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Abstract
The integration of voice control into connected devices is expected to improve the efficiency and comfort of our daily lives.
However, the underlying biometric systems often impose constraints on the individual or the environment during interaction
(e.g., quiet surroundings). Such constraints have to be surmounted in order to seamlessly recognize individuals. In this paper,
we propose an evaluation framework for speaker recognition in noisy smart living environments. To this end, we designed
a taxonomy of sounds (e.g., home-related, mechanical) that characterize representative indoor and outdoor environments
where speaker recognition is adopted. Then, we devised an approach for off-line simulation of challenging noisy condi-
tions in vocal audios originally collected under controlled environments, by leveraging our taxonomy. Our approach adds a
(combination of) sound(s) belonging to the target environment into the current vocal example. Experiments on a large-scale
public dataset and two state-of-the-art speaker recognition models show that adding certain background sounds to clean
vocal audio leads to a substantial deterioration of recognition performance. In several noisy settings, our findings reveal that
a speaker recognition model might end up to make unreliable decisions. Our framework is intended to help system designers
evaluate performance deterioration and develop speaker recognition models more robust to smart living environments.
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1. Introduction
Speech is a more natural way of interacting with de-
vices than tapping screens. This form of interaction is
receiving more and more attention, with voice-enabled
services being used in every aspect of our lives. Speaker
recognition analyzes the identity of an individual be-
fore accessing to a service. Unlike speech recogni-
tion, which detects spoken words, speaker recognition
inspects patterns that distinguish one person’s voice
from another [1]. Recognizing the identity of a speaker
becomes crucial in different scenarios. For instance,
voice-enabled devices (e.g., assistants, smartphones)
allow home owners to turn on lights, unlock doors,
and listen to music seamlessly [2]. These recognition
abilities can prevent unauthorized individuals from us-
ing devices without the owner’s permission and can
provide evidence needed to personalize user’s expe-
riences with these devises, even outside the domes-
tic borders [3, 4, 5]. Moreover, speaker recognition
can make lives of older adults’ and people with spe-
cial needs easier and safer [6]. Hence, it is imperative
to study and devise data-driven speaker recognition
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models that can improve human quality of life.
State-of-the-art speaker recognition matchers exhibit

impressive accuracy, especially when the voice qual-
ity is reasonably good [7]. For this reason, they im-
plicitly or explicitly impose constraints on the envi-
ronment, such as being stationary and quiet. Conven-
tionally, speaker matchers are trained to classify vocal
examples under idealistic conditions but are expected
to operate well in real-world challenging situations.
However, their performance sharply degrades when
audios with substantial background sounds (e.g., traf-
fic) are encountered. Enhancing voice data is demand-
ing since related algorithms do not often explicitly at-
tempt to preserve biometric cues in the data [8, 9, 10].
Existing robust speaker models are being trained on
data which do not cover various levels of interfering
sounds and different sound types [11, 12]. Hence, sev-
eral questions concerning how much and under which
background sounds speaker recognition performance
degrades and how each type of sound impacts on the
mechanics of these matchers remain unanswered.

Our study in this paper is hence organized around
these directions and aims to perform an extensive per-
formance analysis of deep speaker recognition match-
ers in a range of noisy living environments. To this
end, we designed and collected a taxonomy of sounds
(e.g., footsteps, laughing) that characterize representa-
tive living ambients where speaker recognition is find-
ing adoption. Then, we depicted an approach that al-
lows us to simulate challenging noisy conditions in
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raw vocal audios by adding sounds of our taxonomy,
according with the environment under consideration.
Finally, we experimented with a public dataset, orig-
inally collected in controlled environments, and two
state-of-the-art speaker recognition models, to inspect
the impact of background noisy sounds on their per-
formance. Our contribution is threefold:

• We design a taxonomy of ambient sounds tai-
lored to speaker recognition research, and we
provide a dataset of recordings with labeled sound
sources for each category in our taxonomy.

• We propose an evaluation framework for speaker
recognition benchmarking, enabling easier and
faster simulation of indoor and outdoor noisy
environments in (clean) vocal audios1.

