
Creative Storytelling with Language Models and
Knowledge Graphs
Xinran Yanga, Ilaria Tiddia

aVrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands

Abstract
Automated story generation is a popular and well-recognized task in the field of natural language processing. The emergence
of pre-trained language models based on large Transformer architectures shows the great capability of text generation. How-
ever, language models are limited when the generation requires explicit clues within the context. In this research, we study
how to combine knowledge graphs with language models, and build a creative story generation system named DICE. DICE
uses external knowledge graphs to provide context clues and implicit knowledge to generate coherent and creative stories.
The evaluation shows that our approach can effectively inject the knowledge from knowledge graphs into the stories auto-
matically generated by the language model.

Keywords
knowledge graph, language model, story generation, natural language generation

1. Introduction
Story generation is a challenging task that requires
reasonable and relevant content in the generated sen-
tences as well as dealing with logic and implicit in-
formation (Guan et al. 2019). After large-scale pre-
trained language modes like OpenAI GPT-2 (Radford
et al. 2019) and BERT (Devlin et al. 2018) have been re-
leased in recent years, machines have shown the abil-
ity to generate a paragraph of understandable text ac-
cording to a given topic. These language models are
able to generate mostly-grammatical sentences with
nearly perfect syntax and punctuation (Koncel-Kedziorski
et al. 2019). However, the text generated by these
language models often lacks commonsense knowledge
(Logan et al. 2019) and it is hard to control the content
of the automatically generated text. To solve the prob-
lem, one solution is to take advantage of structured
inputs, such as tabular inputs and knowledge graphs
(Koncel-Kedziorski et al. 2019). Meanwhile, one of the
most popular methods to combine language models
and knowledge graphs, is using knowledge graph em-
beddings. However, creating embeddings for knowl-
edge graphs is a complex and time-consuming process;
moreover, knowledge graphs tend to be often updated,
and new embeddings have to be created (Wu et al.
2019). This research introduces a new method to com-
bine knowledge graphs with language models without

Proceedings of the CIKM 2020 Workshops, October 19-20, 2020,
Galway, Ireland
email: x6.yang@student.vu.nl (X. Yang); i.tiddi@vu.nl (I. Tiddi)
url: https://kmitd.github.io/ilaria/ (I. Tiddi)
orcid: 0000-0001-7116-9338 (I. Tiddi)

© 2020 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

Figure 1: An example of the story generation. The orange
words are the keywords provided by the user, and the blue
words are the extended entities and relations from the DICE
knowledge graph. These words are connected as knowledge
graphs (SVO triples). “#i” indicates the sentence is the i-th
sentence of the story.

embedding approaches.
We aim to answer the following research questions:
Q1. How to combine the language model with knowl-
edge graphs for the story generation without knowl-
edge graph embeddings? Q2. What are the advantages
and disadvantages of using knowledge graphs to auto-
matically generate a story?

We propose a two-layer system called DICE, which
contains a knowledge enrichment layer and a text gen-
eration layer, applying the knowledge graph and the
language model respectively, to generate coherent and

mailto:x6.yang@student.vu.nl
mailto:i.tiddi@vu.nl
https://kmitd.github.io/ilaria/
https://orcid.org/0000-0001-7116-9338
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


creative stories1. Figure 1 presents an example of the
story generation process. In the example, the system
takes 4 keywords as an input, then enriches the key-
words with the knowledge graph and constructs subject-
verb-object (SVO) triples, the latter will be used as a
prompt for the language model to generate stories.

The current work explores the possibility of con-
necting the knowledge graph and the language model
with an interface. The advantage of using an inter-
face is that the language model can rapidly adapt to
the changes from an updated knowledge graph. For
the knowledge enrichment layer, we implemented two
versions of DICE knowledge graph. For version1, we
retrieve the knowledge from ConceptNet (Speer et al.
2017) and WordNet (Miller 1995) and construct an inte-
grated knowledge graph of commonsense knowledge
for the story generation. For version2, we enriched the
knowledge graph of version1 by using DBpedia facts.
For the text generation layer, we choose ROCStories2

(Mostafazadeh et al. 2016) as our story corpus to fine-
tune the language model, GPT-2. More details are dis-
cussed in Section 3.

