNN models via explain-
able concept-based extracted models, in order to ex-
plain and improve performance of DNNs, as well as to
extract useful knowledge from them. Although this ex-
ample focuses on a CNN model, CME is model-agnostic,
and can be applied to any DNN architecture.

In particular, we make the following contributions:
• We present the novel CME framework, capable

of analysing DNN models via concept-based ex-
tracted models

• We demonstrate, using two case-studies, how
CME can analyse (both quantitatively and quali-
tatively) the concept information a DNN model
has learned, and how this information is repre-
sented accross the DNN layers

• We propose a novel metric for evaluating the
quality of concept extraction methods

• We demonstrate, using two case-studies, how
CME can analyse (both quantitatively and quali-
tatively) how a DNN uses concept information
when predicting output labels

• We demonstrate how CME can identify key con-
cept information that can further improve DNN
predictive performance

1Pronounced “See Me.”
2All relevant code is available at

https://github.com/dmitrykazhdan/CME

mailto:dk525@cam.ac.uk
mailto:btd26@cam.ac.uk
mailto:mateja.jamnik@cl.cam.ac.uk
mailto:pietro.lio@cl.cam.ac.uk
mailto:adrian.weller@eng.cam.ac.uk
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


(a)

(b)

Figure 1: CME extracted model example. (a) Given an input
image, a CNN uses the image’s pixel information as input,
and returns class information as output (in this case, class
label 3, corresponding to the Red-headed Woodpecker class),
performing data processing in a non-explainable, black-box
fashion. (b) Given an input image, a CME extracted model
uses an Input-to-Concept function (I-to-C) to compute con-
cept information from the pixel data (e.g. bird wing color,
or head color values). Next, the model uses a Concept-to-
Output function (C-to-O) to compute the output class label
from this concept information.

2. Related Work

2.1. Concept-based Explanations
Concept-based explanations have been used in a wide
range of different ways, including: inspecting what
a model has learned [12, 13], providing class-specific
explanations [14, 10], and discovering causal relations
between concepts [15]. Similarly to CME, these ap-
proaches typically seek to explain model behaviour in
terms of high-level concepts, extracting this concept
information from a model’s latent space.

Importantly, existing concept-based explanation ap-
proaches are typically capable of handling binary-valued
concepts only, which implies that multi-valued con-
cepts have to be binarised first. For instance, given a
concept such as “shape”, with possible values ‘square’
and ‘circle’, these approaches have to convert “shape”
into two binary concepts ‘is_square’, and ‘is_circle’.
This makes such approaches (i) computationally expen-
sive, since the binarised concept space usually has a
high cardinality, (ii) error-prone, since mutual exclusiv-
ity of concept values is now not enforced (e.g., a single
data point can now have both ‘is_square’ and ‘is_circle’
concepts being true). In contrast, our approach is capa-
ble of handling multi-valued concepts directly, without
binarisation.

Furthermore, concept-based explanation approaches
typically rely on the latent space of a single layer when

extracting concept information. DNNs have been shown
to perform hierarchical feature extraction, with layers
closer to the output utilising higher-level data represen-
tations, compared to layers closer to the input [16, 17].
This implies that choosing a single layer imposes an
unnecessary trade-off between low- and high-level con-
cepts. On the other hand, CME is capable of efficiently
combining latent space information from multiple lay-
ers, thereby avoiding this constraint.

Finally, existing methods typically represent concept
explanations as a list of concepts, with their relative
importance with respect to the classification task. In
contrast, our approach describes the functional relation-
ship between concepts and outputs, thereby showing in
more detail how the model utilises concept information
when making predictions.

2.2. Concept Bottleneck Models
Recent work on concept-based explanations relies on
models that use an intermediate concept-based repre-
sentation when making predictions [18, 19]. Work in
[18] refer to these types of models as concept bottleneck
models (CBMs). A concept bottleneck model is a model
which, given an input, first predicts an intermediate
set of human-specified concepts, and then uses only
this concept information to predict the output task la-
bel. Work in [18] proposes a method for turning any
DNN into a concept bottleneck model given concept
annotations at training time. This is achieved by resiz-
ing one of the layers to match the number of concepts
provided, and re-training with an added intermediate
loss that encourages the neurons in that layer to align
component-wise to the provided concepts.

Crucially, CBM approaches provide ways for gen-
erating DNN models, which are explicitly encouraged
to rely on specified concept information. In contrast,
our approach is used for analysing DNN models (and is
much cheaper computationally).

Furthermore, CBM approaches require concept an-
notations to be available at training time for all of the
training data, which is often expensive to produce.
In contrast, CME can be used with partially-labelled
datasets in a semi-supervised fashion, as will be de-
scribed in Section 3.

Finally, CBM approaches require the concepts them-
selves to be known beforehand. On the other hand,
CME can efficiently utilise knowledge contained in pre-
trained DNNs, in order to learn about which concepts
are/aren’t required for a given task. Further details on
CME/CBM comparison can be found in Appendix A.



2.3. Model Extraction
Model extraction techniques use rules [20, 21, 22], de-
cision trees [23, 24], or other more readily explainable
models [25] to approximate complex models, in order
to study their behaviour. Provided the approximation
quality (referred to as fidelity) is high enough, an ex-
tracted model can preserve many statistical properties
of the original model, while remaining open to inter-
pretation.

