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Abstract
Driven by deep neural networks (DNN), the recent development of computer vision makes visual sensors such as stereo
cameras and Lidars ubiquitous in autonomous cars, robotics and traffic monitoring. However, due to operational constraints,
a processing pipeline like object tracking has to hard-wire an engineered set of DNN models to a fixed processing logic. To
overcome this, we propose a novel semantic reasoning approach that uses stream reasoning programs for in-cooperating
DNN models with commonsense and domain knowledge using Answer Set Programming (ASP). This approach enables us to
realize a reasoning framework that can adaptively reconfigure the reasoning plan in each execution step of incoming stream
data.
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1. Motivation
The recent development of computer vision (CV) driven
by deep neural networks (DNN) makes visual sensors
such as stereo cameras and Lidars ubiquitous in au-
tonomous cars, robotics and traffic monitoring. In par-
ticular, many DNN models for object detection [1] and
tracking [2] are available. However making reliably
working in a real-life online processing pipeline such
as an Automated Driving System (ADS) or a traffic
surveillance query engine is still very challenging. For
example, [2] reports that the most accurate DNN-driven
multi-object tracking (MOT) pipelines can process only
4-5 frames/second. To make such a system work on-
line e.g. for ADS, where processing delay must be less
than 100ms [3], one has to hard-wire a fixed sets of
DNN models with some sacrifices on accuracy and ro-
bustness as the design constraints of an ADS limit how
much hardware can be put into a system [3]. For in-
stance, an additional 400 W power consumption trans-
lates to a 3.23% reduction in miles per gallon for a 2017
Audi A4 sedan or similarly, the additional power con-
sumption will reduce the total driving range of electric
vehicles.

Such a design-time trade-off often leads to unpre-
dictable fatal errors in a real deployment. For exam-
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ple, the recent report of Uber’s accident in Arizona [4]
says "...The ADS detected the pedestrian 5.6 seconds be-
fore impact. Although the ADS continued to track the
pedestrian until the crash, it never accurately classified
her as a pedestrian or predicted her path. By the time the
ADS determined that a collision was imminent (1 second
before impact), the situation exceeded the response spec-
ifications of the ADS braking system...". This accident
could have not happened if the ADS could reconfig-
ure the object tracking pipeline on the fly, e.g chang-
ing DNN models or using alternative sensor sources to
improve the accuracy on detection and tracking.

This motivates us to propose an approach of com-
bining stream reasoning with probabilistic inference
to continuously configure such processing pipelines
based in semantic information representing common-
sense and domain knowledge. The use of semantic in-
formation together with DNNs has proved to be useful
and led to better accuracy in image understanding [5]
and in object tracking [6]. Similar to ours, these ap-
proaches use declarative approaches to represent the
processing pipelines of visual data. However, none of
them have considered how to deal with the aforemen-
tioned operational constraints in the context of stream
processing. Our approach represents such constraints
in an extension of Answer Set Programming (ASP).
This extension is proposed by leveraging LARS formu-
las [7] for expressing stream reasoning programmes to
incorporate uncertainty of probabilistic inference op-
erations under weighted rules similar to LP𝑀𝐿𝑁 [8],
called semantic reasoning rules. As a result, we will
be able to dynamically express a visual sensor fusion
pipeline, e.g. MOT over multiple cameras, by seman-

mailto:danh.lephuoc@tu-berlin.de
mailto:thomas.eiter@tuwien.ac.at
https://orcid.org/0000-0003-2480-9261
https://orcid.org/0000-0001-6003-6345
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


tic reasoning rules to fuse probabilistic inference op-
erations with ASP-based solving processes. Moreover,
the expressive power of our approach also enables us
to express operational constraints together with opti-
misation goals as a probabilistic planning programme
similar to 𝑝𝐵𝐶

+ [9] so that our reasoning framework
can reconfigure the reasoning plan adaptively in each
execution step of incoming stream data.

