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Abstract

Parkinson’s Disease (PD) is a neuro-degenerative disorder which is caused by a decrease in dopamine producing neurons
in the human body and affects the body’s motor system. In addition to affecting several motor and non-motor activities
of a person’s day to day life, PD patients have difficulty in speech production due to reduced coordination of the muscles
that control breathing, phonation, articulation and prosody. Analyzing speech allows clinicians to objectively measure the
severity of PD in a non-invasive way. In this work, we propose an effective method to discriminate between PD and healthy
control (HC) subjects by utilizing a technique to decompose a speech signal into simpler Intrinsic Mode Functions called the
Empirical Mode Decomposition. We train a Convolutional Neural Network (CNN) to learn significant properties from raw
IMFs for the purpose of PD-HC classification. We evaluate our technique on sustained phonations speech from the Italian
Parkinson’s Voice and Speech database. Experimental results show that significant characteristics of Parkinsonian dysarthria

can be learnt by using the raw IMFs and the need for explicitly extracting handcrafted features could be mitigated.

Keywords

Parkinson’s speech, Empirical Mode Decomposition, Intrinsic Mode Function, sustained phonation

1. Introduction

Parkinson’s Disease (PD) is a neuro-degenerative dis-
order which is caused by a decrease in dopamine pro-

the signs of PD are often confused with those of natu-
ral aging hence making the diagnosis even more chal-
lenging. Clinicians widely use the Unified Parkinson’s
Disease Rating Scale (UPDRS) [4] for evaluation of PD.

ducing neurons in the human body and affects the body’s The evaluation is carried out through face to face in-

motor system [1]. PD affects 1-2 per 1000 of the pop-
ulation at any time. The prevalence of PD increases
with age and it affects roughly 1% of the population
above 60 years [2]. Normal respiratory and well con-
trolled articulatory movements are fundamental for pro-
ducing well-coordinated normal speech. The common
signs and symptoms of PD such as tremor, bradykine-
sia, rigid muscles and akinesia hamper the ability of an
individual to precisely control the speech producing
organs which leads to disordered speech. This man-
ifests in PD patients in the form of soft voice, mono-
tone, breathiness, hoarse voice quality, imprecise ar-
ticulation and a decrease in naturalness while speak-
ing [3].

In the absence of any specific laboratory test or in-
struments to measure or monitor the evolution and
treatment response of PD, it is extremely crucial to
track the motor functions such as gait freezing and
speech analysis to examine the disease. Importantly,
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terviews and clinical observations using a set of ques-
tions to evaluate: (a) non-motor experiences of daily
living, (b) motor experiences of daily living, (c) motor
examination, and (d) motor complications.

Naturally spoken speech can be analyzed in a non-
invasive manner and hence the study of changes in
acoustic properties of speech are a center-point of re-
search for the measurement of symptomatic changes
in PD [5]. Articulation, voice intensity, frequency spec-
trum, and speech intelligibility are the main acoustic
parameters observed for tracking changes in speech. It
was observed [6] that PD patients suffer from reduc-
tion in the range of articulatory movement which in
turn leads to impaired vowel articulation. The produc-
tion of vowels is a complicated process that involves
precise control over the movements of the tongue, lips
and jaw, creating oropharyngeal resonating cavities,
which amplify certain frequency bands of the voice
spectrum called formants. The possibility of using sus-
tained phonation /a/ for discriminating PD from healthy
subjects was first proposed in [7].

A set of 13 features describing different aspects of
Parkinsonian speech for the task was suggested in [8].
Phonation and rhythm features [9] and other vowel
features [10] to capture characteristics of PD dysarthria
have been proposed in literature. An extensive feature
analysis followed by a 2 stage feature selection to rep-
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resent physiological aspects of PD obtained from sus-
tained vowel /a/ and DDK task was proposed in [11]. A
set of frame-level features was used to construct a Fis-
cher Vector representation of the speech sample along
with a Support Vector Machine classifier in [12]. An i-
vector based approach along with a large set of acous-
tic features was used in [13] in order to identify the
most relevant features for characterizing the disorders
in speech of PD patients. Voxtester [14], is a system for
assessing PD related impairment by using a wide set of
parameters including: voice spectrum, formants, DDK
rate, voice intensity and vocal sound pressure level.