The contributions are as follows:

• We propose a new way of combining knowledge
graphs and language models for text generation
without using knowledge graph embeddings. The
results show that we can effectively inject the
knowledge from knowledge graphs into the au-
tomatically generated stories as a background or
a plot and therefore control the content of these
stories to some extent.

• We introduce a fine-tuned model which accepts
SVO triples as a prompt instead of sentences used
by original GPT-2 models, to generate reason-
able and creative stories with the context pro-
vided by the SVO triples.

2. Related Work

2.1. Text Generation using Language
Models

Story generation is a knowledge-intensive process (Li
et al. 2013). In particular, open story generation re-
quires artificial intelligence systems to create narra-
tives about any topic without a pre-defined domain
model (Li et al. 2013). Meanwhile, a creative story
should be both novel and appropriate (Sternberg 1999).

1Data and code available at github.com/ranyxr/dice_story
2https://cs.rochester.edu/nlp/rocstories/

Existing natural language generation systems are of-
ten limited when the tasks require higher levels of cre-
ativity and originality (Jain et al. 2017). Pre-trained
language models based on large Transformer architec-
tures (Vaswani et al. 2017), such as GPT-2 and BERT,
can be a potential solution for this problem. Recently,
the OpenAI team has announced the upgraded GPT-3
(Brown et al. 2020) with 175 billion parameters which
is 100 times larger than the previous version, GPT-2.
These language models show impressive text gener-
ation capabilities that can achieve state-of-the-art re-
sults without extra training (Keskar et al. 2019). How-
ever, these language models perform poorly when cap-
turing the long tail of rare entities such as numbers and
dates (Logan et al. 2019). Moreover, these models are
unable to build context clues and use implicit knowl-
edge to generate a reasonable story ending (Guan et
al. 2019).

2.2. Text Generation with Knowledge
Graph Embeddings

The problem mentioned above can be improved by com-
bining language models with knowledge graphs, where
the former can facilitate the knowledge extracted from
knowledge graphs. For example, Logan et al. (2019)
built the knowledge graph language model (KGLM)
that could select and copy related facts from a knowl-
edge graph. Ostendorff et al. (2019) enriched BERT
with knowledge graph embeddings for document clas-
sification and got better results than the standard BERT
approach. Meanwhile, Koncel-Kedziorski et al. (2019)
introduced a new attention model for graph encod-
ing and used it for the graph-to-text generation. The
main shortcoming of these models is their high cost of
computational resources which leads to a long train-
ing and task execution time (Yao et al. 2019). Koncel-
Kedziorski et al. (2019) also showed that their pro-
posed model failed to mention 40% of entities in the
knowledge graphs in the generated text.

2.3. Knowledge Enrichment with
Knowledge Graphs

Hsu et al. (2019) proposed the distill-enrich-generate
framework that using knowledge graphs to enrich the
words distilled from the input images and then gen-
erating stories. Liu et al. (2019) used external knowl-
edge graphs to enrich the input sentence as a sentence
tree for solving NLP tasks such as classification and se-
quence labeling. Guo et al. (2019) built a poetry knowl-
edge graph for keyword mapping, extension, and se-
lection to generate Chinese classical poems with high

github.com/ranyxr/dice_story
https://cs.rochester.edu/nlp/rocstories/


Figure 2: Two-layer architecture of DICE system. The green
arrows indicate the workflow of the knowledge enrichment
process. The purple arrows indicate the workflow of the text
generation process. The blue arrows indicate the workflow
of the language fine-tuning process.

quality and relevance. Similarly, Zhou et al. (2020) re-
sort to a knowledge graph that consists of a collection
of head-relation-tail triples to retrieve related topics in
their intelligent dialogue system.
Different from some researches above, instead of de-
livering a graph-to-text task which emphasizes the ex-
plicit translation from graph to text without creative
writing, this study puts more focus on using informa-
tion from knowledge graphs to provide a background
or a plot for the language model as guidance or inspi-
ration.

3. Method

3.1. Overview
The task here is to generate 5-sentence stories from a
set of SVO triples that are extracted and regrouped in
a knowledge graph. The expected input of the system
is a set of keywords provided by users. Figure 2 shows
the two-layer architecture of the DICE system. We
use SVO triples as an interface to connect the knowl-
edge enrichment layer and the text generation layer.
The SVO triples can be constructed from knowledge
graphs or extracted from story corpus; meanwhile, they
serve as a prompt for the language model to gener-
ate stories. The system firstly checks the relationships
between these keywords and adds additional informa-
tion using the knowledge graph, then generates a set
of SVO triples to feed the language model to generate
stories.

