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Abstract  
With the exponential growth of household activities particularly due to the lock-down in 

COVID-19 pandemic as well as with the usual trend of amplified use of energy consuming 

appliances, household energy usages are becoming extremely high. Consequently, high energy 

consumption pattern results in severe increase of air pollution and carbon footprint. Carbon 

footprint is mainly caused by the greenhouse gases while burning of fossil fuels for producing 

different forms of energy. In order to restrict the carbon footprint, one of the approaches is to 

analyze the citizen behavioral pattern by detecting the household appliances. We propose deep 

neural network based supervised learning algorithm that is capable of classifying the household 

appliances from energy consumption data. More specifically, we use deep residual networks 

(ResNet) where learning of the residual functions makes the trained model more robust by 

transforming the representation learning problem to residual learning problem. Our empirical 

study on publicly available relevant datasets from UCR timeseries archive demonstrates 

significantly better and consistent performance over baseline algorithms and state-of-the-art 

methods.   
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1. Introduction 

Global warming and adverse climatic 

change are supposed to be irreversible and 

affecting human life to a larger extent. Carbon 

di-oxide (CO2) is a greenhouse gas and it is one 

of the primary reasons of global warming. CO2  

emission restriction is the need of the hour and 

individual citizen has to be taken the required 

onus for controlled usage of appliances. 

Household appliances like refrigerator, 

washing machine, kitchen appliances, 

computing device consume lots of energy, 
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which is produced from burning fossil fuels. 

Hence, carbon footprint reduction is an 

inevitable action which is to be predominantly 

taken up by various Governments and other 

associations [1]. Under the current lock-down 

in COVID-19 pandemic, household electricity 

consumption has also increased to a larger 

extent. In order to reduce the carbon footprint 

of a nation, different associations along with 

Government agencies attempt to understand the 

appliance usage pattern from individual 

household. Such analysis is performed over 

energy data like individual house smart meter 

readings. The household appliance usage can be 



 

 

linked to enable dynamic energy consumption 

charges as well as for inculcating the awareness 

among the citizens of their individual carbon 

footprints. We find that different human-centric 

applications are proposed for remote healthcare 

are proposed in literature [12, 13, 16]. In this 

paper, our focus is to macro-level human 

benefit like carbon-footprint reduction. 

The technology advancements have led us to 

different breakthrough applications and 

developments. The challenge of detecting the 

household appliance in a non-intrusive way 

needs to be done by 1. A strong analytics 

algorithm and 2. A smart infrastructural support 

that collects the data from household smart 

meter and enables the provision for analysis and 

feedback. In this paper the we assume that the 

smart infrastructure facility is supported by 

Internet of Things (IoT) backbone. In this work, 

our main focus is to develop a strong analytic 

solution which is required for the purpose of 

analyzing and detecting the household 

appliances from smart meter timeseries data. 

We need to keep in mind that the household 

energy consumption data from accessing the 

smart energy meter is sensitive in nature as it 

reveals the in-house activities. It is felt that 

appropriate security and privacy infrastructure 

is required to be implemented [14, 15, 17, 18, 

19] and should be made part of the complete 

analytics eco-system. 

We propose deep residual network based 

supervised learning method to classify different 

household appliances. The current trend of 

supervised learning by deep neural networks 

have demonstrated success of deep residual 

learning, particularly in the applications of 2D 

(image) and 3D (video) analytics, mostly for 

computer vision applications. It is perceived 

that deep residual learning elegantly solves the 

menacing learning degradation problem 

especially when the deep network architecture 

has good number of layers [2]. With the 

evidences supporting towards deep residual 

network as a candidate architecture, we propose 

deep residual architecture for household 

appliance detection problem using energy 

signals. It is to be noted that the deep residual 

network is largely used in visual analytics 

applications with 2D or 3D data. The current 

problem is supervised learning over 1D time 

series. In this paper, we further use 

regularization of the network parameters 

(weights) such that the deep neural network 

does not overfit with the training datasets. 

Unlike, computer vision application, which 

often enjoys the luxury of millions of training 

examples, the energy consumption data with 

associated annotations are very tiny in number. 

In fact, the collection, annotation and 

distribution of such data is an expensive 

process. Owing to the scarcity of the training 

examples, we feel that an appropriate 

regularization technique is required to 

optimally fit the network to the training 

examples.  