2. Formalization of Semantic
Stream Reasoning with DNN
Models

Semantically, a multi-sensor fusion data pipeline will
consume the data that is observed by a Sensor as a
stream of observations (represented as an Observation)
following standardized W3C/OGC Semantic Sensor Net-
work Ontology (SSN) [10] . For instance, the example
in Figure 1 shows 3 image frames are observed by a
traffic camera. These observations will then be fed into
a probabilistic inference process such as a DNN model
or a CV algorithm (represented as a Procedure) to pro-
vide derived stream elements which then are repre-
senting Sampling instances. In this example, we have
𝑑𝑒𝑡(𝑦𝑙, 𝑏1, 𝑐𝑎𝑟) representing for the output bounding
box 𝑏1 from the YOLO detector 𝑦𝑙∈𝐷𝑇 where𝐷𝑇 (short
for Detector) represents for the set of detectors sup-
ported. Similarly, 𝑡𝑟𝑘(39, 𝑏2) represents for tracking
bounding box 𝑏2 generated by a tracking algorithm (a
Tracker) which associates 𝑏2 with the tracklet 39 via
the popular object tracking algorithm SORT [11].

The symbol FeatureOfInterest (FoI) is used to repre-
sent the domain of physical objects which are subjects
for the sensor observations, e.g. tracking objects and
field of views (FoV) of the camera. The relationship be-
tween a Result generated by probabilistic inference al-
gorithms (e.g. YOLO detection model or Kalman filter
algorithm) to such object is represented by the predi-
cate isSampleOf (denoted as iSO). As such algorithms
have output with uncertainty, we will use an abduc-
tion reasoning process to search for explainable evi-
dences for iSO via rules driven commonsense and do-
main knowledge similar to [6].

To formalise the reasoning process with such a se-
mantic representation of stream data, we need a tem-
poral model that allows us to reason about the prop-
erties and features of objects from streams of sensor
observations. This model must account for the laws of
the physical world movement and in particular be able
to fill gaps of incomplete information (e.g., if we do
not see objects appearing in observations, or camera
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Figure 1: A Semantic Visual Stream Snapshot

reads are missing), based on commonsense principles.
We thus use the LARS framework [7] to represent a
reasoning programme over our semantic stream data
which can evaluated using an ASP solver.

The LARS framework provides formulas with Boolean
connectives and temporal operators @𝜏𝛼 , □𝛼 , and ◊𝛼

to evaluate a formula 𝛼 at a time point 𝜏 (resp. ev-
ery, some time point) in the current stream 𝑆; win-
dow operators ⊞𝑤𝛼 take for evaluating 𝛼 a data snap-
shot (substream) 𝑆′ from 𝑆 by applying a function𝑤 on
𝑆. For example, the formula ⊞

+5
◊𝑑𝑒𝑡(𝑦𝑙, 𝐵, 𝑐𝑎𝑟) states

that at evaluation time 𝜏 , 𝑑𝑒𝑡(𝑦𝑙, 𝐵, 𝑐𝑎𝑟) holds at some
time point 𝜏 ′ in the window [𝜏 − 5, .., 𝜏 ] selected by
𝑤 = +5; in our representation, 𝑑𝑒𝑡(𝑦𝑙, 𝐵, 𝑐𝑎𝑟) is the
matching condition for "a car was detected in bound-
ing box 𝐵 by the YOLO detector". The formula @𝜏𝛼

is aligned with a fluent 𝐹 resp. an event 𝐸 in Event
Calculus (EC) [12], such that @𝜏𝐹 ≡ ℎ𝑜𝑙𝑑𝑠𝐴𝑡(𝐹 , 𝜏 ) and
@𝜏𝐸 ≡ ℎ𝑎𝑝𝑝𝑒𝑛𝑠(𝐸, 𝜏 ). This will help us to employ
ASP-based EC axioms for common sense reasoning rules
as proposed in [6].

To deal with uncertainty, we extend LARS with weighted
rules under LP𝑀𝐿𝑁 semantics as in [8]. In LP𝑀𝐿𝑁 ,
facts generated from feature extractors (DNN models
or OpenCV algorithms) as well as abduction rules on
top can be annotated with uncertainty information given
by a weight, which allows reasoning under certain lev-
els of uncertainty.

For our concerns, a semantic reasoning program Π is
a set of weighted rules 𝑟 of the form

𝜔 ∶ 𝛼 ← 𝛽 (1)

where 𝛼, 𝛽 are LARS formulas and 𝜔 ∈ ℝ ∪ {𝑥} is the
weight of the rule. If 𝜔 = 𝑥 , then 𝑟 is a hard rule, oth-
erwise a soft rule; by Π

ℍ and Π
𝕊 we denote the sets

of hard and soft rules of Π, respectively. The seman-
tics of Π is given by the answer streams [7] 𝑆 of the
LARS program Π𝑆 obtained from Π by dropping the
weights and each 𝑟 where 𝑆 violates 𝛼 ← 𝛽 ; each
such 𝑆 gets a probability 𝑃𝑟Π(𝑆) assigned calculated
from the weights of the rules retained for Π𝑆 ; for more
information, we refer to [8]. In Section 3 we will ad-
dress how to translate restricted programs Π into ASP



programs to be fed into an ASP solver, and how the
weights 𝜔 can be learned from training data.