Two processes are involved to complete this task:
language model fine-tuning and story generation. Lan-

guage model fine-tuning is the pre-processing step for
story generation, which includes two stages: SVO triple
extraction and fine-tuning. Story generation also has
two stages, i.e., knowledge enrichment and text gen-
eration. In the next section, we will discuss each stage
in detail.

3.2. Language Model Fine-tuning
The OpenAI team has released GPT-3, the GPT-2’s suc-
cessor, but it was not available when we conducted the
research. As a result, we choose GPT-2 as the natural
language generator. OpenAI has released 4 versions of
GPT-23: the small version with 124M parameters, the
medium version with 355M parameters, the large ver-
sion with 774M parameters, and the XL version with
1.5B parameters. Considering the large amount of train-
ing data (the encoded story corpus is 19M), we choose
the medium version of GPT-2 to strike the balance of
speed, size, and creativity. An open-source Python
package, gpt-2-simple4, is used to support the fine-
tuning and text generation process. Meanwhile, we
choose the ROCStories as our story corpus, which con-
tains nearly 10 thousand short stories, each story in-
cludes a title and five-sentence content.

3.2.1. SVO Triple Extraction

After acquiring the story corpus, we need to encode
the dataset into a format that allows GPT-2 to generate
text according to the specified SVO triples. We extract
SVO triples from each story, then add the triples as a
prefix for each story respectively. This way, the lan-
guage model can learn from a hint that each story is
generated conditionally on the SVO triples.

We use spaCy5 to extract SVO triples from each story
as “entities and relations”. However, sometimes the
process may encounter the coreference problem, i.e.,
a pronoun is used as a subject. For example, the sen-
tence is “My sister has a dog. She loves him.”, the triple
directly extracted by spaCy is (My sister, has, dog) and
(She, loves, him), which are not the expected result be-
cause we want a more specific reference as a subject,
i.e., (My sister, has, dog) and (My sister, loves, dog). The
resolution is using neuralcoref6 that applies the neu-
ral net scoring model to find coreferences in the text
(Clark & Manning 2016). Meanwhile, to simplify the
triple, we convert the verb into its lemma and only ex-
tract the main text of the subject and the object. For

3https://openai.com/blog/gpt-2-1-5b-release/
4https://github.com/minimaxir/gpt-2-simple
5https://spacy.io/
6https://spacy.io/universe/project/neuralcoref

https://openai.com/blog/gpt-2-1-5b-release/
https://github.com/minimaxir/gpt-2-simple
https://spacy.io/
https://spacy.io/universe/project/neuralcoref


the example above, we extract “sister” instead of “my
sister”, “love” instead of “loves”.
As a result, one example from the encoded dataset is
the following:

(Joseph, sign, deal), (Joseph, be, musician), (Joseph,
be, songwriter), (Joseph, hope, write), (Joseph,
lose, wallet), (woman, contact, Joseph), (Joseph,
have, idea) The Best Single Joseph has just re-
cently signed a deal with a new record label.
He is a musician and a songwriter who hopes
to write a best new hit. On his way to a local
coffee shop to brainstorm, he lost his wallet.
Joseph was frustrated until a woman contacted
him and returned it. Suddenly, he realized he
had an idea for his new song about kindness.

Words in red are the SVO triples; words in orange are
the story title; words in blue are the story content.

3.2.2. Fine-tuning

The last step of this process is to fine-tune the model
based on the encoded dataset, which includes both SVO
triples and the original ROCStories. However, language
models like GPT-2 are built for longform content, gen-
erating short text like 5-sentence stories is not the typ-
ical generation scenario. To workaround this issue, we
use GPT-2-simple, which allows us to add flags to indi-
cate where is the start and the end of each short text (5-
sentence story in this case), then the language model
will automatically extract the shortform texts during
the fine-tuning process.

The final fine-tuned model is called the DICE model,
which can be found and downloaded on Google Drive7.

3.3. Story Generation
We use the SVO triples as a prompt for GPT-2. The
triples are constructed based on the keywords by using
knowledge graphs . Each triple includes a subject and
an object as its entities and a verb as its relation that
connects the entities. The SVO triples can not only
give the language model topics (entities) to talk about
but also define part of the plots (relations) of the story.
For example, (Jane, be, singer) defines the background
of the story, where there is a person whose name is
Jane who is a singer. The story generation includes
two stages: knowledge enrichment and text genera-
tion.

