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Abstract. Reinforcement learning is an efficient, widely used ma-
chine learning technique that performs well when the state and ac-
tion spaces are reasonable. This is rarely the case regarding control-
related problems, as for instance controlling traffic signals. Here, the
state space can be very large. In order to deal with the curse of dimen-
sionality, a rough discretization of such space can be used but this is
effective just up to a certain point. A way to mitigate this is to use
techniques that generalize the state space such as function approxi-
mation. In this paper, a linear function approximation is used. Specif-
ically, SARSA(λ) with Fourier basis features is implemented to
control traffic signals in the agent-based transport simulation MAT-
Sim. The results are compared not only to trivial controllers such as
fixed-time, but also to state-of-the-art rule-based adaptive methods.
It is concluded that SARSA(λ) with Fourier basis features is able to
outperform such methods, especially in scenarios with varying traffic
demands.

1 Introduction

Traffic signal control is a challenging real-world problem. Current
solutions to this problem, such as adaptive systems like SCOOT [13],
are often centralized or at least partially centralized if each controller
is in charge of a portion of the urban network. Alternatives are man-
ual interventions from traffic operators or the use of fixed-time sig-
nal plans. However, in the era of big data and advanced computing
power, other paradigms are becoming more and more prominent.
Among these we find those derived from machine learning in gen-
eral, and reinforcement learning (RL) in particular. In RL, traffic sig-
nal controllers located at intersections can be seen as autonomous
agents that learn while interacting with the environment.

The use of RL is associated with challenging issues: the environ-
ment is dynamic (and thus agents must be highly adaptive), agents
must react to changes in the environment at individual level while
also causing an unpredictable collective pattern, as they act in a cou-
pled environment. Therefore, traffic signal control poses many chal-
lenges for standard techniques of multiagent learning.

To understand these challenges, let us first discuss the single agent
case, where one agent performs an action once in a given state, and
learns by getting a signal (reward) from the environment. To put it
simply, RL techniques are based on estimates of values for state-
action pairs (the so-called Q-values). These values may be repre-
sented as a table with one entry for each state-action pair. This works
well in single agent problems and/or when the number of states and
actions is small. However, in [22] Sutton and Barto discuss two draw-
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backs of this approach: First, a lot of memory is necessary to keep
large tables when the number of state-action pairs is huge, which
tends to be the case in real-world applications. Second, a long explo-
ration time is required to fill such tables accurately. Those authors
then suggest that generalization techniques may help in addressing
this so-called curse of dimensionality.

An efficient representation of the states is a key factor that may
limit the use of the standard RL algorithms in problems that involve
several agents. Moreover, in scenarios in which the states are repre-
sented as continuous values, estimation of the state value by means
of tabular Q-values may not be feasible. To deal with this problem,
in this paper a true online SARSA(λ) algorithm with Fourier Basis
linear function approximation is used. As discussed ahead, this op-
tion is based on the fact that non-linear function approximation has
several drawbacks.

The RL-based adaptive signal control algorithm was implemented
in the open-source agent-based transport simulation MATSim [12].
In MATSim, it is possible to investigate the impact of the RL-based
adaptive signal control algorithm and compared it to other fixed-time
or adaptive signal control methods. For comparison, we run our ap-
proach against a rule-based adaptive signal control algorithm based
on Lämmer and Helbing [16], which was implemented in MATSim
in a previous study [15, 23]. The results show that the RL-based ap-
proach is able to outperform these approaches in a single intersec-
tion scenario. This is especially notable, as these approaches were
designed specifically for dealing with the control of signals, whereas
the RL-based approach needs no domain knowledge. To the authors
best knowledge, virtually no other work in the literature (especially
those stemming from the RL area) includes such kind of comparison.
More often than not, comparison of RL approaches is made only to
a fixed-time scheme.

The remaining of this paper is organized as follows. The next sec-
tion discusses background and related work. Sect. 3 describes the two
adaptive signal control approaches used in this study: The rule-based
signal control based on Lämmer and the RL-based approach. Exper-
iments and results are presented in Sect. 4, whereas Sect. 5 contains
a discussion of the results and future work.