To demonstrate how to build a semantic reasoning
program, we will emulate DeepSORT tracking algo-
rithm [13] via soft rules that can search for supporting
evidences to re-identify objects associated with track-
lets created by Kalman filter above, by using visual ap-
pearance associations. DeepSORT extends SORT with
a DNN that is trained to discriminate targeted objects
(e.g. pedestrians or vehicles) on a labelled re-identification
dataset.

Hence, we will search for pairs of bounding boxes of
two similar tracklets w.r.t. visual appearance. Due to
a large search space of possible matches, we will limit
the search space by filtering the candidates based on
their temporal and spatial properties. Therefore, we
use rules with windows to reason about two discon-
nected tracklets that have two bounding boxes matched
within a time window of 𝛿𝑀 time points which are
aligned with the DeepSORT’s gallery of associated ap-
pearance descriptors for each track. Based on this gallery
of previous tracked boxes, the cosine distance is com-
puted to compare appearance information that are par-
ticularly useful to recover identities after long term oc-
clusions, when motion is less discriminative. Hence,
for merging two adjacent tracklets that have visual ap-
pearance matches, we use the parametrized soft rule
(15) below. The pair of parameters (𝛿𝑀 , 𝑣𝑀

𝑗
) has to be

specified for each reasoning step via the probabilistic
planning component of our dynamic reasoning frame-
work in Section 3; 𝑣𝑀 𝑗 is one of the available visual
matching models that represent the association met-
rics to discriminate comparing bounding boxes.

𝜔
𝑗

1
∶ 𝑖𝑆𝑂(𝐵1, 𝑂) ← @𝜏 𝑡𝑟𝑘(𝑇1, 𝐵1), 𝑐𝑜𝑙(𝐵1, 𝑇2), 𝑡𝑟𝑘𝑙𝑒𝑡(𝑇2, 𝑂),

@𝜏𝑒
𝑒𝑛𝑑𝑠(𝑇2),@𝜏𝑒

⊞
+𝛿

𝑀

◊𝑡𝑟𝑘(𝑇2, 𝐵2),

𝜏 < 𝜏𝑒 + 3, 𝑣𝑀𝑎𝑡𝑐ℎ(𝑣𝑀
𝑗
, 𝐵1, 𝐵2) (2)

Similarly, we can define rules to trigger the object
matching search based on visual appearances of two
tracklets from two adjacent cameras. We use
@𝜏𝑑𝑖𝑠𝑡(𝐵1, 𝐶, 𝑑

𝑡
) to specify the time difference 𝑑 𝑡 from

the candidate camera 𝐶 at time point 𝜏 to start the
search for the matches via the auxiliary predicate 𝑑𝑖𝑠𝑡 .
Also, 𝐶 is filtered by the auxiliary predicate 𝑛𝑒𝑥𝑡 stat-
ing 𝐶 is adjacent to the camera where 𝐵1 was gener-
ated. 𝑙𝑒𝑓 𝑡𝐹𝑜𝑉 (𝑂, 𝐶) represents for "object 𝑂 left the
FoV of camera 𝐶".

𝜔
𝑗

2
∶ 𝑖𝑆𝑂(𝐵1, 𝑂) ← @𝜏 𝑡𝑟𝑘(𝑇1, 𝐵1), 𝑛𝑒𝑥𝑡(𝐵1, 𝐶), (3)

@𝜏𝑑𝑖𝑠𝑡(𝐵1, 𝐶, 𝑑
𝑡
),@𝜏+𝑑

𝑡 ⊞
+𝛿

𝑀

◊𝑙𝑒𝑓 𝑡𝐹𝑜𝑉 (𝑂, 𝐶),

𝑡𝑟𝑘𝑙𝑒𝑡(𝑇2, 𝑂), 𝑡𝑟𝑘(𝑇2, 𝐵2), 𝑣𝑀𝑎𝑡𝑐ℎ(𝑣𝑀
𝑗
, 𝐵1, 𝐵2)
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Figure 2: Stream Reasoning Framework

3. Dynamic Reasoning
Framework

To the realize our reasoning approach in Secion 2, we
proposes a dynamic reasoning framework illustrated
in Figure 2. The key components Reasoner and Planner
of the framework are built on top an ASP Solver and
a Stream Processor which are pluggable and generic
modules. The control logic of the framework is gov-
erned by Algorithm 1.