7https://drive.google.com/drive/folders/
1T68rWkOde5ZwcuodQ9iWuYJAcqAmb0Jo

3.3.1. Knowledge Enrichment

The system includes a new knowledge graph dataset
namedDICEKG. We implemented two versions of DICE
KG. Version1 (CW, i.e., ConceptNet and WordNet) com-
bines two large open-source knowledge graphs: Con-
ceptNet 5.6.0 and WordNet. ConceptNet is a knowl-
edge graph that connects words and terms (phrases of
natural language) with assertions (labeled, weighted
edges) (Speer et al. 2017). Unlike ConceptNet, Word-
Net is a large lexical database of English with cognitive
synonyms (synsets), which are connected by means of
conceptual-semantic and lexical relations (Miller 1995).
The DICE KG converts these two datasets into an in-
tegrated model, and as a result, the dataset contains
more than 1.6 million nodes and over 3 million rela-
tionships with 54 types. The DICE KG is large enough
for finding relations between the keywords given by
users and constructing a set of SVO triples using the
entities and relations in the knowledge graph. More-
over, each relationship between the words has an an-
notation named “weight", which can help the system
to find a more reasonable path in the next step, i.e., the
SVO triple construction.

We also introduce another version (DBCW, i.e., DB-
pedia, ConceptNet, and WordNet) of DICE KG that en-
riches version1 with DBpedia’s mappings8. The DBCW
version includes over 8.5 million nodes with 6 labels
and over 23 million relationships with 694 types. In
this version, we enrich the common concepts from Con-
ceptNet and WordNet with factual instances and prop-
erties from DBpedia. In Section 4, we compare the per-
formance of the two versions of DICE KG.

To construct SVO triples from the given keywords,
there are 3 steps: internal matching, external enrich-
ment, and converting paths to triples. The internal
matching concerns finding meaningful relations be-
tween the keywords, so that we can later put the key-
words at the corresponding position in an SVO triple.
If there is a keyword that has no relation with other
keywords, we use external enrichment to assign other
related words in the knowledge graph to construct an
SVO triple for the keyword. The first two steps are
both semi-automatic, i.e., we use Cypher to query the
graph database and get the matching candidates while
manually filtering the matching results, which are still
needed to ensure the quality of the SVO triples.

Figure 3 shows an example of the SVO triple con-
struction. We assume that the keywords are: {love, cat,
beer, nap}. Firstly, we try to lookup the one-hop rela-
tionship (only specific relations are considered, such as

8https://databus.dbpedia.org/dbpedia/mappings/
mappingbased-objects/2020.07.01

https://drive.google.com/drive/folders/1T68rWkOde5ZwcuodQ9iWuYJAcqAmb0Jo
https://drive.google.com/drive/folders/1T68rWkOde5ZwcuodQ9iWuYJAcqAmb0Jo
https://databus.dbpedia.org/dbpedia/mappings/mappingbased-objects/2020.07.01
https://databus.dbpedia.org/dbpedia/mappings/mappingbased-objects/2020.07.01


Figure 3: An example of SVO triple construction. Words in
yellow are verbs. Words in green are nouns. Words in red
are the enriched words from knowledge graphs.

CapableOf and Desires) between the keywords in the
knowledge graph. In this case, we find one direct rela-
tion: (cat, desires, nap). Next, we assign additional in-
formation to the keywords without a direct relation. In
this case, for the verb “love”, we randomly choose the
word “sing” as the verb’s object, which is connected to
“love” through a relation called “CausesDesire”. Mean-
while, we choose “Tina”, which belongs to the person
class, as the verb’s subject. For “beer” which is a noun,
we assign it a verb “drink”, which is related to “beer”,
and we also choose “Tina” as its subject to keep the
story simple. Finally, we also need to map the directly
one-hop relation into a more common word, for ex-
ample, (cat, desires, nap) becomes (cat, want, nap). As
a result, the final SVO triples are (cat, want, nap), (Tina,
love, sing), and (Tina, drink, beer).