However, extracted models generated by existing
methods represent their decision-making using the
same input representation as the original model, which
is typically difficult for the user to understand directly.
Instead, our extracted models represent decision-making
via human-understandable concepts, making them eas-
ier to interpret.

3. Methodology
In this section we present our CME approach, describ-
ing how it can be used to analyse DNN models using
concept-based extracted models.

3.1. Formulation
We consider a pre-trained DNN classifier 𝑓 ∶  →  ,
( ⊂ ℝ

𝑛 ,  ⊂ ℝ
𝑜), where 𝑓 (𝐱) = 𝑦 is mapping an input

𝐱 ∈  to an output class 𝑦 ∈  . For every DNN layer
𝑙, we denote the function 𝑓

𝑙
∶  → 𝑙 , (𝑙

⊂ ℝ
𝑚)

as a mapping from the input space  to the hidden
representation space 𝑙 , where 𝑚 denotes the number
of hidden units, and can be different for each layer.

Similarly to [18, 19], we assume the existence of a
concept representation  ⊂ ℝ

𝑘 , defining 𝑘 distinct con-
cepts associated with the input data.  is defined such
that every basis vector in  spans the space of possi-
ble values for one particular concept. We further as-
sume the existence of a function 𝑝

⋆
∶  → , where

𝑝
⋆
(𝐱) = 𝐜 is mapping an input 𝐱 to its concept represen-

tation 𝐜. Thus, 𝑝⋆ defines the concepts and their values
(referred to as the ground truth concepts) for every input
point.

3.2. CME
In this work, we define a DNN 𝑓 as being concept-
decomposable, if it can be well-approximated by a com-
position of functions 𝑝 and 𝑞, such that 𝑓 (𝐱) = 𝑞(𝑝(𝐱)).
In this definition, the function 𝑝 ∶  →  is an input-
to-concept function, mapping data-points from their
input representation 𝐱 ∈  to their concept represen-
tation 𝐜 ∈ . The function 𝑞 ∶  →  is a concept-to-

output function, mapping data-points in their concept
representation  to output space  . Thus, when pro-
cessing an input 𝐱, a DNN 𝑓 can be seen as converting
this input into an interpretable concept representation
using 𝑝, and using 𝑞 to predict the output from this
representation. The significance of this decomposition
is further discussed in Appendix A.

CME explores whether a given DNN 𝑓 is concept-
decomposable, by attempting to approximate 𝑓 with an
extracted model 𝑓̂ ∶  →  . In this case, 𝑓̂ is defined
as 𝑓̂ (𝐱) = �̂�(�̂�(𝐱)), using input-to-concept �̂� and output-
to-concept �̂� extracted by CME from the original DNN.
We describe our approach to extracting �̂� and �̂� in the
remainder of this section.

3.3. Input-to-Concept (�̂�)
When extracting �̂� from a pre-trained DNN, we as-
sume we have access to the DNN training data and
labels {(𝐱(0), 𝑦(0)), ..., (𝐱(𝑑), 𝑦(𝑑))}. Furthermore, we as-
sume partial access to 𝑝

⋆, such that a small set of
𝑖 training points {𝐱

(0)
, ..., 𝐱

(𝑖−1)
} have concept labels

{𝐜
(0)
, ..., 𝐜

(𝑖−1)
} associated with them, while the remain-

ing 𝑢 points {𝐱(𝑖), ..., 𝐱(𝑖+𝑢)} do not (in this case 𝑢 = 𝑑−𝑖).
We refer to these subsets respectively as the concept
labelled dataset and concept unlabelled dataset. Using
these datasets, we generate �̂� by aggregating concept
label predictions across multiple layers of the given
DNN model, as described below.

Given a DNN layer 𝑙 with 𝑚 hidden units, we com-
pute the layer’s representation of the input data 𝐡 =

𝑓
𝑙
(𝐱), obtaining (𝐡

(0)
, ..., 𝐡

(𝑖+𝑢)
). Using this data and the

concept labels, we construct a semi-supervised dataset,
consisting of labelled data {(𝐡(0), 𝐜(0)), ..., (𝐡(𝑖−1), 𝐜(𝑖−1))},
and unlabelled data {𝐡

(𝑖)
, ..., 𝐡

(𝑖+𝑢)
}.

Next, we rely on Semi-Supervised Multi-Task Learn-
ing (SSMTL) [26], in order to extract a function 𝑔

𝑙
∶

𝑙
→ , which predicts concept labels from layer 𝑙’s

hidden space. In this work, we treat each concept as
a separate, independent task. Hence, 𝑔𝑙 (𝐡) is decom-
posed into 𝑘 separate tasks (one per concept), and is
defined as 𝑔

𝑙
(𝐡) = (𝑔

𝑙

1
(𝐡), ..., 𝑔

𝑙

𝑘
(𝐡)) where each 𝑔

𝑙

𝑖
(𝐡)

(𝑖 ∈ {1..𝑘}) predicts the value of concept 𝑖 from 𝐡.
Repeating this process for all model layers 𝐿, we

obtain a set of functions 𝐺 = {𝑔
𝑙

𝑖
| 𝑙 ∈ {1..𝐿} ∧ 𝑖 ∈

{1..𝑘}}. For every concept 𝑖, we define the “best” layer
𝑙
𝑖 for predicting that concept as shown in (1):

