
The CDESF Toolkit: An Introduction
Davide Mora∗, Paolo Ceravolo∗, Ernesto Damiani†, Gabriel Marques Tavares∗

∗Università degli Studi di Milano (UNIMI), Milan, Italy
Email: davide.mora@studenti.unimi.it, {paolo.ceravolo, gabriel.tavares}@unimi.it

†Khalifa University (KUST), Abu Dhabi, UAE
Email: ernesto.damiani@kustar.ac.ae

Abstract—Real-time response is crucial in many business pro-
cess scenarios, however, few tools support the online processing
of Process Mining tasks. In this paper, we present Concept Drift
in Event Stream Framework (CDESF), a tool focused on concept
drift detection that also supports several online Process Mining
tasks. CDESF highlights the process model evolution during the
stream processing and alerts the detection of new drifts aided by
an online clustering layer. This paper presents CDESF as a tool
that is available for the community and process practitioners.

Index Terms—Online process mining, clustering, concept drift
detection, process model graph

I. INTRODUCTION

Process Mining (PM) aims at extracting information from
event logs, which are recorded by information systems during
the execution of business processes. Further, PM provides
insights from recorded business processes, such as the cre-
ation of a process model, detection of anomalous executions,
and extraction of process metrics [1]. A relevant aspect in
traditional PM is the offline assessment of event logs. That
is, the analyzed event logs depict past process executions,
which have already finished. However, on many occasions,
stakeholders are interested in understanding the current state
of the process, i.e., while the process is being performed.
Many real applications cannot wait for a complete process
cycle to take action, which leverages the necessity for online
processing of event logs. This way, online PM has emerged as
an area with the goal of handling event streams, that is, events
are processed as their generation occurs.

In offline settings, PM tasks can be performed asyn-
chronously, i.e., one might first discover a process model, then
apply a conformance checking technique to detect deviations
and extract metrics, and so on. However, online PM im-
poses constraints that make traditional processing unfeasible.
Namely, like in stream mining, online scenarios must assume
that the flow of events is continuous, fast, and possibly infinite.
This poses the first constraint, the limitation of time and
memory. Algorithms are required to have forgetting mecha-
nisms to keep memory consumption viable (as it is impossible
to store an infinite stream) and low time consumption (as
the processing of events should be faster than the arrival
rate of events). Moreover, PM practiced in online scenarios
must also consider concept drifts, a phenomenon characterized
by the change of the relation between a feature vector and

This study was also partly supported by the program “Piano di sostegno
alla ricerca 2019” funded by Università degli Studi di Milano.

its associated class over time, and also consider incomplete
traces. Lastly, an updated version of the process model is
needed to assess the differences between reference and real
executions correctly. Therefore, methods should be aware of
the process model and detect deviations at the same time while
maintaining an updated model and being prepared to handle
concept drifts [2].

Several methods for online PM have been proposed in the
last few years, ranging from online process discovery [3]–
[5], to conformance checking [6]–[8] and concept drift de-
tection [9]–[11], but they usually tackle only one of the
required needs in online environments. Moreover, though
many works provide theoretical and practical advancements,
at the same time, they do not provide frameworks and tools for
intermediate or end-user. To overcome the reported issues, we
propose the use of Concept Drift in Event Stream Framework
(CDESF), a tool for the monitoring of concept drift in online
process mining. The formal background of the tool was pro-
posed in [12] and advanced in [13]. We developed a framework
with the main characteristics being:

• Online process discovery: a process model graph (PMG)
is maintained online and updated using the most recent
events. The updating step keeps the model relevance
while it serves as the representation of the business
process behavior.

• Online conformance checking: the framework models
both the process model and the traces as graphs. The
decision is based on the broad support of graph opera-
tions. This way, metrics are extracted by comparing trace
and process model. Further, the obtained metrics allows
the detection of deviations from normal behavior.

• Online clustering: the tool is equipped with an online
clustering technique. The clustering step places cases in
the feature space, identifying regions of interest, such as
common and anomalous behavior.

• Concept drift detection: the clustering step is based on
the concept of micro-clusters. Given the micro-clusters
behavior over time, a concept drift is detected.

To support the listed characteristics, CDESF follows two
main guidelines:

• Memory consumption: a forgetting mechanism controls
the release of old cases from memory, thus, handling
constraints posed by online scenarios.

• Support to event stream processing: the approach handles

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

event streams (not to be mistaken with trace streams)
ingesting one event at a time unit.

CDESF tackles several problems faced in online PM and
provides in-depth insights into the business process for stake-
holders. This way, moving forward the current state of tools
available for users and PM enthusiasts. Recently, CDESF has
been released as a Python library for the community1. A
video demonstrating the framework’s use and its capabilities is
available2. Moreover, a tutorial showing detailed information
on how to use the framework, along with a deeper discussion
of its visualizations is also available3. We also note that
CDESF has been used in a pipeline with PM4Py [14] in
previous works, an integration that provides further support
for online PM tasks.