• Given a large vocal dataset, we perform an ex-
tensive analysis on the impact of the sounds in
our taxonomy on the performance of two state-
of-the-art speaker recognition matchers.

Our experiments showed that, even when the back-
ground sound volume is low, speaker recognition sys-
tems undergo a substantial deterioration of accuracy.
Only in case of nature-related sounds (e.g., chirping,
wind), the sound impact is negligible. Certain envi-
ronmental settings lead to error rates five to ten times
higher than error rates achieved in ideal conditions.

The rest of this paper is organized as follows. Sec-
tion 2 depicts an overview of related works. Then, our
taxonomy and the simulation framework are described
in Section 3. Section 4 presents our experiments. Fi-
nally, Section 5 provides insights for future work.

2. Related Work
Our research lies at the intersection among three per-
spectives, namely studies which analyze the impact
of background sounds on recognition, audio enhance-
ment algorithms aimed to improve data quality, and
speaker recognition approaches which seek to classify
noisy vocal data with no pre-processing.

2.1. Explorative Analysis in Noisy
Environments

Explorative analyses simply investigate how noisy en-
vironments influence speaker recognition performance.
For instance, Qian et al. [13] studied the low-level noisy

1Code, data, pre-trained models, and documentation are pub-
licly available at https://mirkomarras.github.io/dl-voice-noise/.

optimization task by means of evolutionary algorithms.
The authors found that a Bitwise noise can fundamen-
tally affect recognition patterns during evaluation and,
thus, might make it harder to deploy matchers in the
real world. Differently, Ko et al. [14] focused on a per-
formance comparison between acoustic models trained
with and without simulated far-field speech under a
real far-field voice dataset. Their experiments showed
that acoustic models trained on simulated far-field led
to significantly lower error rates in both a distant- and
close-talking scenarios. In [15], the authors presented
a feature learning approach, referred as to e-vector, that
can capture both channel and environment variability.
Recently, Vincent et al. [16] analyzed the performance
of speaker recognition matchers on theCHiME3 dataset,
which consists of real recordings in noisy environments.
Finally, Donahue et al. [17] analyzed the benefits re-
sulting from training a speaker recognition matcher
with both clean speech data and fake speech data cre-
ated by means of a generative adversarial network.

Though this research has greatly expanded our un-
derstanding, past works focused on low-level noises
(e.g., Bitwise) or did not specifically control how and
under which ambient sounds the performance degrades.
We argue that different background sounds may lead
to fundamentally different impacts and, thus, a clear
understanding on the extent of this impact is lacking.

2.2. Input Audio Quality Enhancement
Existing literature included audio enhancement algo-
rithms that aim to provide audible improvements in
a sound, without degrading the quality of the origi-
nal recording. This type of strategy well fits with the
forensic context, where audios may have some kind of
background sound disturbance or sound artifact that
may interfere with the voice of interest. Examples of
audio enhancement methods are removing static noise,
eliminating phone-related interference, and clearing
up random sounds (e.g., dogs barking, bells ringing).
For instance, Hou et al. [8] proposed a convolution-
based audio-visual auto-encoder for speech enhance-
ment through multi-task learning. In [9], the authors
investigated how to improve speech/non-speech de-
tection robustness in very noisy environments, includ-
ing stationary noise and short high-energy noise. Sim-
ilarly, Afouras et al. [10] proposed an audio-visual neu-
ral network able to isolate a speaker’s voice of interest
from other sound interference, using visual informa-
tion from the target speaker’s lips. However, the de-
signed methods do not often attempt to preserve bio-
metric cues in the data and depend on the nature of the
sound, which varies according to the context. Hence,
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Figure 1: Our taxonomy of sounds characterizing representative environments where speaker recognition is adopted.

our framework becomes a key asset to study recogni-
tion performance on background sounds against which
countermeasures have been under-explored.