𝑙
𝑖
= argmin

𝑙∈𝐿

𝓁 (𝑔
𝑙

𝑖
, 𝑖) (1)

Here, 𝓁 is a loss function (in this case the error rate),
computing the predictive loss of function 𝑔

𝑙

𝑖
with re-



spect to a concept 𝑖. Finally, we define �̂� as shown in
(2):

�̂�(𝐱) = (𝑔
𝑙
1

1
◦𝑓

𝑙
1

(𝐱), ..., 𝑔
𝑙
𝑘

𝑘
◦𝑓

𝑙
𝑘

(𝐱)) (2)

Thus, given an input 𝐱, the value computed by �̂�(𝐱)

for every concept 𝑖 ∈ {1..𝑘} is equal to the value com-
puted by 𝑔

𝑙
𝑖

𝑖
from that input’s representation in layer 𝑙𝑖 .

Overall, �̂� encapsulates concept information contained
in a given DNN model, and can be used to analyse how
this information is represented, as well as to predict
concept values for new inputs.

3.4. Concept-to-Label (�̂�)
We setup extraction of �̂� as a classification problem, in
which we train �̂� to predict output labels 𝑦 from concept
labels 𝐜 predicted by �̂�. We use �̂� to generate concept
labels for all training data points, obtaining a set of con-
cept labels {𝐜(0), ..., 𝐜(𝑖+𝑢)}. Next, we produce a labelled
dataset, consisting of concept labels and corresponding
DNN output labels {(𝐜

(0)
, 𝑦

(0)
), ..., (𝐜

(𝑖+𝑢)
, 𝑦

(𝑖+𝑢)
)}, and

use it to train �̂� in a supervised manner. We experi-
mented with using Decision Trees (DTs), and Logistic
Regression (LR) models for representing �̂�, as will be
discussed in Section 5. Overall, �̂� can be used to analyse
how a DNN uses concept information when making
predictions.

4. Experimental Setup
We evaluated CME using two datasets: dSprites [27],
and Caltech-UCSD birds [28]. All relevant code is pub-
licly available at3.

4.1. dSprites
dSprites is a well-established dataset used for evalu-
ating unsupervised latent factor disentanglement ap-
proaches. dSprites consists of 2D 64×64 pixel black-and-
white shape images, procedurally generated from all
possible combinations of 6 ground truth independent
concepts (color, shape, scale, rotation, x and y position).
Further details can be found in Appendix B, and the
official dSprites repository. 4

4.1.1. Classification Tasks

We define 2 classification tasks, used to evaluate our
framework:

3https://github.com/dmitrykazhdan/CME
4https://github.com/deepmind/dsprites-dataset/

• Task 1: This task consists of determining the
shape concept value from an input image. For
every image sample, we define its task label as
the shape concept label of that sample.

• Task 2: This task consists of discriminating be-
tween all possible shape and scale concept value
combinations. We assign a distinct identifier to
each possible combination of the shape and scale
concept labels. For every image sample, we de-
fine its task label as the identifier corresponding
to this sample’s shape and scale concept values.

Overall, Task 1 explores a scenario in which a DNN
has to learn to recognise a specific concept from an
input image. Task 2 explores a relatively more complex
scenario, in which a DNN has to learn to recognise
combinations of concepts from an input image.

4.1.2. Model

We trained a Convolutional Neural Network (CNN)
model [29] for each task. Both models had the same ar-
chitecture, consisting of 3 convolutional layers, 2 dense
layers with ReLUs, 50% dropout [30] and a softmax out-
put layer. The models were trained using categorical
cross-entropy loss, and achieved 100.0 ± 0.0% classifi-
cation accuracies on their respective held-out test sets.
We refer to these models as the Task 1 model and the
Task 2 model in the rest of this work.

4.1.3. Ground-truth Concept Information

Importantly, the task and dataset definitions described
in this section imply that we know precisely which
concepts the models had to learn, in order to achieve
100.0 ± 0.0% task performances (shape for Task 1, and
shape and scale for Task 2). We refer to this as the
ground truth concept information learned by these mod-
els.

4.2. Caltech-UCSD Birds (CUB)
For our second dataset, we used Caltech-UCSD Birds
200 2011 (CUB). This dataset consists of 11,788 im-
ages of 200 bird species with every image annotated
using 312 binary concept labels (e.g. beak and wing
colour, shape, and pattern). We relied on concept pre-
processing steps defined in [18] (used for de-noising
concept annotations, and filtering out outlier concepts),
which produces a refined set of 𝑘 = 112 binary concept
labels for every image sample.



4.2.1. Classification Task.

We relied on the standard CUB classification task, which
consists of predicting the bird species from an input
image.

4.2.2. Model

We used the Inception-v3 architecture [31], pretrained
on ImageNet [32] (except for the fully-connected lay-
ers) and fine-tuned end-to-end on the CUB dataset,
following the preprocessing practices described in [33].
The model achieved 82.7 ± 0.4% classification accuracy
on a held-out test set. We refer to this model as the
CUB model in the rest of this work.

4.2.3. Ground-truth Concept Information

Unlike dSprites, the CUB dataset does not explicitly
define how the available concepts relate to the output
task. Thus, we do not have access to the ground truth
concept information learned by the CUB model.

4.3. Benchmarks
We compare performance of our CME approach to two
other benchmarks, described in the remainder of this
section.