3.3.2. Text Generation

The final stage is the text generation. After we get the
SVO triples, we can use these as a prefix to generate
stories from the trained model. In this process, we use
GPT-2 as the story generator. Meanwhile, we use gpt-
2-simple which allows for prefixes to force the gener-
ated text to start with the prefix and generate stories
from these triples. Finally, we truncate the prefix and
flags in the generated stories, to return text only with
titles and contents. Table 1 shows one example gener-
ated by DICE using the triples mentioned above. These
stories are handpicked from 75 automatedly generated
stories. We can see the stories can exactly reflect the
entities and relations from the SVO triples in gener-
ated stories, although the triples may not be presented
in the stories 100% of the time.

Table 1
A story generated by DICE. Words in red are the subjects
from the SVO triples; words in orange are the verbs (rela-
tions) from the SVO triples; words in blue are the objects
from the SVO triples.

Title Content

Lazy
Cat

Tina loved to sing and drink beer with her
friends. One day she was drunk and didn’t
know what to do. She decided to go to the bar
and see what she could do. She drank some
beer and then went home. She went to sleep
and woke up to her cat’s snoring.

4. Experiments

4.1. Baselines
DICE (CW) vs. Human. A given keyword set will
be provided to both a human and the DICE system
(with CW version of knowledge graph) to create sto-
ries, then we compare the results of human-written
stories and machine-written stories.

DICE (CW) vs. GPT-2. For the original GPT-2
model, we construct one or two sentences containing
all the entities in the keyword set, and we use these
sentences as input for the GPT-2 model which is di-
rectly fine-tuned on ROCStories to generate a story.
We then use the same keyword set to generate stories
using the DICE model and compare the results.

DICE (CW) vs. GPT-2-keyword-generation. GPT-
2-keyword-generation9 is open-source software that
using GPT-2 to generate text pertaining to the speci-
fied keywords. We compare the stories directly gener-
ated from a set of keywords with the stories generated
by the DICE system.

DICE-CW vs. DICE-DBCW. We also compare the
performance of the DICE system when using differ-
ent versions of DICE KG to evaluate whether factual
knowledge graphs can contribute to the story genera-
tion.

4.2. Evaluation
4.2.1. Evaluation Metrics

The evaluation focuses on two aspects of the gener-
ated output: story-independent metrics and story-dependent
metrics (Roemmele et al. 2017). Story-independent
metrics, including grammatical correctness, clarity, and
engagement, will be used to analyze the quality of the
generated output without considering its context; whereas

9github.com/minimaxir/gpt-2-keyword-generation

github.com/minimaxir/gpt-2-keyword-generation


Table 2
Explanations and approaches for each metric. Metrics in
orange are story-independent metrics. Metrics in blue are
story-dependent metrics.

Metrics Explanation Evaluation
approach

grammatical
correctness

The correctness of spelling,
grammar and punctuation

Automatic

clarity
Whether the text is easy to
understand.

Automatic

engagement
Whether the writing style
is interesting and effective.

Automatic

creativity
Whether the stories are
creative or not.

Manual

coherence
Semantically coherent of
the output.

Manual

Keyword
coverage

To what extent do the key-
words are presented in the
generated text.

Automatic

story-dependent metrics, including coherence, keyword
coverage, and creativity, will be used to evaluate the
generated stories with reference to the context (Roem-
mele et al. 2017). On the other hand, the evaluation
combines both automatic evaluation and manual eval-
uation. Explanation of each metric and the evaluation
approaches are shown in Table 2.
Automatic Evaluation. For story-independent met-
rics, we used the automated analysis tool, Grammarly,
to evaluate the overall grammaticality performance of
the generated text. For keyword coverage, we used a
script to monitor to what extent do the keywords were
presented in the generated stories.
Manual Evaluation. Stories should be reasonable

and coherent with the context (Guan et al. 2019), which
is hard to access by automatic tools. As a result, a man-
ual evaluation was also performed to more accurately
evaluate the quality of each story. We invited 3 indi-
viduals to score the stories from each model, includ-
ing stories from the original ROCStories. We applied
5-point Likert scales to rate each story on its creativity
and coherence. Then we calculated the overall average
score for each model.

Furthermore, we used a questionnaire10 to investi-
gate whether readers could tell the difference between
the automatically generated stories and the human-
written ones. We handpicked two stories generated
by the DICE system where the stories were generated
based on a given keyword set. Then we invited a per-

10https://forms.gle/jEu1LohH5zkADiNt6

son (non-native English speaker but with professional
working proficiency) to write two stories with the same
keywords. For human-written stories, each story should
only contain 5 sentences and every keyword in the
keyword set must be mentioned in the story content.
Finally, we invited people to estimate whether the story
is written by a human or a machine and score each
story on its creativity and coherence.