2.3. Robust Speaker Recognition
Speaker recognition matchers have traditionally relied
on Gaussian mixture models [18], joint factor analy-
sis [19], and IVectors [20]. Recently, speaker match-
ers achieved impressive accuracy thanks to speaker
embedding representations extracted from Deep Neu-
ral Networks trained for (one-shot) speaker classifica-
tion. Notable examples include CVectors [21], XVec-
tors [11], VGGVox- and ResNet-Vectors [12]. More-
over, Kim et al. [22] proposed a deep noise-adaptation
approach that dynamically adapts itself to the opera-
tional environment. Existing approaches in this area
do not make any assumption on the training and test-
ing data, which come from various noisy situations.
Therefore, there is no fine-grained control on how these
systems perform in specific noisy applicative scenar-
ios and the noisy situations are limited by the variety
of recordings including into the considered dataset.

3. The Proposed Framework
Our framework is composed by a dataset of sounds
categorized according to our pre-defined taxonomy and
a toolbox that simulates background living scenarios.

3.1. Sound Taxonomy for Speaker
Recognition in Living Scenarios

Collecting utterances produced in various living sce-
narios while keeping trace of the background sounds
in each utterance is challenging and time-consuming.

Hence, being able to combine utterances recorded in
quiet environments with the background sounds of the
considered scenario represents a viable alternative. The
first step to put this idea into practice consists of col-
lecting sounds from a wide range of sources and orga-
nizing them in a hierarchical taxonomy.

Noisy sounds research is challenging due to the lack
of labeled audio data. Past works collected sounds from
specific environments and resulted in commercial or
private datasets. Recent contributions have provided
publicly available datasets of environmental record-
ings [23]. On top of these collections, many studies
have been carried out on sound classification [24]. Be-
ing designed for sound classification tasks, existing tax-
onomies can not directly be applied nor combined to
simulate scenarios of speaker recognition. For instance,
they often include a few classes, sounds of marginal in-
terest (e.g., gun shots), and are organized according to
the sound type. Conversely, for our purposes, a taxon-
omy should be designed with situational and contex-
tual elements in mind (e.g., grouping sounds based on
the ambient where they frequently appear).

To address these issues, we proposed a compilation
of environmental sounds from over 50 classes. The se-
lected sound clips were constructed from recordings
available on the above-mentioned urban sound tax-
onomies and on Freesound2, with a semi-automated
pipeline. Specifically, we first identified a representa-
tive set of scenarios/environments where speaker recog-
nition is actively used nowadays, and then we filtered
out the categories of sounds included into existing tax-
onomies that are of marginal interest for the selected
scenarios (e.g., fire engine). Then, we introduced new
sound categories that help to model speaker recog-
nition scenarios whose sounds are not present in ex-

2https://freesound.org/



isting sound taxonomies (e.g., dishwasher, footsteps).
The included classes were arbitrarily selected with the
goal of maintaining balance between major types of
sounds characterizing the selected scenarios and of con-
sidering the limitations in the number and diversity
of available sound recordings. Freesound was queried
for common terms related to the considered scenarios.
Search results were verified by annotating fragments
that contain events associated with a given scenario.
Sounds are grouped in two major categories pertain-
ing to indoor and outdoor contexts3:

• Indoor category including sounds divided into
three different categories: Home (e.g., TV, wash-
ing machine), Voice (e.g., chatting, laughing)
and Movement (e.g., footsteps, applause).

• Outdoor category with sounds divided into two
categories: Nature contains different types of
sounds, such as atmospheric elements (e.g., rain,
wind), animal sounds (e.g., dogs, cats, birds), and
sounds associated to plants and vegetation (e.g.,
leaves). Mechanical includes sounds produced
by ventilation, motorized transports (e.g, cars,
trains), non-motorized transports (e.g., bicycles),
and other signals (e.g., church bells).

The collected audios were converted to a unified
format (16 kHz, mono, wav) to facilitate their process-
ing with existing audio-programming packages. These
sounds were arranged into the taxonomy in Figure 1
based on the above-mentioned considerations.