While any ASP Solver supporting weak constraints
can be used in our framework, existing stream proces-
sors such as relational or graph stream processing en-
gines need to be extended with some prerequisite fea-
tures to connect with the rest of the framework. For
instance, in our under-development prototype, we ex-
tend CQELS [14] to enable DNN inference on GPUs as
built-in functions for CQELS-QL, the graph-based con-
tinuous query language of CQELS. Via CQELS-QL, the
auxiliary predicates such as 𝑐𝑜𝑙, 𝑛𝑒𝑥𝑡 and 𝑑𝑖𝑠𝑡 in Sec-
tion 2 are expressed as continuous queries in order to
delegate the processing to the stream processor. This
mechanism also helps us to avoid grounding overhead
in continuous solving via materialised views similar to
the over-grounding approach in [15]. In particular, we
leverage continuous multiway-joins with windows of
CQELS to delegate the processing of LARS formulas
that do not occur in rule heads.

Moreover, the visual stream data with different for-
mats (e.g. RGB videos and Lidar PointCloud) together
with the knowledge base (KB) have to be normalized
to the data model supported by the stream processor.
For example, ontologies and metadata and extracted
symbols as outputs of DNN inference processes are
represented as temporal graphs of CQELS. With these
features, the stream processor is able to generate data
snapshots and planning profiles in ASP readable for-
mat via two methods 𝑔𝑒𝑛𝑃𝑙𝑎𝑛𝑃𝑓 and 𝑔𝑒𝑛𝑆𝑛𝑎𝑝𝑠ℎ𝑜𝑡 re-
spectively.

The Planner calls the method 𝑔𝑒𝑛𝑃𝑙𝑎𝑛𝑃𝑓 to prepare
the input for the first reasoning step of each time point



Algorithm 1 Semantic_Reasoning(S, 𝑡)
Input: Semantic Stream 𝑆, new observation 𝕆, time
point 𝑡
Output: Optimal answer set 𝐼 ∗

1: 𝑖 ← 0, Π
𝕊̂
← ∅

2: for {𝜔 ∶ 𝛼 ← 𝛽} ∈ Π
𝕊 do

3: 𝑖 ← 𝑖 + 1

4: Π
𝕊̂
← Π

𝕊̂
∪ {𝑢𝑛𝑠𝑎𝑡(𝑖) ← 𝛽, 𝑛𝑜𝑡 𝛼}

5: Π
𝕊̂
← Π

𝕊̂
∪ {𝛼 ← 𝛽, 𝑛𝑜𝑡 𝑢𝑛𝑠𝑎𝑡(𝑖)}

6: Π
𝕊̂
← Π

𝕊̂
∪ {∶∼ 𝑢𝑛𝑠𝑎𝑡(𝑖) [𝜔@0]}

7: end for
8: Π

𝑝
← 𝑔𝑒𝑛𝑃𝑙𝑎𝑛𝑃𝑓 (𝑆, 𝕆, Π

𝕊̂
, 𝑡 − 1)

9: Π
𝑝̂
← 𝑙𝑎𝑟𝑠2𝑎𝑠𝑝(Π

𝕊̂
∪Π

ℍ
∪Π

𝑝
, 𝑡)

10: 𝐼
𝑝
← Solve(Π𝑝̂ )

11: Π
𝐷
← 𝑔𝑒𝑛𝑆𝑛𝑎𝑝𝑠ℎ𝑜𝑡(𝑆, 𝐼

𝑝
, 𝑡)

12: Π̂ ← 𝑙𝑎𝑟𝑠2𝑎𝑠𝑝(Π
𝕊̂
∪Π

ℍ
∪Π

𝐷
, 𝑡)

13: 𝐼
∗
← Solve(Π̂)