4.3.1. Net2Vec

We rely on work in [34] for defining benchmark �̂� func-
tions for the three tasks. Work in [34] attempts to
predict presence/absence of concepts from spatially-
averaged hidden layer activations of convolutional lay-
ers of a CNN model. Given a binary concept 𝑐, this
approach trains a logistic regressor, predicting the pres-
ence/absence of this concept in an input image from
the latent representation of a given CNN layer. In case
of multi-valued concepts, the concept space has to be
binarised, as discussed in Section 2.2. In this case, the
binarised concept value with the highest likelihood is
returned.

Unlike CME, [34] does not provide a way of selecting
the convolutional layer to use for concept extraction.
We consider the best-case scenario by selecting, for all
tasks, the convolutional layers yielding the best concept
extraction performance. For all tasks, these layers were
convolutional layers closest to the output (the 3rd conv.
layer in case of dSprites tasks, and the final inception
block output layer in case of the CUB task).

4.3.2. CBM

As discussed in Section 4.2.3, we do not have access to
ground truth concept information learned by the CUB
model. Instead, we rely on the pre-trained sequential
bottleneck model defined in [18] (referred to as CBM
in the rest of this work). CBM is a bottleneck model,
obtained by resizing one of the layers of the CUB model
to match the number of concepts provided (we refer
to this as the bottleneck layer), and training the model
in two steps. First, the sub-model consisting of the
layers between the input layer and the bottleneck layer
(inclusive) is trained to predict concept values from
input data. Next, the submodel consisting of the lay-
ers between the layer following the bottleneck layer
and the output layer is trained to predict task labels
from the concept values predicted by the first submodel.
Hence, this bottleneck model is guaranteed to solely
rely on concept information that is learnable from the
data, when making task label predictions. Thus, this
benchmark serves as an upper bound for the concept
information learnable from the dataset, and for the task
performance achievable using this information. Impor-
tantly, CBM does not attempt to approximate/analyse
the CUB model, but instead attempts to solve the same
classification task using concept information only.

We use the first CBM submodel as a �̂� benchmark,
representing the upper bound of concept information
learnable from the data. We use the second submodel
as a �̂� benchmark, representing the upper bound of
task performance achievable from predicted concept
information only. Finally, we use the entire model as
an 𝑓

̂ benchmark. We make use of the saved trained
model from [18], available in their official repository5.

5. Results
We present the results obtained by evaluating our ap-
proach using the two case studies described above.

We obtain the concept labelled dataset by returning
the ground-truth concept values for a random set of
samples in the model training data. For dSprites, we
found that a concept labelled dataset of a 100 samples or
more worked well in practice for both tasks. Thus, we
fix the size of the concept labelled dataset to 100 in all
of the dSprites experiments. For CUB, we found that a
concept labelled dataset containing 15 or more samples
per class worked well in practice. Thus, we fix the size
of the concept labelled dataset to 15 samples per class in
all of the CUB experiments. In the future, we intend to
explore the variation of model extraction performance

5https://github.com/yewsiang/ConceptBottleneck



(a) Task 1 (b) Task 2

Figure 2: Predictive accuracy of CME and Net2Vec �̂� func-
tions for all concepts

with the size of the concept labelled dataset in more
detail.

5.1. Concept Prediction Performance
First, we evaluate the quality of �̂� functions produced
by CME, Net2Vec, and CBM. For both dSprites tasks, we
relied on the Label Spreading semi-supervised model
[35], provided in scikit-learn [36], when learning the 𝑔𝑙

𝑖

functions for CME. For CUB, we used logistic regression
functions instead, as they gave better performance.

5.1.1. dSprites

Figure 2 shows predictive performance of the �̂� func-
tions on all concepts for the two dSprites tasks (aver-
aged over 5 runs). As discussed in Section 4.1.1, we
have access to the ground truth concept information
learned by these models (shape concept information
for Task 1, and shape and scale concept information
for Task 2). For both tasks, �̂� functions extracted by
CME successfully achieved high predictive accuracy on
concepts relevant to the tasks, whilst achieving a low
performance on concepts irrelevant to the tasks. Thus,
CME was able to successfully extract the concept infor-
mation contained in the task models. For both tasks, �̂�
functions extracted by Net2Vec achieved a much lower
performance on the relevant concepts.

5.1.2. CUB

As discussed in Section 4.2.3, the CUB dataset does
not explicitly define how the concepts relate to the
output task labels. Thus, we do not know how rel-
evant/important different concepts are, with respect
to task label prediction. In this section, we make the
conservative assumption that all concepts are relevant,
when evaluating �̂� functions, and explore relative con-
cept importance in more detail in Section 5.3.

Firstly, we relied on the ‘average-per-concept’ met-
rics introduced in [18] when evaluating the �̂� function

performances, by computing their 𝐹1 predictive scores
for each concept, and then averaging over all concepts.
We obtained 𝐹1 scores of 92 ± 0.5%, 86.3 ± 2.0%, and
85.9 ± 2.3% for CBM, CME, and Net2Vec �̂� functions,
respectively (averaged over 5 runs).