3.2. Toolbox for Background Living
Scenario Simulation

Our taxonomy is proposed to facilitate the simulation
of real-world applicative contexts in vocal audio. Thus,
on top of this taxonomy, a way to combine vocal au-
dio and background sounds is needed. To this end, we
propose a Python toolbox that can simulate an applica-
tive context into a vocal audio. Specifically, we define
an applicative context has a set of one or more sound
entries taken from the taxonomy. Each entry includes
a string identifier associated to the sound category to
include (e.g., Home or Voice), a floating-point num-
ber that specifies the volume level of that sound in the
current context, and a floating-point number in [0,1]
representing the probability of adding that sound into
a vocal example. Given a context defined as above

3Our preliminary analysis considers two disjoint sets of indoor
and outdoor sounds, leaving settings that cross-link sound entities
within a graph-based taxonomy as a future work.

and a list of vocal audios where that context should
be simulated, a routine changes each vocal audio by
adding to it the combination of sounds included into
the context definition, with their given volume and
probability. For each sound category, the sound to add
can be specified or randomly chosen. Our toolbox and
our definition of context provide the necessary level
of flexibility to simulate real-world scenarios created
from all the combinations of the taxonomy’s sounds.

4. Experiments
In this section, we assess how much and under which
background sounds speaker recognition performance
degrades, how each background sound type impacts
on model mechanics, and how much the volume level
of the background sounds leads to models which pro-
vide less accurate predictions. In fact, how each noisy
context influences the behavior of state-of-the-art ar-
chitectures, such as VGGVox and XVector, still remains
under-explored, since their effectiveness has been of-
ten evaluated under ideal conditions, with background-
sound unlabelled vocal audios, or the same type of vo-
cal audios (e.g, from interviews).

4.1. Seed Human Voice Dataset
Given its large scale and its wide adoption in the liter-
ature, we simulated applicative contexts into the vocal
data belonging to theVoxCeleb-1 dataset [12]. This col-
lection consists of short utterances taken from video
interviews published on Youtube, including speakers
from a wide range of different ethnicities, accents, pro-
fessions and ages, fairly balanced with respect to their
gender (i.e., 55% of males). The dataset is split into de-
velopment and test sets having disjoint speakers. The
development set has 1, 211 speakers and 143, 768 ut-
terances, while the test set consists of 40 speakers and
4, 874 utterances. Our study leveraged trial pairs pro-
vided by the authors together with theVoxCeleb-1 data4.

4.2. Benchmarked Models
Our analysis benchmarks two state-of-the-art speaker
recognition architectures: VGGVox [12] and XVector [11].
They have received great attention in recent years, and
this motivated us to deepen their robustness in noisy

4Due to the large amount of comparisons to simulate all con-
texts, our study focused on 1, 000 out of 37, 702VoxCeleb-1 trial pairs
and leaves as a future work the extension to the larger VoxCeleb-
2. Here, we are more interested in understanding matchers robust-
ness against background sounds, so the accuracy gains with larger
datasets would not substantially affect the findings of our analysis.



environments. VGGVox is based on theVGG-MConvo-
lutional Neural Network, with modifications to adapt to
the audio spectrogram input. The last fully-connected
layer is replaced by two layers, a fully connected layer
with support in the frequency domain and an aver-
age pooling layer with support on the time domain.
XVector is a Time Delay Neural Network, which allows
neurons to receive signals spanning across multiple
frames. Given a filterbank, the first five layers operate
on speech frames, with a small temporal context cen-
tered at the current frame. Then, a pooling layer ag-
gregates frame-level outputs and computes mean and
standard deviation. Finally, two fully-connected layers
aggregate statistics across the time dimension.

4.3. Model Training and Testing Details
The code, implemented in Python, ran on a NVIDIA
GPU. The audios were converted to single-channel, 16-
bit streams at a 16kHz sampling rate. We used 512-
point Fast Fourier Transforms. VGGVox received spec-
trograms of size 512𝑥300, while XVector received fil-
terbanks of size 300𝑥24. Both representations were
generated in a sliding window fashion using the ham-
ming window of width 25𝑚𝑠 and step 10𝑚𝑠, and nor-
malized by subtracting the mean and dividing by the
standard deviation of all frequency components. Each
model was trained for classification on VoxCeleb-1 dev
set using Softmax, with batches of size 64. To keep
consistency with respect to the original implementa-
tions of VGGVox and XVector, we used the Adam opti-
mizer, with an initial learning rate of 0.001, decreased
by a factor of 10 every 10 epochs, until convergence.
For testing, we considered speaker embeddings of size
512. The choice of the architectural parameters was
driven by the original model implementations, with-
out any specific adaptation, given that we are inter-
ested in benchmarking the original models in noisy
environments rather than tuning/arranging the param-
eters to align with our goals.