5. Results and Discussion

5.1. Experiment Results
We picked 100 random samples for each model to eval-
uate their performance. We gathered the automatic
evaluation results and manual evaluation results and
separated them by story-independent metrics and story-
independent metrics, which were shown in Table 3 and
Table 4 respectively. The result shows there is no much
difference according to the story-independent metrics
among the stories written by the language models and
human-written stories. The overall grammaticality per-
formance of each model is satisfactory. The Gram-
marly overall score of the fine-tuned GPT-2 model is
even higher than the score of human-written stories.
For samples from ROCStories, most of the grammat-
ical errors are the punctuation misuse. While for the
stories generated by language models, the biggest writ-
ing issue is the determiner (a/an/the/this, etc.) misuse,
followed by punctuation misuse and wordy sentences.

For the two story-dependent metrics of creativity
and coherence, all the models perform poorly com-
pared with human writers. In general, the generated
stories are not always logical and making sense, even
with a properly trained model. The OpenAI team shows
that it takes a few tries to get a good and reasonable
result, and meanwhile, the number of tries is highly
dependent on the topics presented in the training data.
Particularly, in this case, the given keywords can influ-
ence the performance of the result significantly. For
example, if the given keywords are barely related to
each other, then the model can perform poorly. This is
because unrelated keywords make it more difficult to
generate related SVO triples, and unrelated SVO triples
lead to unconnected sentences in the generated sto-
ries. However, the keyword coverage of the DICE sys-
tem (96% for DICE-CW and 97% for DICE-DBCW) is
significantly higher than other baselines (73% for GPT-
2, 88% for GPT-keyword-generation). However, for
the DICE-DBCW, the coverage of the enriched words
(80%) from DBpedia is lower compared with the key-
word coverage. This is because some of the enriched

https://forms.gle/jEu1LohH5zkADiNt6


words are proper nouns, like brand names, which are
hardly shown in the training text.

Table 3
Results of the story-independent metrics.

Model Correctness Clarity Engage Score

GPT-2
21 alerts/
4276 words

Very
clear

Engaging 82/100

GPT-
keyword-
generation

26 alerts/
3512 words

Mostly
clear

Bland 78/100

DICE-
CW

18 alerts/
3931 words

Mostly
clear

Bland 75/100

DICE-
DBCW

31 alerts/
5279 words

very
clear

A bit
bland

80/100

Human
54 alerts/
4591 words

Very
clear

A bit
bland

80/100

Table 4
Results of story-dependent metrics.

Model Creativity Coherence Keyword
coverage

GPT-2 2.3/5 2.4/5 0.7275
GPT-
keyword-
generation

2.4/5 2.7/5 0.88

DICE-CW 2.2/5 2.5/5 0.9625
DICE-
DBCW

2.3/5 2.7/5 0.9725

Human 3.7/5 4.9/5 N/A

5.1.1. Questionnaire Results

The questionnaire has received 54 responses. Most of
the respondents are native English speakers (4/5 of the
respondents), and some of them are non-native speak-
ers (1/5 of the respondents) but with effective English
proficiency. The result is shown in Table 5. In general,
there is a great chance (37.5% on average) for people
to make a mistake when judging whether the story is
written by a human or a machine. In particular, sto-
ries with short sentences and wrong word choices are
more likely to be regarded as a machine-written story.
On the other hand, for stories that are interesting and
creative but without coherence between the sentences,
people are more likely to make a mistake and think the
stories are written by a human.

Table 5
Result of the questionnaire.

Story
No.

Written
by

Average
Score
rate by
human

Vote
for
Machine

Vote
for
Human

Story1 Human 2.70 70.4% 29.6%
Story2 Machine 2.80 70.4% 29.6%
Story3 Human 3.37 31.5% 68.5%
Story4 Machine 2.74 81.5% 18.5%

5.2. Injecting Relations into Stories
As mentioned in the last section, the keyword cover-
age (96%) and the relation coverage (100%) of the DICE
system are very high during the test. This means the
SVO triples can effectively affect the plots of the gen-
erated stories. During the experiment, we find that
we can use SVO triples to inject entities and the re-
lations between the entities into the stories as back-
grounds or plots. As a result, the quality of the SVO
triples and the order of these triples can significantly
affect the quality of the automatically generated sto-
ries. Since these triples are generated from the knowl-
edge graphs, the logic and relationships behind these
knowledge graphs are also important to a better story
generation.