With the advent of machine learning in all spheres
of processing the trend has been to extract more and
more features using signal processing in order to dis-
criminate PD and HC subjects. In this paper, we pro-
pose a method to classify PD and HC by decompos-
ing the speech utterance by using the Empirical Mode
Decomposition (EMD) technique. EMD is the process
of decomposing non-stationary time series into sim-
pler Intrinsic Mode Functions (IMF) in the time do-
main. This technique has had various applications in
the speech domain such as enhancement, denoising
[15], formant tracking [16], pathological voice analysis
[17], emotion recognition [18], glottal activity detec-
tion [19] etc. In these studies, the emphasis has been
on extracting temporal and spectral features using the
IMFs which are then used for classification tasks. How-
ever, to the best of our knowledge, employing raw IMFs
for classification of pathological speech has not been
studied. The main contribution of this paper lies in
using a Convolutional Neural Network architecture to
learn these features from raw IMFs without the need of
explicitly extracting handcrafted features for the pur-
pose of PD-HC classification. The approach is vali-
dated on the Italian Parkinson’s Voice and Speech databa
The rest of the paper is organized as follows: Section
2 describes the database used for the experiments; we
provide the description of the proposed approach in
Section 3 while Section 4 details achieved results. We
discuss the salient aspects of the proposed approach
while also providing an analogy to the traditional fea-
ture extraction based methods in Section 5 and con-
clude in Section 6

2. Dataset

The Italian Parkinson’s Voice and Speech database [20]
consists of recordings from 28 (19 Male, 9 Female) speak-
ers with Parkinson’s Disease aged between 40 and 80
years and 22 (10 Male, 12 Female) healthy controls (HC)
aged between 60 and 77 years. The utterances have

S

Table 1
Number of 1 second utterances for PD and HC categories in
the dataset.

l Phonation ‘ PD ‘ HC ‘
/al 390 | 269
le/ 385 | 290
/i/ 403 | 297
Jo/ 400 | 284
fu/ 379 | 305

[ Total [ 1957 [ 1445 |

been recorded in a warm, echo free and quiet room
at a sampling frequency of 16 kHz by keeping the mi-
crophone at a distance of 15 to 25 centimeters from
the subject. The speech intelligibility of the patients
was perceptually assessed on a 5-point scale based on
the UPDRS protocol. The following reading tasks were
performed by the subjects:

« 2 phonations each of the vowel /a/, /e/, /i/, /o/,
/u/

« execution of syllable /pa/ and /ka/ (5 sec)
« 2 readings of a phonetically balanced text

« reading of phonetically balanced words and phrases

In our study, we use a subset of this dataset, namely
the sustained phonations (/a/, /e/, /i/, /o/, /u/). De-
pending on the severity of the condition and the speaker,
the amount of time a subject can sustain a phonation
is different and subsequently the length (in seconds) of
the audio recordings are unequal. As will be discussed
in Section 3, we segment the unequal length speech
samples into non-overlapping segments (utterance) of
Sach 1 second duration. In all there were 1957 utter-
ances from PD and 1445 utterances from HC (see Ta-
ble 1); this forms the data in all our experiments on
the phonation data for PD-HC classification. For com-
plete information on the recording protocol, the sub-
jects and the tasks, please refer to [21].

3. Proposed Approach

The proposed PD diagnosis system consists of two ma-
jor parts. First, the raw speech utterance of 1 sec-
ond duration is decomposed into its Intrinsic Mode
Functions (IMFs) by using the Empirical Mode Decom-
position (EMD) technique. A 1D-CNN model is then
trained using the raw IMFs as input for classifying the
speech utterance into one of the two categories, namely,
HC or PD. We now describe the signal decomposition



process and the architecture of the 1D-CNN model used
in our experiments.