4.4. Speaker Recognition Protocols
Given a pretrained model, a set of trial verification
pairs, and a target context, the protocol worked as fol-
lows. For each trial pair in the set, we assumed that the
first audio represented the enrolled utterance ideally
collected in controlled environments, while the sec-
ond audio was the probe provided in the target con-
text. Hence, the first audio remained unchanged. The
second audio was changed by adding sounds that char-
acterize the target context, as explained in Section 3.2.
For both the enrolled and the changed audios, the acous-

tic representations were extracted and fed into that
pretrained model to get the speaker embeddings. The
Cosine similarity between the speaker embeddings was
calculated. This process was repeated for each trial
pair in the set. Finally, given the resulting similarity
scores and the verification labels (i.e., 0 for different-
user pairs, 1 for same-user pairs), the Equal Error Rate
(EER) under that context was computed. The entire
protocol was repeated with different background sound
volume levels, treated as percentages, assumed to be
in [0, 0.05, 0.10, 0.20, 0.30, 0.50, 1, 1.5] (e.g., 1 means that
the original volume is kept, 0.5 means that the volume
of the background sound is reduced by 50%).

This protocol was carried out on 25 contexts com-
posed by either single categories of the third and fourth
levels of our taxonomy and their combination.

4.5. Experimental Results
Given the considered taxonomy contexts, theVoxCeleb-
1 trial pairs, and two pre-trained speaker recognition
models, we followed the protocol in Section 4.4 to cal-
culate the EERs at various background sound volumes.

Indoor. Table 1 and 2 report the EERs under various
combinations of indoor sounds. It can be observed that
Voice is the individual sound category that leads to
the highest degradation in performance, with 27−30%
of EER at the 1.5 volume ratio. Home and Movement
showed a similar impact when the volume level was
below 1.0, while the former brought more negative ef-
fects with volume ratios higher than 1.0. When two
or more sound categories were combined, EERs easily
turned out to values above 15%, especially in scenar-
ios where both Home and Voice sounds were present.
XVector’s performance substantially decreased as soon
as sounds were added, while VGGVox showed a more
robust behavior against background sounds. It might
be possible that the changes introduced by the back-
ground sound in the spectrograms fed into VGGVox
had a lower influence on the recognition pattern learnt
by the convolutional layers during training. On the
other hand, with XVector, the temporal context em-
ployed at each layer of the network might be highly
influenced by the changes introduced into the filter-
banks through the background sound addition.

Nature Outdoor. Table 3 and 4 report the EERs ob-
tained when nature-related sounds were added. These
sounds showed different degradation patterns from each
other, compared with indoor-related sounds. It can
be observed that models were robust against Plants
Vegetation at any volume. Conversely, sounds com-
ing from the AtmosphericElements category led to



Sound Combination
Volume

0.05 0.10 0.20 0.30 0.50 1.00 1.50
Home 4.60 5.80 7.80 10.00 12.50 19.30 26.40
Movement 5.00 6.40 7.90 12.60 14.20 16.70 20.50
Voice 8.10 12.20 17.30 18.20 19.40 24.20 27.90
Home-Movement 5.00 6.50 13.00 15.90 23.20 30.00 32.20
Home-Voice 10.10 14.00 20.00 23.10 26.00 34.60 39.10
Movement-Voice 11.00 15.70 14.60 17.00 18.80 23.90 29.40
Home-Movement-Voice 14.00 17.00 22.90 26.90 31.80 39.30 42.20

Table 1
VGGVox - Indoor Scenario. EERs achieved by VGGVox under an Indoor Scenario. Bold values show the highest EER at
each volume level. VGGVox led to an EER of 2.20% when no sounds were added to the vocal file.