14: return 𝐼
∗

𝜏 which finds the optimal reasoning plan to achieve a
certain goal Π𝐺 under an operational constraint Π𝑝 ,
following a probabilistic planning approach from [9]
in lines (8) to (10) of Algorithm 1. The reasoning prob-
lem formalised in following is to find a configuration
(𝑑𝑡

𝑖
, 𝑣𝑀

𝑗
, 𝛿

𝑀
) to result the highest probability of our

tracking goal. For example, we can specify the goal of
being able to track the objects that were tracked in the
previous time point 𝜏 − 1 as

Π
𝐺
= ⋀

𝑂∈@𝜏−1𝑡𝑟𝑘𝑙𝑒𝑡(𝑂,_)@𝜏 𝑡𝑟𝑘𝑙𝑒𝑡(𝑂, _)
Similarly, an operational constraintΠ𝑝 can be expressed
ASP rules. For instance, the example rule below rep-
resents the constraint to limit executable plans
𝑝𝑙𝑎𝑛(𝐷, 𝑉 , 𝛿) at time point 𝜏 based on the estimations
the execution time of a candidate detection model 𝐷
and visual a matching model 𝑉 together a candidate
window parameter 𝛿

𝑀 . The auxiliary predicates 𝑒𝑠𝑡

and 𝑛𝑂𝑏𝑗 provide the time estimation for correspond-
ing DNN operations and the number of objects tracked
in camera 𝐶 .

∶∼ @𝜏 𝑒𝑠𝑡(𝐷, 𝜏𝐷),@𝜏 𝑒𝑠𝑡(𝑉 , 𝜏𝑉 ),@𝜏𝑝𝑙𝑎𝑛(𝐷, 𝑉 , 𝛿), (4)

@𝜏−1𝑛𝑂𝑏𝑗(𝐶, 𝑁 ), 𝜏𝐷 + 𝑁 ∗ 𝛿
𝑀

∗ 𝜏𝑉 > 𝑚𝑎𝑥𝑇 𝑖𝑚𝑒

From Π
𝑝 , lines (8) to (10) carry out solving the reason-

ing problem formalised by formula (4). To generate the
LARS program from the soft rules Π

𝕊, the algorithm
rewrites Π𝕊 into LARS formulas with weak constraints
as Π𝕊̂ in lines (1) to (7) by extending the similar algo-
rithm for LP𝑀𝐿𝑁 in [8]. Then, we use the incremental
ASP encoding algorithm of Ticker [16] for rewriting

LARS formulas to an ASP program using the method
𝑙𝑎𝑟𝑠2𝑎𝑠𝑝, whose optimal models (answers sets) 𝐼 𝑝 cor-
respond to the solutions of (5).

argmax

𝐼
𝑝
∶Π

𝑝̂
(𝜏 )⊩𝐼

𝑝

𝑃𝑟
Π
𝑝̂
(Π

𝐺
|𝑆, 𝜏 , Π

𝑝
) (5)

With a chosen plan embedded in some 𝐼 𝑝 , the Reasoner
calls the method 𝑔𝑒𝑛𝑆𝑛𝑎𝑝𝑠ℎ𝑜𝑡 to generate the input
data of the reasoning program for the next step in line
(11) to carry out the second reasoning step from line
(12) to (14) to generate the output of the whole pipeline
as the optimal model 𝐼 ∗. To specify the weights of the
soft rules, we use the weight learning approach of [17]
which fits the weights using the training data via gra-
dient ascent. Training is done offline but uses Algo-
rithm 1 to compute an optimal stable model in each
step of updating weights in the gradient method.

4. Conclusion
This position paper presented a novel semantic rea-
soning approach that enables probabilistic planning
to adaptively optimize the sensor fusion pipeline un-
der operational constraints expressed in ASP. The ap-
proach is realised with a dynamic reasoning mecha-
nism that can integrate the uncertainy of DNN infer-
ence with semantic information, e.g common sense and
domain knowledge in conjunction with runtime infor-
mation as inputs for operational constraints.

We are currently implementing an open sourced pro-
totype of the proposed reasoning framework in Java
to exploit the code bases of CQELS and Ticker. We
use the Java native interface to wrap C/C++ libaries of
Clingo 5.4.0 as the ASP Solver and NVidia CUDA 10.2
as the DNN Inference engine. The solving and infer-
ence tasks are coordinated in an asynchronous multi-
threading fashion to exploit the massive parallel capa-
bilities of CPUs and GPUs.
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