2 Background and related work

2.1 Traffic signal control

In contrast to fixed-time signals that cyclically repeat a given sig-
nal plan, traffic-responsive signals react to current traffic by adjust-
ing signal states based on sensor-data (e.g., from upstream inducting
loops or cameras). They can, therefore, react to changes in demand
and reduce emissions and waiting times more efficiently.
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A variety of traffic-responsive signal control algorithms have been
developed. An overview is given, e.g., by Friedrich [6]. Different lev-
els of adjustment are distinguished: actuated signals use a fixed-time
base plan and adjust parameters like green split, cycle time or off-
set. (Fully) adaptive signals decide about the signal states on the fly.
They can modify phase orders or even combine signals into different
phases over time. With this, the flexibility of the signal optimization
is augmented, which increases the possible improvement, but makes
the optimization problem more complex. In order to reduce complex-
ity and communication effort between sensors and a central com-
putation unit (which controls signal states system-wide), decentral-
ized (also called self-controlled) methods decide locally about signal
states without complete knowledge of the system. Usually, every sig-
nalized intersection has its own processing unit that accounts for up-
stream (and sometimes downstream) sensor data of all approaches.
A challenge of decentralized systems is to still ensure system-wide
stability, especially when dealing with oversaturated conditions. A
number of methods were developed that tackle these challenges.

Examples of traffic-responsive approaches from various genera-
tions and technological basis are: SCOOT [13] SCATS [17]; TUC
(Traffic-responsive Urban Traffic Control) [5]; and TUC combined
with predictive control [4]. Some can be considered as rule-based as
for example Lämmer and Helbing [16]), while others use techniques
from RL and model signals as learning agents (see Sect. 2.2).

2.2 Reinforcement learning

In RL, an agent’s goal is to learn an optimal control policy π∗, which
maps a given state to the best appropriate action by means of a value
function. We can model RL as a Markov decision process (MDP)
composed by a tuple (S,A, T,R), where S is a set of states; A is a
set of actions; T is the transition function that models the probability
of the system moving from a state s ∈ S to a state s′ ∈ S, upon
performing action a ∈ A; and R is the reward function that yields a
real number associated with performing an action a ∈ A when one
is in state s ∈ S. An experience tuple 〈s, a, s′, r〉 denotes the fact
that the agent was in state s, performed action a and ended up in s′

with reward r. Let t denote the tth step in the policy π. In an infinite
horizon MDP, the cumulative reward in the future under policy π is
defined by the Q-function, Eq 1, where γ ∈ [0, 1] is the discount
factor for future rewards.

Qπ(s, a) = E
[ ∞∑
τ=0

γτrt+τ |st = s, at = a, π
]

(1)

Since the agent’s objective is to maximize the cumulative reward,
if it learned the optimal Q-values Q∗(s, a) for all state-actions pairs,
then the optimal control policy π∗ is as follows3:

π∗(s) = argmax
a

Q∗(s, a) ∀s ∈ S, a ∈ A. (2)

RL methods can be divided into two categories: Model-based
methods assume that the transition function T and the reward func-
tion R are available, or instead try to learn them. Model-free meth-
ods, on the other hand, do not require that the agent have access to
information about how the environment works.

There are many studies that use RL to improve traffic signal per-
formance. Due to space restrictions, we refer the reader to some sur-
vey papers (with different purposes): [3, 18, 29, 30].

3 For converge guarantees, in the case of QL, please see [27].

Using RL for traffic signal control is especially promising, as one
does not need a lot of domain knowledge (as opposed to, e.g., rule-
based approaches); rather, the controller learns a policy by itself.
However, issues may arise with the aforementioned curse of dimen-
sionality. In fact, depending on the specific formulation (e.g., how
states and action spaces are defined), the search space can be very
high. For instance, consider an intersection with four incoming ap-
proaches with three lanes per approach. If we define the state as the
queue length for each lane discretized in 10 levels, we would have
(4 × 3)10 distinct possible states. The reader is referred to [30] for
several variants of such formulations.