Importantly, we argue that in case of a large num-
ber of concepts, it is crucial to measure how concept
mispredictions are distributed accross the test samples.
For instance, consider a dSprites Task 2 �̂� function that
achieves 90% predictive accuracy on both shape and
scale concepts. The average predictive accuracy on
relevant concepts achieved by this �̂� will therefore be
90%. However, if the two concepts are mis-predicted
for strictly different samples (i.e. none of the samples
have both shape and scale predicted incorrectly at the
same time), this means that 20% of the test samples
will have one relevant concept predicted incorrectly.
Given that both concepts need to be predicted correctly
when using them for task label prediction, this implies
that consequent task label prediction will not be able
to achieve over 80% task label accuracy. This effect
becomes even more pronounced in case of a larger
number of relevant concepts.

Consequently, we defined a novel cumulative mis-
prediction error metric, which we refer to as the ‘mis-
prediction-overlap’ (MPO) metric. Given a test set
𝑇 = {(𝐱

(0)
, 𝐜

(0)
), ..., (𝐱

(𝑛)
, 𝐜

(𝑛)
)} consisting of 𝑛 + 1 in-

put samples 𝐱 with corresponding concept labels 𝐜, and
a prediction set 𝑃 = {(�̂�

(0)
), ..., �̂�

(𝑛)
}, 𝑀𝑃𝑂 computes the

fraction of samples in the test set, that have at least 𝑚
relevant concepts predicted incorrectly, as shown in
Equation 3 (where 𝕀(.) denotes the indicator function):

𝑀𝑃𝑂(𝑇 , 𝑃,𝑚) =

1

𝑛

𝑛

∑

𝑖=0

𝕀(𝑒𝑟𝑟(𝐜𝑖 , �̂�𝑖) >= 𝑚) (3)

Here, 𝑒𝑟𝑟 can be used to specify which concepts to
measure the mis-prediction error on (i.e. in case some
of the provided concepts are irrelevant). Under our
assumption of all concepts being relevant, we defined
𝑒𝑟𝑟 as shown in Equation 4:

𝑒𝑟𝑟(𝐜𝑖 , �̂�𝑖) =

𝑘

∑

𝑗=0

𝕀(𝑐𝑖,𝑗 ≠ �̂�𝑖,𝑗 ) (4)

Using a held-out test set, we plot the𝑀𝑃𝑂 metric val-
ues for 𝑚 ∈ [0, ..., 112], as shown in Figure 3 (averaged
over 5 runs). Importantly, �̂� function performances
can be evaluated by observing their 𝑀𝑃𝑂 scores for
different values of 𝑚. A larger 𝑀𝑃𝑂 score implies a
bigger proportion of samples had at least 𝑚 relevant
concept predicted incorrectly.



Figure 3: Performances of �̂� functions, evaluated using the
𝑀𝑃𝑂 metric. The green line plots the case for perfect pre-
diction, when the predicted concepts are equivalent to the
ground truth concepts (i.e. the 𝑝

⋆ performance), in which
case 𝑀𝑃𝑂 = 1 for 𝑚 = 0, and 𝑀𝑃𝑂 = 0 otherwise. Net2Vec
obtained values within 1% deviation from the correspond-
ing CME values for all 𝑚, and is therefore omitted here for
simplicity

Overall, CME performed almost identically to Net2Vec,
and worse than 𝐶𝐵𝑀 according to the 𝑀𝑃𝑂 metric.
Similar performance to Net2Vec is likely caused by
(i) concepts being binary (requiring no binarisation)
(ii) the Inception-v3 model having a relatively large
number of convolutional layers, implying that the final
convolutional layer likely learned higher-level features,
relevant to concept prediction.

Importantly, 𝑀𝑃𝑂 showed that both CBM and CME
�̂� functions had a significant proportion of test samples
with incorrectly-predicted relevant concepts (e.g. CME
had an MPO score of 0.25 at 𝑚 = 4, implying that 25%
of all test samples have at least 4 concepts predicted
incorrectly). In practice, these mispredictions can have
a significant impact on consequent task label predictive
performance, as will be further explored in the next
section.

5.2. Task Performance
In this section, we evaluate the fidelity and performance
of the extracted 𝑓

̂ models. For all CME and Net2Vec �̂�
functions evaluated in the previous section, we trained
output-to-concept functions �̂�, predicting class labels
from the �̂� concept predictions. Next, for every �̂�, we
defined its corresponding 𝑓

̂ as discussed in Section 3,
via a composition of �̂� and its associated �̂�. For every
𝑓
̂ , we evaluated its fidelity and its task performance,
using a held-out sample test set. Table 1 shows the
fidelity of extracted models, and Table 2 shows the task

performance for these models (averaged over 5 runs).
The original Task 1, Task 2, and CUB models achieved
task performances of 100±0%, 100±0%, and 82.7±0.4%,
respectively, as described in Section 4.

Table 1
Fidelity of extracted 𝑓

̂ models

CME CBM Net2Vec
Task 1 100.0±0.0% – 24.5±3.6%
Task 2 99.3±0.5% – 38.3±4.0%
CUB 74.42±3.1% 77.5±0.2% 73.8±2.8%

Table 2
Task performance of extracted 𝑓

̂ models

CME CBM Net2Vec
Task 1 100.0±0% – 24.5±3.6%
Task 2 99.3±0.5% – 38.3±4.0%
CUB 70.8±1.8% 75.7±0.6% 69.8±1.5%

For both dSprites tasks, CME 𝑓
̂ models achieved high

(99%+) fidelity and task performance scores, indicat-
ing that CME successfully approximated the original
dSprites models. Furthermore, these scores were con-
siderably higher than those produced by the Net2Vec
𝑓
̂ models.