3.1. Empirical Mode Decomposition

Empirical Mode Decomposition is an adaptive, data
driven technique used to decompose non-stationary
and non-linear signals into Intrinsic Mode Functions
of a signal, in the time-domain itself without the re-
quirement of any a priori basis [22]. Any function that
satisfies the following two conditions is categorized as
an Intrinsic Mode Function:

1. The number of extrema and the number of zero
crossings in the signal must be either equal or
differ at most by one, and

2. The mean value of the envelope defined by join-
ing the points of local minima and local maxima
must be zero.

In order to decompose a signal s[n] into its corre-
sponding IMFs, the signal is subjected to a sifting pro-
cess, namely,

1. For the signal s[n], find the locations of all local
maxima and minima. Define initial residue as,
ro[n] = s[n]

2. Connect all the local maxima (minima) by apply-
ing a cubic spline interpolation to obtain upper
(lower) envelope Eypper (Ejgwer)-

E +E
3. Compute the mean Epeqn = M

4. Update initial residue ry[n] «<— ro[n] - Emean

5. Repeat Steps 1 - 4 until ro[n] = s[n] gets reduced
to a function hj[n] which satisfies the properties
of an IMF.

6. Obtain the first residue ri[n] = ry[n] - h1[n]

7. Repeat Steps 1-6 with the residue r1[n] as the ini-

tial residue to find all the IMFs h;[n]i=1,2,-,K.

8. Stop the process when the residue rg[n] becomes
either monotonic, or a function with single max-
ima and minima or is a constant.

By performing the decomposition process, the signal
s[n] can be represented as a sum of IMFs and the final
residue, namely,

(1)

Figure 1 depicts the IMFs obtained as a result of de-
composing a natural speech utterance of one second
duration, where the decomposition is curtailed at K =
9. Note that the process of decomposing a signal into
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Figure 1: Empirical Mode Decomposition of a 1 second
sample.
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Figure 2: IMFs for PD and HC, (a)-(f) ((g)-(I)) represent first
5 IMFs and residue for PD (HC) speech of phonation /a/.

IMFs and then representing the IMFs using the instan-
taneous amplitude and frequency is termed as Hilbert
Huang Transform (HHT). Features extracted from the
IMFs can be used as complimentary features to the
standard signal processing practices. In this regard,
HHT can be understood as a generalized Fourier Trans-
form that represents the signal in terms of a finite num-
ber of components [23].

In general, healthy speech is more coherent than the
speech of a PD patient and as a result HC speech is
decomposed faster (smaller K) than PD speech. This
observation forms the hypothesis of our work. Previ-



ous studies have focused on using handcrafted spec-
tral and temporal features extracted from these IMFs
in order to discriminate between healthy and patho-
logical speech (see [11, 24]). In this paper, we propose
a machine learning approach to use the raw IMFs in
order to diagnose the presence of Parkinson’s disease.
The first set of results are on the sustained phonations
from both PD and HC. We consider the first five IMFs,
namely, h1[n] to hs[n] and the residue, r5[n] as the in-
put to our classifier.

Figure 2 depicts the first 5 IMFs and the final residue
corresponding to the sustained phonation /a/ spoken
by a HC ((a)-(f)) and a PD ((g)-(1)) subject. Clearly, one
can visually notice the difference between the IMFs
and the residue for HC and PD speech sample. These
IMFs capture the characteristics of the parent signal
and hence can be employed to extract information use-
ful for pathological speech classification. This is the
difference we wish to exploit to discriminate speech
uttered by PD and speech uttered by HC.