Traditionally, time series supervised 

learning baseline algorithm is the dynamic time 

warping (DTW) based similarity measures with 

k-nearest neighbor (kNN) based classifier 

(DTW-1NN) [3, 4], which is a good 

benchmark. Symbolic Aggregate 

Approximation (SAX) is a symbolic 

representation for time series for 

dimensionality reduction [5] and sliding 

window-based SAX with cosine similarity 

based supervised learning technique SAX-

VSM has also provided much needed 

momentum to time series classification 

solutions. With the advent and success of multi-

layer perceptron or MLP algorithms have been 

studied by researchers for similar time of 

classification problems [7]. In this work, we 

consider DTW-1NN, SAX-VSM and MLP as 

the relevant baseline algorithms. 

We present empirical evidence of the 

proposed deep residual networks, tailored for 

energy data analysis through experimentations 

over publicly available UCR time series archive 

[7 – 8]. It is observed that our method 

conveniently performs better than the relevant 

baseline algorithms. 

2. Proposed deep residual network 
architecture 

Deep residual network [2] provides the 

layer-wise recursive learning (with the basic 

transformation and layer mapping process is 

shown in Fig. 1) of  ℋ𝑙+1(𝑋) = ℋ𝑙(𝑋) +

 𝒢𝑙  (ℋ𝑙(𝑋)), where 𝒢𝑙 is the non-linear neural 

network (in our method, it is a convolution 

network), ℋ𝑙(𝑋) is the desired mapping at 𝑙th 

layer and the initial condition ℋ0(𝑋) =
0, 𝒢0 (ℋ0(𝑋)) = 𝑋, 𝑋 is the input time series, 

which is defined as: 𝑋 =  [𝓍1, 𝓍2, 𝓍3, … , 𝓍𝒯] be 

the univariate time series, where 𝑋 ∈ ℝ𝒯 and 𝑋 

is a time series energy consumption signal. 



 

 

Training data  𝒟 consists of consists of 𝑁 

number of time series signals each of length 𝒯 

and each of the training instances has 

corresponding class label 𝐿𝑛 ∈ [1, 𝐶], 𝐶 ∈ ℤ 

and 𝕃 = [𝐿1, 𝐿2, 𝐿3, … 𝐿𝑁], 𝑛 = 1, 2, 3… ,𝑁.   
Thus the complete training dataset is collection 

of pairs (𝑋𝑛, 𝐿𝑛), where 𝕏 =
[𝑋1, 𝑋2, 𝑋3, …𝑋𝑁], 𝑋𝑛 ∈ ℝ𝒯, 𝐿𝑛 is the 

corresponding class labels, 𝒟 = [𝕏, 𝕃]. The 

learning algorithm constructs a function 

𝐹:ℝ𝒯 → {1,2,… , 𝐶}. The learning algorithm 

requires the (training) dataset 𝒟 and generates 

trained model 𝑀. The learning algorithm is 

further a function of regularization factors 𝜓 

and functions Υ along with a collection of 

necessary hyperparemeters Θ for constructing 

the trained model 𝑀 and trained model is 

generated as:  𝑀
𝐹:𝑓(𝒟,𝜓,Υ,Θ  )
→         �̂�  

�̂� ∈ [1, 𝐶] is the predicted inference out. 

 

Figure 1: Basic transformation and layer 
mapping in deep residual network model. 

 