For the CUB task, both CME and Net2Vec 𝑓̂ models
achieved relatively lower fidelity and task performance
scores (in this case, performance of CME was very
similar to that of Net2Vec). Crucially, the CBM model
also achieved relatively low fidelity and accuracy scores
(as anticipated from our 𝑀𝑃𝑂 metric analysis). This
implies that concept information learnable from the
data is insufficient for achieving high task accuracy.
Hence the relatively high CUB model accuracy has to be
caused by the CUB model relying on other non-concept
information. Thus, the low fidelity of CME and Net2Vec
is a consequence of the CUB model being non-concept-
decomposable, implying that it’s behaviour cannot be
explained by the desired concepts. The next section
discusses possible approaches to fixing this issue.

5.3. Intervening
In the previous section, we demonstrated how CME can
be used to identify whether a model relies on desired
concepts during decision-making. In this section, we
demonstrate how CME can be used to suggest model



Figure 4: The task accuracy of �̂� functions, trained on con-
cepts predicted by �̂� functions, with top # No. corrected
concepts set to their ground truth values. Performance of
Net2Vec was very similar to that of CME, and is thus omit-
ted here for simplicity.

improvements, aligning model behaviour with the de-
sired concepts.

We trained a logistic regression �̂� model predicting
task labels from ground-truth concept labels for the
CUB task, obtaining an accuracy score of 96.4 ± 0.5%
on a held-out test set (averaged over 5 runs). Using
this model’s coefficient magnitudes as a measure of
concept importance, we discovered that the 32 most
important concepts identified this way were sufficient
for achieving over 96% task accuracy using logistic
regression.

Using this reduced concept set, we inspected how our
CUB �̂� function performances would change, if their
corresponding �̂� functions extracted these concepts
perfectly. This was achieved by taking the �̂� concept
predictions of these concepts on the test and training
sets, setting the values of the top 𝑖 most important
concepts to their ground truth values, training logistic
regression �̂� functions on these modified training sets,
and measuring their accuracies on the modified test sets
(this approach is referred to as concept intervention in
the rest of this work). The results are shown in Figure
4, with 𝑖 ranging from 0 to 32.

These results demonstrate that concept information
from only 32 concepts is sufficient for achieving over
96% task performance. Thus, predictive performance
of the CUB model can be significantly improved (up
to 14%) by ensuring that the model is able to learn and
use this concept information. Crucially, these results
show that CME concept intervention also significantly
improves CBM model performance, indicating that the
necessary concept information is not learnable from the
data. Hence, undesired CUB model behaviour is likely

Figure 5: t-SNE plots for the relevant Task 2 concepts. Each
row corresponds to a different concept, and each column
corresponds to a different layer of the Task 2 model. Each
plot is colored with respect to the concept’s values. For every
concept row, the subplot with a green border indicates the
layer CME selected for predicting the value of that concept.

arising due to data properties (e.g. the data not being
representative with respect to key concepts), not model
properties (e.g. architecture, or training regime).

Overall, we demonstrated how CME can be used to
identify the key concept information that can be used
to improve performance of DNN models, and ensure
that they are closer aligned with the desired concept-
based behaviour. Furthermore, we demonstrated how
CME can be used to identify whether undesired model
behaviour is caused by model properties, or data prop-
erties.

5.4. Explainability
By studying CME-extracted �̂� and �̂� functions sepa-
rately, we can gain additional insights into what con-
cept information the original model learned and how
this concept information is used to make predictions.
We give examples of how these sub-models can be in-
spected in the remainder of this section.

5.4.1. Input-to-Concept (�̂�)

CME extraction of �̂� functions from a DNN model is
highly complementary to existing approaches on la-
tent space analysis. For example, Figure 5 shows a
t-SNE [37] 2D projected plot of every layer’s hidden
space of the dSprites Task 2 model, highlighting dif-
ferent concept values of the two relevant concepts, as
well as the layers used by CME to predict them. Figure
5 demonstrates several important ways in which CME
concept extraction can be combined with existing la-
tent space analysis approaches, which will be discussed
in the remainder of this section. Further examples are
given in Appendix C.

Manifold Types Using ground-truth concept infor-
mation and hidden space visualisation, it is possible



to inspect the nature of latent space manifolds, with
respect to specific concepts. Firstly, this inspection al-
lows to build an intuition of how concept information
is represented in a particular latent space. Secondly, it
is possible to use this information when selecting the
types of �̂� functions to use during concept extraction.
For instance, some manifolds consist of “blobs” encod-
ing distinct concept values (e.g. row shape, columns
dense, dense_1), suggesting that the latent space is
clustered with respect to a concept’s values.

Variation Across Layers Using ground-truth con-
cept information and hidden space visualisation, it
is also possible to inspect how concept information
representation varies across layers of a DNN model.
Firstly, this inspection allows to build an intuition of
how concept-related information is transformed by the
DNN. Secondly, it is possible to use this information to
identify the ‘best’ layers to extract concept information
from. For instance, both rows shape and scale illus-
trate that the manifolds of higher layers become more
unimodal (separating concept values) with respect to
the relevant concepts. Importantly, this analysis, to-
gether with the definition of �̂� allows using different
layers for extracting different concepts.