The remaining of this paper is organized as follows: Sec-
tion II presents CDESF architecture and its main features.
Then, Section III shows the tool maturity, including several
supported analysis by giving some examples. Finally, Sec-
tion IV leaves the concluding remarks.

II. CDESF ARCHITECTURE

Figure 1 exposes CDESF architecture and how each step
is performed. Notice that the event stream is possibly infinite
and that events from different cases are interspersed. This way,
at the arrival of a new event, its case must be retrieved and
complemented with the event. For each new event, CDESF
steps 1 to 3 are processed, i.e., the framework does not
consume data in chunks, such as window-based techniques.

When a new event arrives, the Transformation step adds the
event into its corresponding case and models the case into a
graph-based representation. If the new event belongs to a new
case (i.e. a case that has never been seen before), the case is
initialized with the event. Then, the graph representation will
contain a single event. Instead, if the event is from an already
existing case, the case is updated with the event. Consequently,
the graph representation is also updated by adding a new node.
Graph nodes and edges represent events and directly-follow
relations, respectively.

The second step, Distance Computation, aims to extract
features that describe the case behavior. For that, the case is
compared with the PMG, which captures the current business
process nature. The comparison catches two perspectives:
trace and time, noted as graph-distance trace (GDtrace) and
graph-distance time (GDtime). Distances are measured in a
normalized PMG. From a trace perspective, the normalization
is the occurrence of a specific transition divided by the value
of the most occurred transition. The result of this operation
is referred to as weight. For the time perspective, edge nor-
malization computes the mean time of a transition between
activities. Equations 1 and 2 show the computing of GDtrace

and GDtime, respectively.

GDtrace(tr) =
∑Ttr

i=1 1−PMGweight(tr[i])

Ttr
(1)

1https://github.com/gbrltv/cdesf2
2https://youtu.be/Hq3xLyZOmlg
3https://github.com/gbrltv/cdesf2/blob/master/tutorial.pdf

Cases:

...

Event

Event Stream

Transformation A
B

E

Trace Graph

Distance
Computation A

B

E

Process Graph

C

F

D

GDtime GDtrace
Distances

Check Point

Cases

Memory

Stream
Processing

DenStream Clustering

c-micro-cluster

p-micro-cluster
o-micro-cluster

Online
Process

Discovery

Online
Conformance

Checking

Online
Process

Enhancement

Anomaly Detection Drift Detection

1

2

4

3

Fig. 1: CDESF architecture is divided into four main steps.
First, the event case is retrieved and transformed into a graph.
Then, distances between the trace and process model are
extracted. These metrics are fed to a density-based online
clustering for anomaly and concept drift detection. Finally,
a seasonal step updates the model and releases inactive cases
from memory.

GDtime(tr) = log10

(∑Ttr
i=1 |PMGtime(tr[i])−tr[i]time|∑Ttr

j=1 PMGtime(tr[j])

)
(2)

Given a trace tr, Ttr is the total amount of edges in tr,
tr[i] corresponds to the ith edge in tr, tr[i]time is the time
delta in tr[i] and tr[i]weight is the weight of tr[i]. The graph
distances capture two essential aspects of traces, the control-
flow and the time between activities. And given the flexibility
of the framework, it is possible to add multiple dimensions
considering additional perspectives, e.g., event attributes.

The graph distances previously calculated (GDtrace and
GDtime) are fed to a density-based clustering algorithm (Den-
Stream [15]), which identifies common behavior over time
and highlights outliers. DenStream provides an aggregation
of similar process behavior, where denser regions represent

https://github.com/gbrltv/cdesf2
https://youtu.be/Hq3xLyZOmlg
https://github.com/gbrltv/cdesf2/blob/master/tutorial.pdf

common patterns and sparser regions represent anomalous
patterns. Moreover, it detects cases that do not belong to any
cluster or are not dense enough to form one. These points
are also considered anomalous since they are isolated in the
feature space. DenStream uses the concept of micro-clusters
and further classifies micro-clusters in three types: outlier
micro-cluster (anomalies), potential micro-cluster (potentially
common behavior), and core micro-cluster (common behav-
ior). The detection of concept drift relies on the detection of
new core micro-clusters, i.e., if a new behavior has appeared
in the stream and is dense enough to form a core micro-cluster,
then a drift has been detected.