In [18, 20, 21], RL is used by traffic signals in order to learn a pol-
icy that maps states (normally queues at junctions) to actions (nor-
mally keeping/changing the current split of green times among the
lights of each phase). In [21] the approach is centralized (a single
entity holds the MDP for all traffic signals); a central authority re-
ceives information about the length of the queues and elapsed time
from various lanes to make a decision about timings at each signal.
On the other hand, the approaches in [18] and [20] are decentralized.
Each junction learns independently (normally using QL).

Since most of these works use QL, and thus approximate the Q-
function as a table, they may fall prey to the curse of dimensionality.
This arises when one deals with realistic scenarios, as, e.g., those
beyond 2-phase intersections that are common in the literature.

In order to address this, a few works used function approximation.
For instance, [1] uses tile coding in function approximation. How-
ever, the definition of states only consider queue length.

Recently, many studies have achieved impressive results using
deep neural networks to approximate the Q-function (e.g., DQN
[19, 24, 31]). However, linear function approximation has guaranteed
convergence and error bounds, whereas non-linear function approxi-
mation is known to diverge in multiple cases [2, 22]. Moreover, linear
function approximation is less computation-intensive, as it relies on
a significantly fewer number of parameters. Thus, if the Q-function
can be linearly approximated with sufficient precision, linear func-
tion approximation methods are preferable.

2.3 Transport simulation
As deployment, operations, and maintenance costs of traffic-
responsive signals in general are high, transport simulation tools pro-
vide a perfect environment to systematically test and evaluate new
signal control methods before applying them in the field.

The agent-based transport simulation MATSim [12], which is used
in this study, is especially suitable in this regard, as it is able to
run large-scale real-world simulations in reasonable time as. Sim-
ulations can be build based on open data (see, e.g., the open Berlin
scenario [32]) such that the impact of new signal control approaches
can be easily analyzed for arbitrary scenarios4 and compared to other
control methods. Because of its agent-based structure, agent-specific
waiting times and varying queue lengths over time at traffic lights
can be directly analyzed and compared.

In MATSim traffic is modeled by agents (i.e., persons) that follow
a daily plan of activities and trips. Traffic flow is modelled mesoscop-
ically by spatial first-in-first-out (FIFO) queues. Vehicles at the head
of a queue can leave a link when the following criteria are fulfilled:
(1) The link’s free-flow travel time has passed, (2) the flow capac-
ity of the link is not exceeded in the given time step, and (3) there

4 An example on how to start a MATSim simulation using the RL signal
control presented in this paper can be found at http://matsim.org/
javadoc→ signals → RunSarsaLambdaSignalsExample.
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(a) Graph structure of a link with multiple lanes.

(b) Multiple queues; spillback is captured correctly.

Figure 1: Links with multiple lanes in MATSim. Each lane is rep-
resented by its own FIFO queue. Traffic signal control for different
turning moves is captured. Vehicles on different lanes can pass each
other, unless the queue spills over. Source: [9]

is enough space on the next link. Despite this simplistic modeling
approach, congestion as well as spillback can be modeled.

The traffic signal control module was developed by Grether as an
extension to MATSim [10]. If a signal exists on a link, leaving the
link is not possible while it shows red. First studies focused on fixed-
time signals, but also approaches for traffic-responsive signal control
have been implemented [8, 15, 23]. Separated waiting queues at in-
tersections can be modeled in MATSim by lanes (see Fig. 1), which
is especially useful to model protected left turns. Signals and lanes in
MATSim are more extensively described by Grether and Thunig [9].

Events of vehicles entering or leaving links and lanes are thrown
on a second-by-second time resolution in the simulation. Sensors on
links or lanes that detect single vehicles can be easily modeled by
listening to these events. As in reality, the maximum forecast period
of such sensors is limited – vehicles can only be detected when they
have entered the link. If a link is short, forecasts might not be ac-
curate. In the simulation, responsive signals use these sensor data to
react dynamically to approaching vehicles. For every signalized in-
tersection, the control unit is called every second to decide about cur-
rent signal states. With that, also RL-based signal control approaches
can be easily installed into the simulation framework.

In general, MATSim can model user reaction as route, mode or
departure time changes. But for this paper, only the traffic flow simu-
lation of MATSim is used. Readers interested in the evolutionary part
of MATSim – i.e., how agents adapt their plans and how long-term
effects can be analyzed – are referred to [12].