3.2. Experimental Setup

The architecture of the 1D-CNN model used for the
classification task is shown in Figure 3. The input to
the 1D-CNN model is the raw IMF signal. The 1D-
CNN was trained using Keras [25] deep learning li-
brary with Tensorflow [26] backend. We use speech
signal (as mentioned in Table 1) of 1 second which
corresponds to 16000 samples. Each of the 1 second
speech utterance is subject to the EMD process and
the first 5 IMFs (h{[n], ho[n], -, hs[n]) were extracted
along with the final residue (r5[n]). These are then fed
as input to a multiple-input 1D-CNN network. Thus,
the input to the network is a set of 6, 16000 dimen-
sional vector (time series). We set the kernel size for
the CNN to be 320 with a stride of 160 and the num-
ber of filters is chosen by performing a grid search to
optimize the classification accuracy. The output of the
CNN is then concatenated after a Global MaxPooling
operation and is fed to a fully connected layer with
ReLU activation function, while the number of neu-
rons is optimized by using a grid search. For the output
layer, softmax activation function is used with the out-
put dimensions being the two classes, namely, HC and
PD. The target to the model was one-hot encoding of
the health state of the individual. We trained the net-
work using binary cross-entropy loss with Adam op-
timizer. We set the learning rate to the default value
of 0.001. In order to obtain speaker independent re-
sults which can be scaled to populations outside the
training set, we perform a leave-one-speaker-out vali-
dation of the model wherein utterances corresponding

h[n] h,[n] h,[n] h,[n] h,[n] r[n]
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Figure 3: Proposed 1D-CNN Architecture.

to 49 speakers are used for training the model and the
model is tested on the left out speaker. For all exper-
iments, 20% of the training data is randomly chosen
for the purpose of validating the model. For the test
speaker, the posterior probabilities obtained from the
model output for each 1 second utterance was aver-
aged for classification. Note that Italian PD dataset
is not very large (as is common with any pathologi-
cal speech databases) to define separate train, test and
validation sets, using leave one out mechanism allows
predictions for all the speakers without relying on any
sort of speaker specific information.

4. Results

The experimental results using 1D-CNN obtained for
leave-one-speaker-out for different phonations are tab-
ulated in Table 2. In order to account for variations in
outcomes due to random weight initialization of the
1D-CNN, we repeat the experiment 5 times and report
the average accuracy obtained in Table 2. We also re-
port the specificity and sensitivity which is defined as
the percentage of correctly classified HC and PD ut-
terances respectively. The confusion matrix for 5 in-
dividual runs for the phonation /a/ is also shown in
Table 3, as can be observed the number of correctly
recognized subjects are not significantly different; the
variation between different runs is +2. As can be ob-
served in Figure 2, the final residue (r5[n]) is most re-
flective of the difference between PD and HC speech
samples followed by IMFs hy[n] and hs[n]. To evaluate
if r5[n] by itself independently captures the discrimi-
nating properties between HC and PD, we trained a
single input 1D-CNN model using r5[n] as the input,



Table 2
Accuracies for Phonation tasks (proposed approach).

Table 5
Accuracies for Phonation tasks (using only residue).

l Phonation [ Accuracy [ Specificity [ Sensitivity ‘

l Phonation [ Accuracy [ Specificity [ Sensitivity ‘

/a/ 76.00 80.00 72.86 /a/ 64.4 52.72 73.57
Je/ 76.40 78.57 73.64 Je/ 67.2 74.54 61.43
/i/ 72.00 68.57 76.36 /i/ 56.4 51.82 60.00
/o 72.40 68.57 77.27 /o 62.4 55.45 67.86
fu/ 72.00 70.00 74.55 Ju/ 61.2 57.27 64.29
| Average [ 7376 7314 [ 7494 | [ Average [ 6232 5836 | 6543 |
Table 3 Table 6

Confusion matrix for 5 runs for the phonation /a/ (proposed
approach).

PD HC
PD 21, 20, 20, 7,8,8,
21,20 (72.86%) | 7,8 (27.14%)
HC 5,3, 4, 17,19, 18,
5,5(20.0%) | 17,17 (80.0%)

Table 4
Accuracies for Phonation tasks (using hy[n], hs[n] and rs[n]).

l Phonation ‘ Accuracy ‘ Specificity ‘ Sensitivity ‘

/a/ 69.6 61.82 75.00
/el 72.8 71.82 73.57
/i/ 59.6 51.82 65.71
/o/ 66.4 60.00 71.43
u/ 62.4 52.73 70.00
| Average [ 6616 [ 5964 | 7114 |

namely, all inputs were 0 except the last residue in-
put rs[n] in Figure 3. We perform a similar analysis by
training another model with inputs as signals hy[n],
hs[n] and rs[n]. The results obtained by using these
approaches are reported in Tables 4 and 5. Clearly, the
performance detoriates (it can be observed that for the
phonation /a/ there is drop in accuracy from 76% to
69.6% and 64.4%) compared to when all the IMFs and
residue are used together. Further, we combine the re-
sults obtained by using each of the individual phona-
tions by taking a majority vote on the predictions ob-
tained by each of the 5 different models. The class con-
fusion matrix using this approach is presented in Table
6. We achieve an average accuracy of 85%, while the
specificity and sensitivity values are 81.82% and 87.5%
respectively.