Overall, we argue that CME concept extraction can
be well-integrated with existing latent space analysis
approaches, in order to study which concept informa-
tion is learned by a DNN, and how this information is
represented across DNN layers. This type of inspec-
tion can have numerous applications, including: (i)
inspecting which concepts a model has learned, and
verifying whether it has learned the desired concepts
(useful for model explanations and model verification),
(ii) inspecting how concept information is represented
across different layers (useful for fine-grained model
analysis), (iii) extracting concept predictions from a
DNN (useful for knowledge extraction). Further exam-
ples and analysis of extracted �̂� functions can be found
in Appendix C.

5.4.2. Concept-to-Output (�̂�)

�̂� functions encapsulate how a DNN uses concept infor-
mation when making predictions. Hence, these func-
tions can be inspected directly, in order to analyse
model behaviour represented in terms of concepts. An
example is given in Figure 6, in which we plot the deci-
sion tree �̂� function extracted by CME from the Task 1
model. Further examples are given in Appendix D.

Overall, inspection of �̂� functions can be used for
(i) verifying that a DNN uses concept information cor-
rectly during decision-making, and that it’s high-level

Figure 6: Visualisation of a decision tree �̂� extracted from
the Task 1 model. The model has correctly learned to differ-
entiate between classes based on the shape concept values.

behaviour is consistent with user expectations (model
verification), (ii) identifying specific concepts or con-
cept interactions (if any) causing incorrect behaviour
(model debugging), (iii) extracting new knowledge about
how concept information can be used for solving a par-
ticular task (knowledge extraction). Further examples
and analysis of extracted �̂� functions can be found in
Appendix D.

6. Conclusions
We present CME: a concept-based model extraction
framework, used for analysing DNN models via concept-
based extracted models. Using two case-studies, we
demonstrate how CME can be used to (i) analyse con-
cept information learned by DNN models (ii) analyse
how DNNs use concept information when making pre-
dictions (iii) identifying key concept information that
can further improve DNN predictive performance. CME
is a model-agnostic, general-purpose framework, which
can be combined with a wide variety of different DNN
models and corresponding tasks.

In this work, we assume a fixed set of concept la-
bels available to CME before model extraction begins
(i.e. the concept-labelled dataset). In the future, we
intend to explore active-learning based approaches to
obtaining maximally-informative concept labels in an
interactive fashion. Consequently, these approaches
will improve extracted model fidelity by retrieving the
most informative concept labels, and reduce manual
concept labelling effort.

Given the rapidly-increasing interest in concept-based
explanations of DNN models, we believe our approach
can play an important role in providing granular concept-
based analyses of DNN models.
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A. Concept Decomposition
The results and findings presented in existing work on
concept-based explanations suggests that users often
think of tasks in terms of concepts and concept interac-
tions (see Section 2.1 for further details). For instance,
consider the task of determining the species of a bird
from an image. A user will typically perform this task
by first identifying relevant concepts (e.g. wing color,
head color, and beak length) present in a given image,
and then using the values of these concepts to infer the
bird species, in a bottom-up fashion.

On the other hand, Machine Learning (ML) mod-
els usually rely on high-dimensional data representa-
tions, and infer task labels directly from these high-
dimensional inputs (e.g. a CNN produces a class label
from raw input pixels of an image).

Consequently, Concept Decomposition (CD) approaches
attempt to explain the behaviour of such ML models by
decomposing their processing into two distinct steps:
concept extraction, and label prediction. In concept
extraction, concept information is extracted from the
high-dimensional input data. In label prediction, con-
cept information is used to produce the output label.
Hence, CD approaches attempt to explain ML model
behaviour in terms of human-understandable concepts
and their interactions in a bottom-up fashion, parallel-
ing human-like reasoning more closely.

Importantly, whilst this work focuses on CNN mod-
els and tasks, the notion of CD can in principle be

http://jmlr.org/papers/v15/srivastava14a.html


applied to any ML model and task.

A.1. CBMs
CBMs can be seen as a special case of models perform-
ing CD, in which CD behaviour is enforced by design.
Hence, these models explicitly consist of two submod-
els, with the first submodel extracting concept infor-
mation, and the second submodel using this concept
information for producing task labels. Importantly,
non-CBM models can still demonstrate CD behaviour.
For instance, the dSprites Task 2 model was shown to
have CD behaviour, with relevant concept information
extracted in the dense layers, and used for classification
decisions.

A.2. CBMs & CME
The utility of CBMs is that they produce models explic-
itly encouraged to use CD. Consequently, these models
are much more likely to rely on the desired concepts
during decision-making, and be more aligned with a
user’s mental model of the corresponding task.

However, a given DNN model can already exhibit
CD behaviour, and use the desired concept information
(e.g. as was the case with both dSprites task models).
In this case, costly modifications and model re-training
are unnecessary. As discussed in Section 3, CME can
extract concept information from pre-trained DNNs by
training 𝐿 ∗ 𝑘 concept predictors (where 𝐿 denotes the
number of DNN layers used in concept extraction, and
𝑘 denotes the number of concepts). As demonstrated
in Section 5, these concept predictors can consist of
simpler models (e.g. LRs), trained on only a fraction
of the DNN training data. Thus, the computational
cost of training these concept predictors is significantly
smaller, compared to training a bottleneck model on
all the training data, as done in the case of CBMs.