3 Methods
In this section, the two adaptive signal control approaches used in this
study are presented: The rule-based signal control algorithm based on
Lämmer and the RL approach based on true online SARSA(λ) with
linear function approximation.

3.1 Lämmer’s rule-based adaptive traffic signal
control algorithm

The idea of the self-controlled signals proposed by Lämmer and Hel-
bing [16] is to minimize waiting times and queue lengths at decen-
tralized intersections while also granting stability through minimal
service intervals. The algorithm combines two strategies. The opti-
mizing strategy selects the signal phase i to be served next as the
one with the highest priority index πi (see Eq. 3), which takes into
account outflow rates and queue lengths of waiting and approaching

vehicles that are registered by sensors. Given a prediction of the ex-
pected queue length n̂i(t, τ) at time τ > t and the maximum outflow
rate qmaxi for phase i, one can derive the expected required green
time ĝi(t, τ) for clearing the queue at time t using ĝi(t, τ) = n̂i(t,τ)

qmax
i

.
With this, the priority index is calculated as follows:

πi(t) =


max

τi(t)≤τ≤τ0i

n̂i(t, τ)

τ + ĝi(t, τ)
, if i = σ(t)

n̂i(t, τ
0
i )

τpenσ(t)(t) + τ0i + ĝi(t, τ0i )
, if i 6= σ(t) .

(3)

Two cases are distinguished depending on whether the phase i is al-
ready active or not. In either case, the equation basically divides the
number of vehicles by the time needed to clear the queue including
the (remaining) intergreen time. The priority index can, therefore, be
interpreted as a clearance efficiency rate. τ includes either the effect
of remaining intergreen time for the selected phase (when it has not
yet switched to green), or a lookahead beyond the end of the current
queue. It is bounded from below by the remaining intergreen time
τi(t), since that time, if larger than zero, will be incurred before traf-
fic can flow, and from above by the full intergreen time τ0i , since be-
yond that it is possible to just switch back from some other state. For
a non-active phase (i.e., i 6= σ(t)), the priority index is reduced by a
canceling penalty τpenσ(t)(t). This prevents the optimizing regime from
frequently switching signal phases. The penalty can be interpreted
as the average additional waiting time for vehicles at the previously
served links that would occur upon cancellation. The priority index
as it is defined in Eq. 3 assumes that each signal phase only serves
one link – which is why phases and links are both denoted by i here.
The algorithm was further extended to be able to deal with realistic
traffic situations like lanes, phase combination with opposing traf-
fic, minimum green times, and overload. Since this extensions make
the equation less readable while the main method stays the same, the
authors refer to Thunig et. al [23] for more details.

An enclosing stabilizing strategy ensures that each link is at least
served once during a specified minimal service interval to prevent
spillbacks. Links that have to be stabilized are added to a stabilization
queue. If the queue is non-empty, the phase corresponding to the first
element of the queue is switched to green for a guaranteed green time
gsi depending on the average capacity utilization. If the stabilization
queue is empty, the optimizing strategy takes over. Lämmer’s control
claims to provide intrinsic green waves and locally optimal service,
which also results in system-wide optimal service.

An assumption of Lämmer’s algorithm is the queue-
representation of traffic flow: If a link i is served, vehicles can
leave the link with a constant outflow rate qmaxi , which is assumed
to be known. Additionally, queues are assumed to be non-spatially,
i.e., the algorithm does not account for vehicles spilling back to
upstream lanes or links. Demand is supposed to be manageable on
average with the desired cycle time T to ensure stability.

Two sensors are used to predict the number of waiting vehicles
per link and time. One is positioned at the end of the link to detect
waiting and outflowing vehicles; the second one is located further
upstream to detect approaching vehicles. Assuming free flow condi-
tions at link i, one can estimate the length of the queue ni(t) at time
t and predict the expected queue length n̂i(t, τ) at a time τ > t.
While the estimation of queue lengths allows uncertainty, the mere
presence of a queue is definite.
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3.2 True online SARSA(λ) traffic signal controller
The proposed RL traffic signal controller implements the true on-
line SARSA(λ) algorithm [26], a modification of the traditional
SARSA(λ) that was demonstrated to have better theoretical prop-
erties and outperform the original method [25]. As detailed later, we
use two kinds of features, thus impacting the space state. In order to
deal with high dimensional state spaces, the Q-function was linearly
approximated using the Fourier basis scheme [14].