Sound Combination
Volume

0.05 0.10 0.20 0.30 0.50 1.00 1.50
Home 10.49 13.90 19.59 20.99 26.30 32.19 36.40
Movement 12.60 17.80 23.70 26.00 30.70 28.50 30.30
Voice 15.40 18.10 20.59 24.20 25.00 32.49 30.60
Home-Movement 13.50 30.30 36.19 36.70 39.60 37.60 49.09
Home-Voice 17.10 24.09 26.90 29.70 35.60 41.10 40.60
Movement-Voice 21.79 27.90 33.59 34.19 37.90 36.80 39.80
Home-Movement-Voice 21.59 30.30 36.19 36.70 39.60 44.20 46.09

Table 2
XVector - Indoor Scenario. EERs achieved by XVector under an Indoor Scenario. Bold values show the highest EER at each
volume level. XVector led to an EER of 6.35% when no sounds were added to the vocal files.

Sound Combination
Volume

0.05 0.10 0.20 0.30 0.50 1.00 1.50
Animals 4.40 5.70 8.20 10.60 15.50 22.70 32.50
AtmosphericElements 5.80 8.70 14.30 18.10 25.70 30.80 40.00
PlantsVegetation 3.10 3.00 3.00 3.50 3.90 6.60 8.30
Animals-AtmosphericElements 7.50 11.20 18.60 24.60 31.00 41.30 48.60
Animals-PlantsVegetation 3.70 6.00 8.40 11.90 16.60 27.40 35.00
AtmosphericElements-PlantsVegetation 5.60 9.00 15.00 17.80 24.20 31.90 41.40
Animals-AtmosphericElements-PlantsVegetation 7.00 11.60 18.30 23.80 31.80 38.60 43.70

Table 3
VGGVox - Nature Outdoor Scenario. EERs achieved by VGGVox under a Nature Outdoor Scenario. Bold values show the
highest EER at each volume level. VGGVox led to 2.20% of EER when no sounds were added to the vocal files.

Sound Combination
Volume

0.05 0.10 0.20 0.30 0.50 1.00 1.50
Animals 7.09 10.39 15.60 16.40 20.90 28.20 30.80
AtmosphericElements 13.20 19.29 28.90 31.59 34.50 42.00 43.90
PlantsVegetation 5.50 5.50 7.79 8.20 9.89 12.90 17.30
Animals-AtmosphericElements 17.00 22.19 30.79 35.90 38.60 43.20 44.69
Animals-PlantsVegetation 9.29 9.79 17.10 19.70 24.50 31.30 35.00
AtmosphericElements-PlantsVegetation 14.10 21.69 26.00 32.69 35.60 43.80 45.69
Animals-AtmosphericElements-PlantsVegetation 15.20 22.79 31.70 35.09 38.90 46.19 47.59

Table 4
XVector - Nature Outdoor Scenario. EERs achieved by XVector under a Nature Outdoor Scenario. Bold values show the
highest EER at each volume level. XVector led to an EER of 6.35% when no sounds were added to the audio files.

the worst EERs, with 40 − 43% of EER at the high-
est volume level. Models suffered from the combina-
tion of Animals and AtmosphericElements sounds
(44−48% of EER reached at a volume ratio of 1.5). Com-
pared with indoor scenarios, both VGGVox and XVec-
tor showed here similar degradation patterns. This
behavior might be justified by the intrinsic properties

and characteristics of the nature sounds included into
our taxonomy, which are shorter and less deafening.

Mechanical Outdoor. Table 5 and 6 show us that
mechanical outdoor sounds led to substantial negative
impacts on the model performance, except in case of
SocialSignals sounds, compared with indoor and



Sound Combination
Volume

0.05 0.10 0.20 0.30 0.50 1.00 1.50
MotorizedTransport 3.10 4.50 8.70 10.80 16.80 26.10 35.10
NonMT 28.00 27.00 28.40 28.90 25.70 30.10 30.60
SocialSignals 7.00 7.50 9.40 11.00 11.60 16.10 20.20
Ventilation 20.30 20.10 20.90 22.20 25.70 29.80 32.30
MotorizedTransport-NonMT 26.60 27.40 29.70 32.70 31.70 39.30 44.90
MotorizedTransport-SocialSignals 8.10 9.20 14.00 16.70 22.60 32.10 38.00
MotorizedTransport-Ventilation 20.60 22.70 22.70 25.60 30.70 37.40 44.10
NonMT-SocialSignals 30.20 30.10 29.40 28.60 30.00 36.00 37.80
NonMT-Ventilation 35.60 38.00 36.10 39.00 40.50 41.60 43.60
SocialSignals-Ventilation 21.40 19.90 25.20 27.00 29.90 35.50 40.20
MotorizedTransport-NonMT-SocialSignals-Ventilation 37.60 36.30 38.50 38.30 42.40 10.00 48.50