5.3. Quality of Generated Stories
As shown in Table 4, there is little difference in the
creativity score and the coherence score from the base-
lines to the DICE model. Although with the DICE model,
we are able to inject relations into the stories, the re-
lation can only affect the logic within each sentence
while it cannot influence the logic that runs through
the story. This is because the SVO triples extracted
during the language fine-tuning process, are extracted
from each sentence separately in the stories which are
loosely connected, so they cannot reflect relations like
causation throughout the text. As a result, the coher-
ence of the generated stories from the DICE model is
not satisfying in general.

5.4. Commonsense vs. Factual KG
We introduce two knowledge graphs in this research.
The knowledge graph used in version1 (CW) is a se-
mantic knowledge graph where common concepts and
words have many connections with each other, which
is the foundation to relate keywords and construct SVO
triples. While for the fact-based knowledge graphs



like DBpedia, they can hardly provide connections be-
tween the common concepts, and as a result, they can
hardly contribute to the triple construction process.
However, with a combination of semantic knowledge
graphs and factual knowledge graphs, i.e., DICE KG
version2 (DBCW), we can make use of the knowledge
about the instances of the concepts and the properties
of the instances from factual knowledge graphs, and
we can use it to enrich the entities in the triples.

6. Conclusions
In this paper we showed how to use subject-verb-object
triples as a context clues input to the generative model,
to connect language models and knowledge graphs for
story generation. Evaluation results showed that we
can effectively inject entities and relations from knowl-
edge graphs into the generated stories. Future work
will focus on improving the coherence of the gener-
ated stories and making them have smooth transitions
between sentences. For example, in order to improve
the performance of the internal matching process, we
can classify popular words into specific classes and use
ontology techniques, such as SCHACL (Knublauch &
Kontokostas 2017) and OWL restrictions (McGuinness
& Van Harmelen 2004), to make sure these classes can
interact with each other based on specific rules.

References
[1] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Ka-

plan, J., Dhariwal, P., ... & Agarwal, S. (2020). Lan-
guage models are few-shot learners. arXiv preprint
arXiv:2005.14165.

[2] Chen, J., Chen, J., & Yu, Z. (2019, July). Incorpo-
rating structured commonsense knowledge in story
completion. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence (Vol. 33, pp. 6244-
6251).

[3] Chen, Z., Eavani, H., Liu, Y., & Wang, W. Y. (2019).
Few-shot NLG with Pre-trained Language Model.
arXiv preprint arXiv:1904.09521.

[4] Clark, K., & Manning, C. D. (2016). Deep rein-
forcement learning for mention-ranking corefer-
ence models. arXiv preprint arXiv:1609.08667.

[5] Devlin, J., Chang, M. W., Lee, K., & Toutanova,
K. (2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv
preprint arXiv:1810.04805.

[6] Guan, J., Wang, Y., & Huang, M. (2019, July). Story
ending generation with incremental encoding and

commonsense knowledge. In Proceedings of the
AAAI Conference on Artificial Intelligence (Vol. 33,
pp. 6473-6480).

[7] Guo, Z., Yi, X., Sun, M., Li, W., Yang, C., Liang, J.,
... & Li, R. (2019, July). Jiuge: A Human-Machine
Collaborative Chinese Classical Poetry Generation
System. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics:
System Demonstrations (pp. 25-30).

[8] Hsu, C. C., Chen, Z. Y., Hsu, C. Y., Li, C.
C., Lin, T. Y., Huang, T. H. K., & Ku, L. W.
(2019). Knowledge-Enriched Visual Storytelling.
arXiv preprint arXiv:1912.01496.

[9] Jain, P., Agrawal, P., Mishra, A., Sukhwani, M.,
Laha, A., & Sankaranarayanan, K. (2017). Story gen-
eration from sequence of independent short de-
scriptions. arXiv preprint arXiv:1707.05501.

[10] Keskar, N. S., McCann, B., Varshney, L. R., Xiong,
C., & Socher, R. (2019). Ctrl: A conditional trans-
former language model for controllable generation.
arXiv preprint arXiv:1909.05858.