More importantly, CBM models require knowledge
of existing concepts and available concept annotations.
In practice, these annotations are often expensive to
produce, especially for large datasets and/or a large
number of concepts. Furthermore, information about
which concepts are relevant and/or sufficient for solv-
ing a given task is often not fully available either. In-
stead, CME is capable of using existing DNN models
to extract this information automatically in a semi-
supervised fashion, making concept discovery (identi-
fying the relevant concepts), and concept annotation
both faster and cheaper.

Overall, CME permits efficient interaction with pre-
trained DNN models, which can be used to leverage

concept-related knowledge stored in these models. Con-
sequently, we believe that CME will be invaluable in
situations where concept-related information is expen-
sive/difficult to obtain, or is only partially-known. In
these cases, a user may interact with existing DNN mod-
els via CME, in order to refine existing concept-related
knowledge.

It should be noted that a CBM can trivially be ap-
proximated using CME, by defining �̂� as the output of
a CBM’s concept bottleneck layer, and defining �̂� as
the CBM’s submodel producing task labels from the
bottleneck layer output.

A.3. Further Discussion
As discussed in Section 3, CME explores whether a
DNN is concept-decomposable, by attempting to ap-
proximate it with an extracted model that is concept-
decomposable by design (i.e. explicitly consists of two
separate stages). Intuitively, if a given DNN learns and
relies on concept information of the specified concepts
during label prediction, this concept information will
be contained in the DNN latent space. Hence, the DNN
decision process could be separated into two steps: con-
cept information extraction, and consequent task label
prediction.

Importantly, existing CD-based approaches (such as
those discussed in Section 2.2) require the set of con-
cepts and their values to be (i) sufficient to solve the
corresponding classification task (i.e. the class labels
can be predicted from concept information with high
accuracy) (ii) learnable from the data (i.e. the DNN
model will be able to learn concept information from
the given dataset), in order to achieve high task perfor-
mance.

However, these works do not discuss how to handle
cases where these assumptions do not hold (e.g. as was
the case with the CUB task). Thus, exploring ways
of efficiently discovering relevant concepts sufficient
for solving a given task, as well as ways of ensuring
whether this concept information is learnable from the
data are both important research directions for future
work.

B. dSprites Dataset

B.1. Description
dSprites is a dataset of 2D shapes, procedurally gener-
ated from 6 ground truth independent concepts (color,
shape, scale, rotation, x and y position). Table 3 lists the
concepts, and corresponding values. dSprites consists



Figure 7: t-SNE plots for the relevant Task 1 concept. Each column corresponds to a different layer of the Task 1 model.
Each plot is colored with respect to the concept’s values. The subplot with a green border indicates the layer �̂� uses for
predicting the value of that concept

of 64×64 pixel black-and-white images, generated from
all possible combinations of these concepts, for a total
of 1 × 3 × 6 × 40 × 32 × 32 = 737280 total images.

Table 3
dSprites concepts and values

Name Values
Color white
Shape square, ellipse, heart
Scale 6 values linearly spaced in [0.5, 1]

Rotation 40 values in [0, 2𝜋]

Position X 32 values in [0, 1]

Position Y 32 values in [0, 1]

B.2. Pre-processing
We select 16 of the 32 values for Position X and Posi-
tion Y (keeping every other value only), and select 8 of
the 40 values for Rotation (retaining every 5th value).
This step makes the dataset size more manageable (re-
ducing it from 737280 to 3 ∗ 6 ∗ 8 ∗ 16 ∗ 16 = 36864

samples), whilst preserving its characteristics and prop-
erties, such as concept value ranges and diversity.

C. Input-to-Concept Functions
Figure 7 shows a t-SNE 2D projected plot of every
layer’s hidden space of the dSprites Task 1 model, high-
lighting different concept values of the relevant shape
concept, and which layers were used by CME to predict
it.

The CUB model has a considerably larger number of
layers, and a considerably larger number of task con-
cepts. Hence, for the sake of space, we demonstrate
an example here using only 6 different model layers of
the CUB model, and showing only the top 5 important
concepts identified in Section 5.3. In this Figure, the
concepts are named using their indices, and the lay-
ers are named following the naming convention used

in [18]. Further details regarding layer naming and/or
concept naming can be found in 6. For all concepts, con-
cept values become significantly better-separated after
the Mixed_7c layer. However, the figure shows that
concept values are still quite mixed together for some
of the points, even for later layers. This low separability
indicates that concept values will still be mis-predicted
for some of the points, and that concept extraction for
the CUB task will likely perform suboptimally.

D. Concept-to-Output Functions
Figure 9 shows the decision tree extracted for dSprites
Task 2. Overall, this model has correctly learned to
differentiate between classes based on the shape and
scale concepts (note: there are 3 × 6 shape and scale
concept values, for a total of 18 output classes).

6https://github.com/yewsiang/ConceptBottleneck/tree/master/CUB



Figure 8: t-SNE plots for the top 5 CUB concepts. Each column corresponds to a different layer of the CUB model. Each
plot is colored with respect to the concept’s values.



Figure 9: Visualisation of a decision tree �̂� extracted from the Task 2 model. The model has correctly learned to differentiate
between classes based on the shape and scale concept values.
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