When linear approximation is used, the Q-values Q(s, a) for each
discrete action a are approximated as a weighted sum of a set of
m basis functions φ1, ..., φm, as in Eq. 4, where θ is the vector of
weights.

Q(s, a) = θ · φ(s, a) =

m∑
i=1

θiφi(s, a) (4)

The Fourier series is one of the most commonly used continuous
function approximation methods, presenting solid theoretical foun-
dations. In [14], it was empirically shown that Fourier basis outper-
forms other commonly used approximations methods such as poly-
nomial and radial basis functions in continuous RL domains.

When applying Fourier series to the RL setting, it is possible to
drop the sin terms of the series5. Then, for a nth order Fourier ap-
proximation, each basis function φi is defined as in Eq. 5, where
ci = [c1, ..., ck] is a vector that attaches an integer coefficient
c1≤j≤k ∈ [0, ..., n] to each feature in s, and k is the dimension of
the state space.

φi(s, a) =

{
cos(πci · s), if a = at

0, if a 6= at
(5)

The basis set of functions φ1, ..., φm is obtained by systematically
varying these coefficients. Each coefficient determines the basis
function’s frequency along its dimension. Furthermore, as we in-
crease the order n of the approximation, more frequencies are used.

After the execution of action at, the weights θ are updated via
gradient descent, following the true online SARSA(λ) with linear
function approximation update rule, as in Eq. 6, where δ = rt +
γQ(st+1, at+1)−Q(st, at) is the temporal difference error andQold
is a scalar temporary variable initialized with zero and set toQold ←
Q(st+1, at+1) after every step.

θ ← θ + α(δ +Q−Qold)e− α(Q−Qold)φ (6)

The eligibility traces vector e – which is used to address the credit
assignment problem – is updated as in Eq. 7. Each weight update
also takes into account previously visited states, which are credited
accordingly to the values accumulated on the vector e. The parameter
λ controls the decay of the eligibility traces at each time step.

e← γλe + φ− αγλ(eTφ)φ (7)

Given the base learning rate α, each weight θi is updated with the
scaled learning rate αi = α/||ci||2, as proposed in [14]. Both the
weights and eligibility traces vectors are initialized with zeros.

In order to address the exploration–exploitation dilemma, the ε-
greedy exploration strategy is used to choose actions: the action with
the highest Q-value is selected with a probability of 1 − ε and a
random action is selected with probability ε.

Next we give the formulations that are specific to the domain of
signal control.

5 For detailed explanation, please see [14].

State Space In RL problems, the definition of state space strongly
influences the agents’ behavior and performance. In traffic signal
control, for instance, information related to the level of congestion
in the approaching lanes is fundamental in order to appropriately
choose the next active signal phase.

In the present setting, the agent observes a vector st ∈ Rk at
each time step t. This vector partially represents the true state of the
controlled intersection and is defined as in Eq. 8, whereE is the set of
all links of the intersection and L is the set of all approaching lanes,
ρi ∈ {0, 1} is a binary feature active when i is the current selected
signal phase, τ ∈ [0, 1] is the elapsed time of the current signal phase
divided by the maximal green time gmax, the density ∆e ∈ [0, 1] is
defined as the number of vehicles on link e ∈ E divided by it’s
storage capacity and ql ∈ [0, 1] is defined as the number of queued
vehicles on lane l ∈ L divided by the storage capacity of the lane.

st = [ρ1, ..., ρ|σ|, τ, q1, ..., q|L|,∆1, ...,∆|E|] (8)

This state definition is inspired by [7], where authors achieved similar
performance levels, even when using more complex state definitions
(e.g., including positions of each vehicle in the approaching lanes).

As common in the literature, the proposed RL signal control is
only called every three seconds. This means, that one time step for
the traffic signal agent corresponds to three seconds of simulation.
This reduces the complexity and the size of the state space, without
significantly reducing the performance.