[11] Knublauch, H., & Kontokostas, D. (2017). Shapes
constraint language (SHACL). W3C Candidate Rec-
ommendation, 11(8).

[12] Koncel-Kedziorski, R., Bekal, D., Luan, Y., Lap-
ata, M., & Hajishirzi, H. (2019). Text Generation
from Knowledge Graphs with Graph Transformers.
arXiv preprint arXiv:1904.02342.

[13] Li, B., Lee-Urban, S., Johnston, G., & Riedl, M.
(2013, June). Story generation with crowdsourced
plot graphs. In Twenty-Seventh AAAI Conference
on Artificial Intelligence.

[14] Liu, W., Zhou, P., Zhao, Z., Wang, Z., Ju, Q.,
Deng, H., & Wang, P. (2019). K-bert: Enabling lan-
guage representation with knowledge graph. arXiv
preprint arXiv:1909.07606.

[15] Logan, R., Liu, N. F., Peters, M. E., Gardner, M., &
Singh, S. (2019, July). Barack’s wife hillary: Using
knowledge graphs for fact-aware language model-
ing. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics (pp.
5962-5971).

[16] McGuinness, D. L., & Van Harmelen, F. (2004).
OWL web ontology language overview. W3C rec-
ommendation, 10(10), 2004.

[17] Miller, G. A. (1995). WordNet: a lexical database
for English. Communications of the ACM, 38(11),
39-41.

[18] Mostafazadeh, N., Vanderwende, L., Yih, W. T.,
Kohli, P., & Allen, J. (2016, August). Story cloze
evaluator: Vector space representation evaluation
by predicting what happens next. In Proceedings of
the 1st Workshop on Evaluating Vector-Space Rep-



resentations for NLP (pp. 24-29).
[19] Ostendorff, M., Bourgonje, P., Berger, M.,

Moreno-Schneider, J., Rehm, G., & Gipp, B. (2019).
Enriching BERT with Knowledge Graph Embed-
dings for Document Classification. arXiv preprint
arXiv:1909.08402.

[20] Radford, A., Wu, J., Child, R., Luan, D., Amodei,
D., & Sutskever, I. (2019). Language models are un-
supervised multitask learners. OpenAI Blog, 1(8).

[21] Roemmele, M., Gordon, A. S., & Swanson,
R. (2017, August). Evaluating story generation
systems using automated linguistic analyses. In
SIGKDD 2017 Workshop on Machine Learning for
Creativity (pp. 13-17).

[22] Speer, R., Chin, J., & Havasi, C. (2017, February).
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Thirty-First AAAI Conference
on Artificial Intelligence.

[23] Sternberg, R. J. (Ed.). (1999). Handbook of creativ-
ity. Cambridge University Press.

[24] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017).
Attention is all you need. In Advances in neural in-
formation processing systems (pp. 5998-6008).

[25] Wu, T., Khan, A., Gao, H., & Li, C. (2019). Ef-
ficiently embedding dynamic knowledge graphs.
arXiv preprint arXiv:1910.06708.

[26] Yao, L., Mao, C., & Luo, Y. (2019). KG-BERT:
BERT for knowledge graph completion. arXiv
preprint arXiv:1909.03193.

[27] Zhou, L., Gao, J., Li, D., & Shum, H. Y. (2020).
The design and implementation of xiaoice, an em-
pathetic social chatbot. Computational Linguistics,
46(1), 53-93.


	1 Introduction
	2 Related Work
	2.1 Text Generation using Language Models
	2.2 Text Generation with Knowledge Graph Embeddings
	2.3 Knowledge Enrichment with Knowledge Graphs

	3 Method
	3.1 Overview
	3.2 Language Model Fine-tuning
	3.2.1 SVO Triple Extraction
	3.2.2 Fine-tuning

	3.3 Story Generation
	3.3.1 Knowledge Enrichment
	3.3.2 Text Generation


	4 Experiments
	4.1 Baselines
	4.2 Evaluation
	4.2.1 Evaluation Metrics


	5 Results and Discussion
	5.1 Experiment Results
	5.1.1 Questionnaire Results

	5.2 Injecting Relations into Stories
	5.3 Quality of Generated Stories
	5.4 Commonsense vs. Factual KG

	6 Conclusions

