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Abstract
Entity summaries provide human users with the key information about an entity. In this system paper, we present the im-
plementation of our entity summarizer ESSTER. It aims at generating entity summaries that contain structurally important
triples and exhibit high readability and low redundancy. For structural importance, we exploit the global and local character-
istics of properties and values in RDF data. For readability, we learn the familarity of properties from a text corpus. To reduce
redundancy, we perform logical reasoning and compute textual and numerical similarity between triples. ESSTER solves a
combinatorial optimization problem to integrate these features. It achieves state-of-the-art results on the ESBM v1.2 dataset.
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1. Introduction
In RDF data, an entity is described by a possibly large
set (e.g., hundreds) of RDF triples. The entity summa-
rization task is to automatically generate a compact
summary to provide human users with the key infor-
mation about an entity. Specifically, an entity sum-
mary is a size-constrained subset of triples selected
from an entity description. Current methods [1, 2, 3, 4,
5, 6] are mainly focused on selecting important triples,
but ignore the reading experience of human users. In
this system paper, we present the implementation of
our entity summarizer named ESSTER [7].1 It aims at
generating entity summaries of structural importance,
high readability, and low redundancy. Improving tex-
tual readability and reducing information redundancy
help to enhance the reading experience of users. Ex-
periments on the ESBM v1.2 dataset [8] show that ES-
STER achieves state-of-the-art results.

2. Task Definition
RDF data is a set of subject-predicate-object triples 𝑇 .
For an entity 𝑒, its description desc(𝑒) is the subset of
triples in 𝑇 such that 𝑒 is the subject or the object. Each
triple 𝑡 ∈ desc(𝑒) provides a property-value pair ⟨𝑝, 𝑣⟩
for 𝑒. When 𝑒 is the subject of 𝑡 , the property 𝑝 is 𝑡’s
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predicate and the value 𝑣 is 𝑡’s object. When 𝑒 is the
object of 𝑡 , the property 𝑝 is the inverse of 𝑡’s predicate
and the value 𝑣 is 𝑡’s subject. For convenience, we
define prop(𝑡) = 𝑝 and val(𝑡) = 𝑣. Given an integer
size constraint 𝑘, an entity summary 𝑆 for 𝑒 is a subset
of desc(𝑒) satisfying |𝑆| ≤ 𝑘.

3. Implementation of ESSTER
ESSTER considers structural importance, readability,
and redundancy. Below we present their computation
and finally integrate them by solving a combinatorial
optimization problem.

3.1. Structural Importance
We measure the structural importance of a triple 𝑡 from
two perspectives.

First, globally popular properties often reflect im-
portant aspects of entities, while globally unpopular
values are informative. Therefore, we compute the
global importance of a triple as follows:

glb(𝑡) = ppopglobal(𝑡) ⋅ (1 − vpop(𝑡)) ,

ppopglobal(𝑡) =
log(pfreqglobal(𝑡) + 1)

log(|𝐸| + 1) ,

vpop(𝑡) = log(vfreq(𝑡) + 1)
log(|𝑇 | + 1) ,

(1)

where 𝐸 is the set of all entities described in RDF data 𝑇 ,
pfreqglobal(𝑡) is the number of entity descriptions in 𝑇
where prop(𝑡) appears, and vfreq(𝑡) is the number of
triples in 𝑇 where val(𝑡) is the value.

Second, multi-valued properties are intrinsically pop-
ular compared with single-valued properties. To com-
pensate for this, we penalize multi-valued properties
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by using local popularity. We compute the local im-
portance of a triple as follows:

loc(𝑡) = (1 − ppoplocal(𝑡)) ⋅ vpop(𝑡) ,

ppoplocal(𝑡) =
log(pfreqlocal(𝑡) + 1)
log(|desc(𝑒)| + 1) ,

(2)

where pfreqlocal(𝑡) is the number of triples in desc(𝑒)
where prop(𝑡) is the property.

Finally, we compute structural importance:

𝑊struct(𝑡) = 𝛼 ⋅ glb(𝑡) + (1 − 𝛼) ⋅ loc(𝑡) , (3)

where 𝛼 ∈ [0, 1] is a parameter to tune.

3.2. Textual Readability
To generate readable summaries, we measure the fa-
miliarity of a triple 𝑡 based on its property prop(𝑡). A
property is familiar to users if it is often used in an
open-domain corpus. Specifically, given a text corpus
of 𝐵 documents where 𝑀 documents have been read
by the user, let 𝑏(𝑡) be the number of documents where
the name of prop(𝑡) appears. We compute

𝑄(𝑡) =
min(𝑏(𝑡),𝑀)

∑
𝑚=0

(𝑏(𝑡)𝑚 ) ⋅ (𝐵−𝑏(𝑡)𝑀−𝑚 )
(𝐵𝑀)

⋅ familarity(𝑚) ,

familarity(𝑚) = log(𝑚 + 1)
log(𝐵 + 1) .

(4)

Here, 𝑚 represents the number of documents the user
has read where the name of prop(𝑡) appears, based
on which familarity(𝑚) gives the degree of fami-
larity of prop(𝑡) to the user. However, it is difficult
to know 𝑚 in practice, so 𝑄(𝑡) computes the expected
value of familarity(𝑚). For simplicity, we assume
𝑀 is a constant. In the experiments we set 𝑀 = 40 and
we use the Google Books Ngram2 as our corpus.