Table 5
VGGVox - Mechanical Outdoor Scenario. EERs achieved by VGGVox under a Mechanical Outdoor Scenario. Bold values
show the highest EER at each volume level. VGGVox led to an EER of 2.20% when no sounds were added to the audio files.

Sound Combination
Volume

0.05 0.10 0.20 0.30 0.50 1.00 1.50
MotorizedTransport 9.30 13.30 20.99 27.20 32.49 40.00 42.10
NonMT 47.50 48.00 53.50 46.90 53.30 50.60 44.39
SocialSignals 10.20 8.69 13.80 14.50 19.40 24.70 29.90
Ventilation 33.59 32.30 34.30 34.80 39.70 44.90 49.80
MotorizedTransport-NonMT 49.80 48.69 45.30 51.70 47.59 48.40 50.40
MotorizedTransport-SocialSignals 11.79 19.49 22.49 29.50 35.80 43.99 45.69
MotorizedTransport-Ventilation 31.79 32.49 36.90 42.00 43.30 49.10 47.50
NonMT-SocialSignals 49.90 50.50 51.60 49.40 49.20 49.40 48.00
NonMT-Ventilation 52.40 49.50 50.10 49.90 48.30 51.30 51.60
SocialSignals-Ventilation 39.70 38.70 38.40 42.20 40.50 44.69 50.30
MotorizedTransport-NonMT-SocialSignals-Ventilation 50.40 49.90 51.50 48.40 49.40 49.70 49.70

Table 6
XVector - Mechanical Outdoor Scenario. EERs achieved by XVector under a Mechanical Outdoor Scenario. Bold values
show the highest EER at each volume level. XVector led to an EER of 6.35% when no sounds were added to the audio files.

nature outdoor settings. Even at low volume levels,
it is important to notice that Ventilation sounds
caused substantial degradation in EERs, and this ef-
fect was amplified when two or more sound categories
were combined. Among the most degraded settings,
combining NonMT and Ventilation led to EERs of
35−50% even at a volume ratio of 0.1. Outdoor sounds
coming from the Nature and Mechanical categories
seemed to lead to more overlapping decision bound-
aries than indoor sounds. For instance, while being
composed by a different combination of sound types,
both the MotorizedTransport-NonMT and NonMT-
SocialSignals settings showed similar EERs at a
volume level higher than 0.4. It follows that mixing
outdoor sounds can hamper more speaker recognition,
and each type of outdoor sound significantly impacts
on model effectiveness. Similarly to the indoor sce-
nario, VGGVox was more robust than XVector, possi-
bly due to its depth in terms of layers.

Based on our results, under the considered settings,
speaker recognition matchers do not appear adequately
reliable. The impact of background sounds on perfor-
mance depends on the context and the sound.

5. Conclusions and Future Work
In this paper, we proposed a taxonomy of labeled back-
ground sound recordings for speaker recognition re-
search in noisy environments. Then, we devised a sim-
ulation framework of indoor and outdoor contexts in
vocal audios. Finally, we assessed the impact of the
taxonomy sounds on the performance of two speaker
recognition models. Based on the results, indoor sounds
have a lower impact than outdoor sounds, and outdoor
scenarios that involve mechanical sounds are the most
challenging, even at low background sound volumes.

Our work opens to a wide range of research direc-
tions. We plan to enrich the taxonomy with more cate-
gories and audios organized into an ontological repre-
sentation. We will extend our analysis to other mod-
els (e.g., ResNet) and languages beyond English. We
will also inspect how background sounds and respec-
tive scenarios affect the internal model dynamics (e.g.,
speaker embeddings). Naturally, we will leverage our
framework to devise audio enhancement methods able
to deal with the sounds of our taxonomy and to design
novel approaches for more robust speaker recognition.
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