Action Space At each time step t (every three seconds), the traffic
signal controller chooses a discrete action at ∈ A. In our setting, the
number of actions is equal to the number of possible signal phases,
therefore, |A| = |σ|. There are two restrictions in the action selec-
tion: the agent can change the current active signal phase only if the
elapsed time is greater or equal than the minimal green time gmin
and keep it only if the elapsed time is less than the maximal green
time gmax. These restrictions ensure the feasibility of the signal con-
troller for real-world applications.

Reward After taking action at, the traffic signal controller re-
ceives a scalar reward rt ∈ R. As in [7] the reward is defined as
the change in cumulative delay, as given in Eq. 9, where Dat and
Dat+1 represent the cumulative delay at the intersection before and
after executing the action at.

rt = Dat −Dat+1 (9)

On its turn, the cumulative vehicle delayD, for any time t, is com-
puted as in Eq. 10, where Vt is the set of vehicles on incoming ap-
proaches and dvt is the delay of vehicle v at time t.

Dt =
∑
v∈Vt

dvt (10)

4 Experiments and results

4.1 Scenario

This study focuses on a single intersection scenario with two set-ups,
each for a different demand level. In both, the RL control is compared
to a fixed-time signal control and rule-based traffic-responsive signal
control based on [16] (as introduced in Sect. 3.1).
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Figure 2: Single intersection scenario.

Traffic signals. The single intersection featured here (see Fig. 2)
has four incoming approaches. In the horizontal direction, there is a
dedicate left turning lane in each traffic approach, as well as three
lanes for straight traffic. In the vertical direction, there are two lanes
for straight traffic.

Traffic signals are grouped into three non-conflicting signal
phases: Straight traffic in horizontal direction; left turning traffic in
horizontal direction; vertical direction. While switching between two
signal phases, there is an all red period of one second. The minimum
green time for a signal phase is five seconds.

The fixed-time control that is used for comparison purposes is op-
timized by Webster’s method [28]. It has a cycle time of 40 sec-
onds and distributes green times according to average flow rates. The
traffic-responsive signal approaches do not have a fixed cycle time:
For Lämmer’s control algorithm, a desired and a maximal cycle time
can be defined (for this scenario 40 and 60 seconds are used, respec-
tively). For the RL control a maximal green time of 30 seconds per
signal phase is used. As mentioned in Sect. 3.2, the RL control is
only called every three seconds to decide about new signal states.

Demand. In a first set-up, there is traffic going straight in the
horizontal direction, with 1800 vehicles approaching on average per
hour, in each of the two approaches. In the vertical direction, there are
600 vehicles on average per hour from each side – all going straight.
Additionally, there are 180 vehicles on average per hour from both
sides in horizontal direction that want to turn left at the intersection.
A period of 86,400 seconds (i.e., one day) is simulated.

In a second set-up, the demand is doubled during five time periods
over the day of 2,000 seconds length each, in order to analyze the
effect of fluctuating demand on the performance of the RL controller.
To be more precise, in the time intervals [0, 2,000), [20,000, 22,000),
[40,000, 42,000), [60,000, 62,000), and [80,000, 82,000) the average
flow rates in horizontal direction are 3600 vehicles per hour going
straight and 360 vehicles per hour going left per approach, whereas in
vertical direction the average flow rate per approach is 1200 vehicles
per hour. During the rest of the simulation, the average flow rates are
the same as for the first scenario set-up.

In both set-ups, arrival rates are stochastic: vehicles are inserted as
platoons with a platoon size that is exponentially distributed around
an expected value of five. Also the time gap between vehicle pla-
toons is exponentially distributed; its expected value is the platoon
size divided by the average flow value.

4.2 Results

The proposed method of the true online SARSA(λ) with Fourier
basis linear function approximation for signal control is applied to
the single intersection scenario presented in the previous section and
compared to RL signal control methods with other configurations
(in Sect. 4.2.1, where our method is compared to a tabular variant),
as well as to a fixed-time and a rule-based adaptive signal control
approach (in Sect. 4.2.2).