Finally, we compute textual readability:

𝑊text(𝑡) = log(𝑄(𝑡) + 1). (5)

3.3. Information Redundancy
To reduce redundancy in summaries, we measure the
similarity between two triples 𝑡𝑖 , 𝑡𝑗 in various ways.

First, we perform logical reasoning to measure on-
tological similarity. We define sim(𝑡𝑖 , 𝑡𝑗 ) = 1 if prop(𝑡𝑖)
and prop(𝑡𝑗 ) are rdf:type, and rdfs:subClassOf
is a relation between val(𝑡𝑖) and val(𝑡𝑗 ); or if val(𝑡𝑖)
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and val(𝑡𝑗 ) are equal, and rdfs:subPropertyOf is a
relation between prop(𝑡𝑖) and prop(𝑡𝑗 ).

Otherwise, we rely on the similarity between prop-
erties and the similarity between values:

sim(𝑡𝑖 , 𝑡𝑗 ) = max{simp(𝑡𝑖 , 𝑡𝑗 ), simv(𝑡𝑖 , 𝑡𝑗 ), 0} , (6)

where for simp we use the ISub string similarity [9].
For simv, we differentiate between two cases.

In the first case, val(𝑡𝑖) and val(𝑡𝑗 ) are both numer-
ical values. We compute

simv(𝑡𝑖 , 𝑡𝑗 ) =
{
−1 val(𝑡𝑖) ⋅ val(𝑡𝑗 ) ≤ 0 ,
min{val(𝑡𝑖 ),val(𝑡𝑗 )}
max{val(𝑡𝑖 ),val(𝑡𝑗 )} otherwise .

(7)
In all other cases, we simply use ISub for simv.

3.4. Combinatorial Optimization
We formulate entity summarization as a 0-1 quadratic
knapsack problem (QKP), and we solve it using a heuris-
tic algorithm [10].

Specifically, we define the profit of choosing two
triples 𝑡𝑖 , 𝑡𝑗 for a summary:

profit𝑖,𝑗 =
{
(1 − 𝛿) ⋅ (𝑊struct(𝑡𝑖) + 𝑊text(𝑡𝑖)) 𝑖 = 𝑗 ,
𝛿 ⋅ (−sim(𝑡𝑖 , 𝑡𝑗 )) 𝑖 ≠ 𝑗 ,

(8)
where 𝛿 ∈ [0, 1] is a parameter to tune.

Finally, our goal is to

maximize
|desc(𝑒)|
∑
𝑖=1

|desc(𝑒)|
∑
𝑗=𝑖

profit𝑖,𝑗 ⋅ 𝑥𝑖 ⋅ 𝑥𝑗 ,

subject to
|desc(𝑒)|
∑
𝑖=1

𝑥𝑖 ≤ 𝑘 ,

𝑥𝑖 ∈ {0, 1} for all 𝑖 = 1… |desc(𝑒)| .

(9)

4. Experiments

4.1. Settings
We use the ESBM v1.2 dataset [8]. It provides ground-
truth summaries under 𝑘 = 5 and 𝑘 = 10 for entities
in DBpedia and LinkedMDB. We follow the provided
training-development-test splits for 5-fold cross vali-
dation, and we use the training and development sets
for tuning our parameters 𝛼 and 𝛿 by grid search in the
range of 0–1 with 0.01 increments. We use F1 score as
the evaluation metric.



Table 1
F1 Scores

DBpedia LinkedMDB
𝑘 = 5 𝑘 = 10 𝑘 = 5 𝑘 = 10

RELIN 0.242 0.455 0.203 0.258
DIVERSUM 0.249 0.507 0.207 0.358
FACES 0.270 0.428 0.169 0.263
FACES-E 0.280 0.488 0.313 0.393
CD 0.283 0.513 0.217 0.331
LinkSUM 0.287 0.486 0.140 0.279
BAFREC 0.335 0.503 0.360 0.402
KAFCA 0.314 0.509 0.244 0.397
MPSUM 0.314 0.512 0.272 0.423
ESSTER 0.324 0.521 0.365 0.452

4.2. Results
Table 1 presents the evaluation results. We compare
with known results of existing unsupervised entity sum-
marizers [8]. On DBpedia under 𝑘 = 5, BAFREC [6]
achieves the highest F1 score, and is closely followed
by ESSTER. In all the other three settings, ESSTER out-
performs all the baselines. Overall, ESSTER achieves
state-of-the-art results on ESBM v1.2.

5. Conclusion
In this system paper, we presented the implementa-
tion of our entity summarizer ESSTER. By integrat-
ing structural importance, textual readability, and in-
formation redundancy via combinatorial optimization,
ESSTER achieves state-of-the-art results among unsu-
pervised entity summarizers on the ESBM v1.2 dataset.
However, the results are not comparable with super-
vised neural entity summarizers [11, 12].

For the future work, we will consider more powerful
measures of readability and redundancy, and will in-
corporate these features into a neural network model.
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