The Check Point (CP) step has two main goals: memory
control and model update. It is controlled by a hyperparameter
(in time unit) that sets a time horizon to how frequent
CPs happen. Regarding model update, all new cases from
the last time horizon are used to build a temporary graph.
The temporary graph represents the newest behavior of the
process since it is built with the newest events. Then, the
temporary graph is merged into the PMG to update the
process representation. Before merging, a decay factor is
applied to the PMG to balance new and historical data. If a
directly-follows relation stops appearing, its weight decreases
gradually. This step supports process model enhancement by
using new information to maintain the PMG faithful to real
data. Regarding memory control, older cases are released from
memory according to the Nyquist sampling theorem [16]. The
use of Nyquist facilitates the specialist role, taking away the
need for manual setting for a forgetting mechanism.

III. TOOL MATURITY

As an algorithm, CDESF has been used in several scientific
researches [7], [12], [13], [17]. It was also tested using 942
event logs with several types of concept drift and anomalous
behavior [18] obtaining great performance [2].

One of the main interests in PM analysis is to evaluate the
process model, i.e., process discovery. Traditionally, given a
complete event log, the relations between events are inferred
to build a process model. In a stream of events, algorithms
have to periodically update the process model since recent
events may represent new behavior. This way, a constant
model update component is required, so the process always
represents the newest behavior seen in the stream. In CDESF,
the CP step controls model updates using the most recent
events that have arrived in the last time window. Figure 2
shows the PMG in different stages of the stream. In the first
CP (Figure 2a), the PMG is still very simple given the low
amount of events that have arrived. Note that CDESF does
not start stream processing with a pre-built model, instead,
it learns the model during the stream processing. This way,
it is expected that during the first CPs, the process model is
simple since the presented behavior of the stream is minimal.
Already on CP 3 (Figure 2b), we can observe how the PMG
has embedded more information. And on CP 28 (Figure 2c),
an even more complete PMG has been created. There is a
clear relationship between the time horizon hyperparameter,

which controls CP frequency, and the PMG update. Higher
time horizons imply in a longer time between updates, this
is advised in processes where more constant behavior is
expected. Contrarily, lower time horizons have more frequent
CPs triggering more updates, which is advised for faster
streams or processes where change is expected. Other than
the visual output, CDESF also saves the PMGs during every
CP in a JSON format, increasing the possibilities of use in
different software.

(a) CP 1

(b) CP 3

(c) CP 28

Fig. 2: Evolution of the PMG through several check points
(CP). In the first CP, the PMG is still very basic since very
few events have arrived in the stream. With the consumption
of more events over time, the PMG is updated to represent
new behavior better, as seen in CPs 3 and 28.

Regarding drift alerts, CDESF has two main responses.
During the stream processing, CDESF triggers drift alerts
when a drift is detected. This approach facilitates decision
making for organizations using the framework since the drift is
detected and alerted on the fly. Moreover, CDESF also creates
a visual output after stream processing showing the number
of detected drifts and their positions. This visualization is
shown in Figure 3. Vertical dashed lines represent the point in
time where drifts were detected. At the same time, the figure
demonstrates the cumulative number of drifts detected in the
stream. In this scenario, further behavioral analysis is possible.
All the seven drifts were detected before half of the stream.
This means that the process suffered many changes in the
initial stages, and with time, the process execution got a stabler
form.

CDESF is also capable of representing the evolution of
clusters in the stream. Figure 4 shows the clustering feature
space after 2950 processed events. Core, potential, and outlier
micro-clusters are represented in black, blue and red, respec-
tively. The micro-clusters contain two rings, the dashed line
is the maximum range a micro-cluster can achieve (controlled
by a hyperparameter), while the continuous line is the actual
radius of the micro-cluster. It follows that the points (cases) are

0 1000 2000 3000 4000 5000
Event stream

1

2

3

4

5

6

7

Nu
m

be
r o

f d
rif

ts
Drifts and cumulative number of drifts in the stream

Drift points
Number of drifts

Fig. 3: Relation of the event stream processing, number of
detected drifts and their positions. Vertical lines represent the
drift positions and the curve shows the cumulative number of
drifts.

represented in two ways. The black dot is a normal case falling
under a core micro-cluster area, while the yellow marker
represents anomalous behavior, i.e., cases that do not conform
to the PMG.

Fig. 4: Feature space after 2950 events processed. Core micro-
clusters (black regions) represent common process behavior.
Normal and anomalous cases are shown in black dots and
yellow markers, respectively.

All visualizations provided by CDESF are complemented
by the metrics which are saved after the processing. CDESF
provides the evolution of clusters and case metrics, which
opens opportunities for further analysis. Both visualizations
and metrics information can be crossed in many ways to offer
in-depth insights into the business process.

IV. CONCLUSION

In this paper, we present CDESF, a tool for detection
of concept drifts and monitoring of business processes in
online scenarios. CDESF handles conflicting goals (memory
consumption and accuracy) in stream processing, maintains a

process model and supports drift detection using an online
clustering layer. CDESF is an available open-source tool
implemented as a library in Python.