Due to the stochastic arrival rates, results presented here are aver-
aged over 20 runs with different random seeds, whereby the random
seed influences the platoon structure of approaching vehicles (the av-
erage flow rate stays the same).

The shadowed area in the plots shown ahead depicted the standard
deviation regarding average delay or total queue length, accordingly.
The lines were smoothed with a moving average window of 300 sec-
onds (i.e., 5 minutes) for better clarity.

4.2.1 Comparison with other RL signal control methods

Here we compare the proposed method with the traditional tabular
SARSA(λ) [22], using the first set-up of the scenario presented in
Sect. 4.1. We also discuss optimal settings regarding the order of the
Fourier basis approximation, state and reward.

Tabular vs. linear SARSA(λ). In order to transform the con-
tinuous state space defined in Sect. 3.2 to a discrete state space for
the tabular SARSA(λ), the queue q and density ∆ attributes were
discretized in equally distributed bins/intervals. The binary features
ρi for each phase are already discrete and the feature τ has a finite
number of possible values as the elapsed time increases in steps of
five seconds; therefore, they did not need to be discretized.

In order to allow a fair comparison, the same discount factor, value
of λ and exploration rate were used for both methods. The discount
factor was set to γ = 0.95, λ = 0.1 and the exploration rate was
set to ε = 0.01 (this latter means that the agent is mostly taking
the action with the highest Q-value, but still exploring with a fixed
low chance). For the tabular SARSA(λ), a learning rate of α = 0.1
was used, while for true online SARSA(λ) with linear function ap-
proximation, α = 10−6 was used. These values are common in the
literature and produced the best results for each method after exten-
sive experimentation with different values.

As the state space in this case is large, and the number of Fourier
basis functions grows exponentially on the number of dimensions of
the state space, it is necessary to restrict the number of basis. We can
meet this condition by placing constraints on the coefficient vectors
ci. However, in this setting, adding coefficients with more than two
non-zero elements did not improve the results. Thus, we further lim-
ited each coefficient vector ci to have at most two non-zero elements.

In Fig. 3 the average delay per vehicle at each second of the simu-
lation is depicted for true online SARSA(λ) with Fourier basis lin-
ear function approximation and for tabular SARSA(λ) with 8 vs. 10
discretization bins of the q and ∆ features.

With 10 bins, the learning is very slow, as the number of discretiza-
tion bins exponentially increases the size of the state space. Reducing
the number of bins to 8 significantly speeds up the learning and re-
duces the delay. However, by reducing the number of bins, different
states (in which different actions are optimal) are perceived as the
same, thus leading to sub-optimal performance in the long run.

The usage of function approximation not only avoids the curse of
dimensionality, but introduces generalization, i.e., when updating the
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Figure 3: Average delay for tabular and linear function approximation
RL implementations.
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Figure 4: Impact of different values for the order n of the Fourier
basis approximation.

Q-function after taking an action in a given state, similar states are
also affected and have their Q-values changed. With that, the true
online SARSA(λ) with Fourier basis linear function approximation
results in a much faster learning curve and overall lower delay values.

Order of the Fourier basis approximation. Fig. 4 shows the im-
pact that the value of the Fourier approximation order n has on the
agent’s performance. As expected, the higher the value of n, the more
accurate is the approximation of the Q-function. Changing the order
from n = 3 to n = 9 results in a notable reduction on average delay;
however, when n is sufficiently high (n = 7 and n = 9), there is
no further improvement. For this reason, the Fourier approximation
order is fixed to n = 7 for all following experiments.

State definition. Although the q (flow) features provide the traffic
signal control agent with queue on each lane, the ∆ (density) features
are also important, as they inform how many vehicles (that may be
queued in the following seconds) there are on each link. Fig. 5 shows
that, by removing the ∆ features from the state definition, the average
delay increases. This difference might be even higher in scenarios
with very high demand, where a high number of vehicles are moving
and approaching the queues.