The individual layers in residual networks 

modify the learnt representation from the 

previous layers to counter the vanishing 

gradient problem [9]. We further find that 

ℋ𝑙+1(𝑋) is an additive outcome unlike the 

conventional deep neural network where 

transfer function is multiplicative. The 

underlaying mapping at 𝑙th layer ℋ𝑙(𝑋) and 

casts to ℋ𝑙(𝑋) + 𝒢𝑙  (ℋ𝑙(𝑋)) with 

𝒢𝑙  (ℋ𝑙(𝑋)) = ℋ𝑙+1(𝑋) −ℋ𝑙(𝑋) being the 

residual function. It is hypothesized that [2] the 

optimization of the residual mapping is easier 

than the optimization of the unreferenced raw 

mapping. Owing to the justification made by 

the authors and the supported evidences of 

superior performance of ResNet, we consider 

that such type of deep residual network is a 

prudent deep neural architecture choice. Our 

deep neural architecture is shown in Fig. 2. It 

consists of three residual blocks, each of the 

residual blocks contain number of batch 

normalization layers along with convolution 

layers followed by Rectified Linear Unit 

(ReLU) activation function. Finally, a fully 

connected dense layer is placed. The final 

discrimination layer is the softmax function that 

predicts the output label �̂�. The predicted label 

�̂�. and actual class label 𝐿 are compared by a 

loss function (cross-entropy). In this case, we 

minimize the cost function 𝐽 over the training 

examples 𝕏 consisting of 𝑁 number instances, 

while the is formed by using the stochastic 

gradient descent algorithm. Given the 

possibility of insufficiency in the number of 

training examples, there exists a perpetual 

possibility of constructing an over-complex 

model with very high number of network 

parameters, in terms of weight parameters 𝜔, 

which is likely to be overfitted on the training 

distribution without attempting to approximate 

the source data generation function or the target 

function. In our earlier work [10], we have 

proposed strongly regularized convolution 

neural network SRDCNN for time series 

classification tasks, which shows the positive 

impact of regularized learning. Similarly, in 

this work, we control the deep network 

parameters by regularization techniques [11]. 

The proposed deep neural model minimizes the 

cost function 𝐽 to find a regularized cost 

function 𝐽. The regularized cost function is 

denoted as: 

𝐽(𝜔;  𝕏, 𝕃) = 𝐽(𝜔;  𝕏, 𝕃) + 𝛼Ω(𝜔)  (1) 

Where Ω is the regularization function and 

the regularization factor is 𝛼 ∈ [0,∞].  
 

In this paper, we use the network parameter 

(𝜔) norm penalties as expressed above 

particularly 𝐿2  and 𝐿1 regularizations [11].  

We incorporate 𝐿2  regularization 

(Tikhonov regularization) as: 

𝐽(𝜔;  𝕏, 𝕃) = 𝐽(𝜔;  𝕏, 𝕃) + 𝛼
𝜔Τ𝜔

2
  (2) 

Where, the network parameter gradient is: 

∇𝜔𝐽(𝜔;  𝕏, 𝕃) = 𝛼𝜔 + ∇𝜔𝐽(𝜔;  𝕏, 𝕃) (3) 

 

Subsequently, the weights are updated as: 

𝜔 ← (1 − 𝜖𝛼)𝜔 + 𝛼∇𝜔𝐽(𝜔;  𝕏, 𝕃)     (4) 

 

Where, 𝜖 is the learning rate. From 

equation (4), it is noted that the weight decay 

term (1 − 𝜖𝛼) that controls the overall weight 

vector. Similarly, the Lasso or 𝐿1 regularization 

is defined as [11]:  



 

 

𝐽(𝜔;  𝕏, 𝕃) = 𝐽(𝜔;  𝕏, 𝕃) + 𝛼‖𝜔‖1 (5) 

The following network parameter gradient 

becomes: 

∇𝜔𝐽(𝜔;  𝕏, 𝕃) = 𝛼sign(𝜔) +
        ∇𝜔𝐽(𝜔;  𝕏, 𝕃)   (6) 

From equation (3) and equation (6), we are 

able to note that 𝐿2  and 𝐿1 regularizations 

impact the network parameters differently. 

While, Lasso or 𝐿1 regularization attempts to 

generate sparser weight matrix, Tikhonov or 𝐿2 

regularization clips or controls the network 

weight (𝜔) values.  

 

 
 
Figure 2. Deep residual network architecture 
for energy consumption data analytics to 
detect household appliances. It consists of 
three consecutive residual blocks along with 
other required layers. 

 

The hyperparameter set is described in 

Table 1. One of the noticeable observations is 

that the network is thinner at the initial and final 

residual blocks with three convolution layers 

with number of feature maps of 64 at each layer, 

while the middle residual block is deeper with 

five convolution layers with number of feature 

maps of 128 at each of the layers. From the 

understanding of the machine learning problem 

we attempt to solve, the regularization factor 

settings play an important role for constructing 

an effectively learned model. Accordingly, we 

set the 𝐿1 regularization factor hyperparameter 

(𝛼1) to be lower than that of 𝐿2 regularization 

factor hyperparameter (𝛼2) with the intent of 

having lesser sparser weight vectors while the 

weight vector values are clipped or controlled. 