The use of IMFs signals as raw features in a 1D-
CNN classifier shows promise to be able to discrim-
inate PD and HC as can be seen in Table 2. To the
best of our knowledge, a study on classification of PD

Class confusion matrix for the classification system by using
majority voting across all 5 sustained phonations.

PD HC
PD 87.5 12.5
HC | 18.18 | 81.82

and HC using the Italian Parkinson’s Voice and Speech
has not been attempted earlier. However, our results
are comparable to the state-of-the art measures which
have been validated on other datasets, for example [11,
12, 13, 27]. Note that we did not have access to these
datasets to make a direct comparison. On closer ob-
servation, we observed that most of the misclassified
PD patients by our proposed approach belong to the
class of 11 (of the 28) PD patients in the database who
were rated 0 (namely, having no speech problems) on
the UPDRS test scale by the clinicians. This is consis-
tent with the fact that assigning a precise rating (PD
or HC) for these boundary cases is challenging even
for the trained experts which translates to misclassifi-
cation of these samples.

5. Discussion

EMD is a popular decomposition technique used to an-
alyze non-stationary and non-linear signals. The IMFs
can be used to extract features like instantaneous am-
plitude and frequency, marginal spectrum etc which
are relevant for pathological speech classification How-
ever, in this paper we propose a deep architecture in
the form of 1D-CNN which allows us to use raw IMF
signal instead of having to select and extract explicit
features useful for pathological speech classification.
It is commonly assumed that neural networks are black
boxes that are unable to interpretable results. We at-
tempt to explain the performance of the proposed ar-
chitecture.

For the 1D-CNN, we used a kernel size of 320 with
a stride of 160. In the hindsight this is equivalent to



extracting features from 20 ms of speech with a shift
of 10 ms which is common practice in speech process-
ing owing to the non-stationary nature of the speech
signal. Further,

« The 1D-CNN network can be assumed to be a
feature extraction mechanism which, given a raw
IMF (or residue), extracts a set of discriminative
features. The number of filters may be inter-
preted as the number of features extracted from
a particular input signal.

+ The extracted features from input signals h;[n]
- hs[n] and rs[n] are then concatenated to form
a feature vector.

« The Dense layers then act as a simple binary
classifier with the input as the concatenated fea-
ture vector.

As one can observe, the use of raw IMFs mitigates
the need to explicitly extract handcrafted features from
the IMFs, the 1D-CNN architecture learns discriminat-
ing features from the raw signal to distinguish between
PD and HC speech samples. For the purpose of decom-
posing the signal, the speech sample is segmented into
fixed durations of 1 second each. This duration is long
enough to capture the non-stationary aspect of speech
as well as the dynamics involved in the phonation of
vowel sounds.

6. Conclusion

Parkinson’s Disease is a chronic neuro-degenerative
disease which is difficult to diagnose. The symptoms
of PD can be mistaken with natural aging, thereby mak-

ing the diagnosis very very challenging. Tracking changes

in speech has proven to be a useful tool for establishing
non-invasive approach to early detection of PD. In this
work, we propose an efficient technique to discrim-
inate PD and HC patients by analyzing their speech
samples of sustained phonation. Traditional approaches
have focused on experimenting with handcrafted spec-
tral and temporal features. In this paper, however, we
focus on machine learning the discriminating features
of speech associated with PD patients and healthy con-
trol from the raw IMF signals. We train a 1D-CNN
model using these raw IMFs to learn the discriminat-
ing properties in the signals to classify PD and HC sub-
jects.
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