Reward definition. The definition of the reward function has a
high impact on the performance of the RL controller [11]: In Fig. 6
the reward function defined in Sect. 3.2 is compared to another re-
ward function found in literature [18], defined as the change in total
queue length between successive actions. The traffic signal controller
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Figure 5: Impact of state definition
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Figure 6: Impact of reward definition

using change in cumulative delay as reward not only converges to a
better performance, but produces a learning curve that decreases or-
ders of magnitude faster. This result shows that the choice of which
reward function to use is one of the most critical implementation de-
cisions when designing a reinforcement learning controller.

4.2.2 Comparison with fixed-time and rule-based signals

In this section, the true online SARSA(λ) with Fourier basis lin-
ear function approximation is compared to fixed-time and rule-based
adaptive signals in both set-ups of the single intersection scenario.

Fig. 7 shows the performance regarding average delay and total
queue length for the first set-up (constant average flow rates). It can
be seen that for this, somewhat homogeneous setup, RL and Lämmer
perform much better than Webster fixed-time control in terms of av-
erage delay and queue length. Also, they produce less variation in
these measures, demonstrating robustness against traffic fluctuations.
Note that for constant average flow rates, the fixed-time control used
here (optimized by Webster’s method) is already quite good. RL is
able to outperform the fixed scheme because it seems to be more sta-
ble regarding platoon variations. This can be seen in both plots in
Fig 7, with the standard deviation (shown as the shadowed area in
the plots) being lower for the RL.

Fig. 8 depicts the effects of more heterogeneous demand (second
set-up), where the flow rates are doubled during five time periods
over the day (see Sect. 4.1). The RL controller improves its perfor-
mance from the second peak onwards, as in the first peak it was expe-
riencing an overload situation for the first time. In this more difficult
set-up, the difference in performance between RL and Lämmer be-
comes less visible, with both presenting the same amount of queue
length when there is low demand. Additionally, RL decreases the
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Figure 7: Single intersection scenario with constant average flow
rates (first set up of Section 4.1)

queue lengths faster than Lämmer after the peaks, which indicates
that RL better adapts to different vehicle demands.

In summary, despite its slightly lower performance in the first set-
up, the RL control is able to handle overload situations and quickly
reduces the queues afterwards. Recall that, contrarily to rule-based
approaches, the RL control does not require domain knowledge.

5 Conclusion and future work

In the present paper it was shown that specific techniques from RL
can help to improve the performance of traffic signal control, and
even outperform state-of-the-art rule-based adaptive signal control
methods. It was argued that tabular RL methods may not be feasi-
ble due to the curse of dimensionality. When it is possible to employ
them, it is often the case that they need long learning times before
convergence in the case of realistic intersections with more than two
signal phases and when a more complex definition of state is used.
Recall that the results presented here show that including more fea-
tures (i.e., not only queue but also density) played a significant role
in the performance.

To address the curse of dimensionality, we used Fourier basis lin-
ear function approximation alongside the true online SARSA(λ)
algorithm, which to the authors best knowledge was not used for traf-
fic signal control before. This method was implemented in MATSim
and compared to optimal fixed-time and rule-based adaptive signal
control in a single intersection scenario, in which the demand was
varied. It could be seen that our approach outperforms the fixed-time
controller and is competitive with the rule-based adaptive controller
in terms of average delay and queue length. This kind of comparison
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Figure 8: Single intersection scenario with periodically repeating
time periods where the average flow rates are doubled (second set
up of Sect. 4.1)

with other than fixed-time approaches is rarely in the RL literature
and is, therefore, a key feature of this work.

As a next step, the signal control based on true online SARSA(λ)
with Fourier basis linear function approximation will be applied to
real-world scenarios using MATSim, and compared to the signal con-
trol approaches employed here. Given ongoing experimentation, the
performance of the RL control looks very promising, which would
emphasise its advantage in scenarios that are more challenging. On
the one hand, with multiple intersections, one can assess the effects
of the interaction of adjacent intersections as, e.g., when conges-
tion spills back. On another perspective, this is a multiagent RL task
that is known to be more challenging. Also, it will be investigated,
whether the RL signal control can be further improved to handle sit-
uations of overload even better than the current implementation. Fi-
nally, since the issue of which reward scheme to use seems to be a
key issue, a possible extension of this work could consider using the
methods for designing a reward function that fits this domain best.
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