 

Table 1 
Hyperparameter description 
 

Parameter Brief explanation Value/ Type 

Epoch Number of times 
the entire training 
dataset is iterated 

1000 

Optimizer Adaptive learning 
rate optimization 

Adam 

Batch size Number of 
training samples 

in one pass 

𝑚𝑖𝑛 (|
𝒯

10
| , 16)

where 𝒯 is 
the number 
of sample 
points at 

each instant 
Number of 

residual 
blocks 

Total number of 
residual layers 

3 

Number of 
convolution 

layers at 
each 

residual 
block 

Residual block #1 3 

Residual block #2 5 

Residual block #3 3 

Kernel size Residual block #1 {8, 5, 3} 
Residual block #2 {8, 7, 6, 5, 4, 

3} 
Residual block #3 {8, 5, 3} 

Number of 
filters 

Residual block #1 {64, 64, 64} 
Residual block #2 {128, 128, 

128, 128, 
128} 

Residual block #3 {64, 64, 64} 
𝛼1 𝐿1 regularization 

factor 
0.01 

𝛼2 𝐿2 regularization 
factor 

0.10 

3. Experimental Analysis and 
Results 

We consider UCR time series archive with 

representative datasets which are aligned to the 

problem statement. The dataset description is 

made in Table 2. There are five different types 



 

 

of energy consumption dataset are used for the 

experimentation purposes. Each of the datasets 

consists of separate training and testing parts. 

Our model is first trained over the training 

dataset and the trained model is tested on the 

given testing dataset. We report the test 

accuracies. The experimental datasets represent 

different types of appliances like kitchen 

appliances, computing devices and others. UK 

Government's initiative called 'Powering the 

Nation', where the behavioral analysis about the 

usage of electricity by the citizen is used to 

make an attempt to reduce the carbon footprint. 

The number of classes also vary among 

different datasets. With diverse types of 

appliance detection problem that these datasets 

(Table 2) represent, we can fairly justify that the 

experimental evaluation covers large problem 

areas of detection of appliances from energy 

consumption data.  

 

Table 2 
Energy data (time series) from UCR archive 
properties 
 

Dataset Number 
of 

classes 

Number 
of training 
instances 

Number of 
testing 

instances 

Computers 2 250 250 

Electric devices 7 8926 7711 

Italy power 
demand 

2 67 1029 

Large kitchen 
appliances 

3 375 375 

Small kitchen 
appliances 

3 375 375 

 

In Table 3, we depict the experimental 

results of our proposed method. The test 

accuracy of our method has significantly higher 

performance merit over the baseline algorithms 

like MLP [7], DTW-R1-1NN [3] and SAX-

VSM [6]. In fact, out of the total five different 

use cases, our method outperforms rest of the 

baseline algorithms. In a relative merit, DTW-

R1-1NN and SAX-VSM are the closer 

competitors. With this supporting empirical 

evidence, we claim that our proposed deep 

residual network-based model is an apt choice 

for energy data analysis to detect the household 

appliances. We further consider SRDCNN as 

another state-of-the-art algorithm, which has 

demonstrated substantially better efficacy than 

other state-of-the-art [10]. In comparison with 

SRDCNN, we observe that our method works 

better in 80% of the total number of datasets. 

One of the major differences with SRDCNN is 

the architecture of the deep neural network: 

SRDCNN is a convolution neural network 

architecture and ours is deep residual network. 

The performance table (Table 3) clearly 

indicates that the proposed method provides 

better learning and inferencing capability of 

energy consumption data to detect the 

household appliances. 

 

Table 3 
Performance in terms of test accuracy metric 
of our proposed method and related state-of-
the-art time series classification algorithms 
 

Sensor 
name 

MLP 
[7] 

DTW-
R1-

1NN 
[3] 

SAX-
VSM 
[6] 

SRDCN
N [10] 

Our 
met
hod 

Compute
rs 

0.496 0.70 0.620 0.781 0.788 

Electric 
devices 

0.641 0.602 0.705 0.707 0.723 

Italy 
power 

demand 
0.946 0.950 0.816 0.955 0.964 

Large 
kitchen 

applianc
es 

0.480 0.795 0.877 0.852 0.907 

Small 
kitchen 

applianc
es 

0.333 0.653 0.579 0.795 0.709 

Total 
Count 

0 0 0 1 4 

4. Conclusion 

Carbon footprint reduction is one of the 

most important problems for creating 

awareness drive to understand the carbon 

footprint of individual households to achieve 

the goal of manifold reduction of overall carbon 

footprint. In that regard, we propose an analytic 

solution to detect the appliances at the 

households using energy consumption data, 

which is available from the smart energy meter 

recording. We propose a robust detection 

algorithm by using deep residual network along 

with regularization. Our proposed method has 

shown considerably better test accuracy over 



 

 

the baseline algorithms for various appliance 

detection tasks. This proposed method is part of 

the larger eco-system that attempts to build a 

convergent human-centric application for the 

betterment of all of us. We hope that our 

analytics method provides the required impetus 

for such human-centered purposes and the 

global warming concerns can be addressed 

through citizen-level awareness. 
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