REFERENCES

[1] W. M. P. van der Aalst, Process Mining: Data Science in Action, 2nd ed.
Heidelberg: Springer, 2016.

[2] P. Ceravolo, G. M. Tavares, S. Barbon, and E. Damiani, “Evaluation
goals for online process mining: a concept drift perspective,” IEEE
Transactions on Services Computing, pp. 1–1, 2020.

[3] S. J. van Zelst, B. F. van Dongen, and W. M. van der Aalst, “Event
stream-based process discovery using abstract representations,” Knowl-
edge and Information Systems, vol. 54, no. 2, pp. 407–435, 2018.

[4] V. Leno, A. Armas-Cervantes, M. Dumas, M. La Rosa, and F. M.
Maggi, “Discovering process maps from event streams,” in Proceedings
of the 2018 International Conference on Software and System Process,
ser. ICSSP ’18. New York, NY, USA: Association for Computing
Machinery, 2018, p. 86–95.

[5] A. Burattin, A. Sperduti, and W. M. van der Aalst, “Control-flow
discovery from event streams,” in Evolutionary Computation (CEC),
2014 IEEE Congress on. IEEE, 2014, pp. 2420–2427.

[6] A. Burattin and J. Carmona, “A framework for online conformance
checking,” in Business Process Management Workshops, E. Teniente
and M. Weidlich, Eds. Cham: Springer International Publishing, 2018,
pp. 165–177.

[7] G. M. Tavares, V. G. T. da Costa, V. E. Martins, P. Ceravolo,
and S. Barbon, Jr., “Anomaly detection in business process based
on data stream mining,” in Proceedings of the XIV Brazilian
Symposium on Information Systems, ser. SBSI’18. New York,
NY, USA: ACM, 2018, pp. 16:1–16:8. [Online]. Available: http:
//doi.acm.org/10.1145/3229345.3229362

[8] P. Koenig, J. Mangler, and S. Rinderle-Ma, “Compliance monitoring
on process event streams from multiple sources,” in 2019 International
Conference on Process Mining (ICPM), 2019, pp. 113–120.

[9] R. P. J. C. Bose, W. M. P. van der Aalst, I. Žliobaitė, and M. Pechenizkiy,
“Handling concept drift in process mining,” in Advanced Information
Systems Engineering, H. Mouratidis and C. Rolland, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 391–405.

[10] A. Yeshchenko, C. Di Ciccio, J. Mendling, and A. Polyvyanyy, “Com-
prehensive process drift detection with visual analytics,” in Conceptual
Modeling, A. H. F. Laender, B. Pernici, E.-P. Lim, and J. P. M.
de Oliveira, Eds. Cham: Springer International Publishing, 2019, pp.
119–135.

[11] A. Ostovar, S. J. Leemans, and M. L. Rosa, “Robust drift character-
ization from event streams of business processes,” ACM Transactions
on Knowledge Discovery from Data (TKDD), vol. 14, no. 3, pp. 1–57,
2020.

[12] S. Barbon Junior, G. M. Tavares, V. G. T. da Costa, P. Ceravolo,
and E. Damiani, “A framework for human-in-the-loop monitoring of
concept-drift detection in event log stream,” in Companion Proceedings
of the The Web Conference 2018, ser. WWW ’18. International World
Wide Web Conferences Steering Committee, 2018, pp. 319–326.

[13] G. M. Tavares, S. Barbon Junior, P. Ceravolo, and E. Damiani,
“Overlapping analytic stages in online process mining,” in 2019 IEEE
International Conference on Service Computing (SCC 2019), July 2019.

[14] A. Berti, S. J. van Zelst, and W. van der Aalst, “Process mining for
python (pm4py): Bridging the gap between process and data science,”
2019.

[15] F. Cao, M. Estert, W. Qian, and A. Zhou, “Density-based clustering over
an evolving data stream with noise,” in Proceedings of the 2006 SIAM
international conference on data mining. SIAM, 2006, pp. 328–339.

[16] L. Lévesque, “Nyquist sampling theorem: understanding the illusion of
a spinning wheel captured with a video camera,” Physics Education,
vol. 49, no. 6, pp. 697–705, 2014.

[17] N. J. Omori, G. M. Tavares, P. Ceravolo, and S. Barbon, “Comparing
concept drift detection with process mining software,” iSys - Revista
Brasileira de Sistemas de Informação, vol. 13, no. 4, pp. 101–125, 2020.

[18] G. M. Tavares, S. Barbon, and P. Ceravolo, “Synthetic event streams,”
2019. [Online]. Available: http://dx.doi.org/10.21227/2kxd-m509

http://doi.acm.org/10.1145/3229345.3229362
http://doi.acm.org/10.1145/3229345.3229362
http://dx.doi.org/10.21227/2kxd-m509

	Introduction
	CDESF Architecture
	Tool Maturity
	Conclusion
	References

