
Actor-based architecture for Cloud Services
Orchestration: the case of social media data
extraction
Stefano Cavalli, Stefano Cagnoni, Gianfranco Lombardo and Agostino Poggi

University of Parma

Abstract
In this paper we present a distributed system for social media scraping which aims to acquire an
arbitrarily large number of information from social networks, by exploiting an actor-based solution able
to orchestrate efficiently several services on cloud. Our goal is to ensure that correct operations among
actors occur, thanks to a master node, based on the ActoDeS architecture, which takes care of managing
communications, interface and messages exchanged by client nodes. As a use case, we consider Twitter
as social media platform for the key role that is playing in the modern society, as shown by Google
Trends data. However, Twitter’s search API have many limitations and there is definitely no way to make
it work when it comes to obtaining millions of records within a monthly or annual time range. Thus,
we have designed a distributed solution that is able to overcome these constraints without breaking the
current laws on this subject and the policies of Twitter.

Keywords
Actor-based systems, Cloud computing, Web-scraping, Data Analysis

1. Introduction

Nowadays, web scraping is one of the most widely used techniques to extract any type of data
from a web page, thanks to multiple software that automatize this process. Over the past few
years, it has been the subject of many controversies but on September 9th 2019, the Appeal from
the United States District Court for the Northern District of California officially declared [1]
that web scraping is not illegal, as are not methodologies that try to prevent users from working
on it, provided that no access is made by the software within the platform itself. Therefore, in
the United States, as well as in the rest of the world, laws are changing and more than ever the
knowledge represents a truly competitive key for companies and industries.

With over 500 million tweets per day, according to their 2020 Q1 report [2], Twitter has
over 166 million daily active users who generate a quantity of information that can certainly
be defined as big data. In light of this, the interest in big data generated over social media is
increasing and, at the same time, software solutions to perform data extraction are more and

WOA 2020: Workshop “From Objects to Agents”, September 14–16, 2020, Bologna, Italy
" stefano.cavalli1@unipr.it (S. Cavalli); stefano.cagnoni@unipr.it (S. Cagnoni); gianfranco.lombardo@unipr.it
(G. Lombardo); agostino.poggi@unipr.it (A. Poggi)
� 0000-0002-3505-0556 (S. Cavalli); 0000-0003-4669-512X (S. Cagnoni); 0000-0003-1808-4487 (G. Lombardo);
0000-0003-3528-0260 (A. Poggi)

© 2020 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

174

mailto:stefano.cavalli1@unipr.it
mailto:stefano.cagnoni@unipr.it
mailto:gianfranco.lombardo@unipr.it
mailto:agostino.poggi@unipr.it
https://orcid.org/0000-0002-3505-0556
https://orcid.org/0000-0003-4669-512X
https://orcid.org/0000-0003-1808-4487
https://orcid.org/0000-0003-3528-0260
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Stefano Cavalli et al. 174–183

Figure 1: Google Trends data shows interest over time in Twitter (blue) and Facebook (red) expressed
by people from all over the world, within a time range which goes from July 2013 to July 2020

more demanded. Several research works have also highlighted the importance of collecting
contents from the main social media platforms, such as Facebook and Twitter, to perform
various kinds of analysis. For example, in [3], data from Facebook are used to analyze a rare
disease. In [4], social media data are used to study collaboration in firms and organizations. In
[5] and [6], data from Twitter are used to train classifiers able to detect troll users.

Moreover, different sentiment analysis techniques perform really well and obtain successful
results when applied to social media [7, 8, 9]. These applications are improving day by day and
they are moving to cloud and to distributed systems, to better tackle countless performance
issues, software and hardware conflicts, backup and replication problems. Cloud orchestration
manages and coordinates all the activities coming from cloud automation, i.e., those processes
that run without the need for human interaction. Nowadays, cloud orchestration brings many ad-
vantages depending on the application context: cost reduction and scaling, efficiency, improved
security and enhanced visibility into resources.

When it comes to distributed computing and actor-model, one of the software frameworks
for multi-agent and actor architecture modelling is ActoDeS [10]: developed entirely in Java, it
takes advantage of the actor model by delegating the management of events to the execution
environment. Moreover, thanks to the use of different implementations of components that
manage the execution of the actors, it is suitable for the development of efficient and scalable
applications in particular in the data mining domain [11]. In this environment, messages, actors
and message patterns are all instances of Java classes. Every message is an object containing a
set of fields, a message pattern is an object defined as a combination of constraints on the value
of some message field and the actor address acts as both a system-wide unique identifier and a
local and remote proxy of an actor.

In this article, we present an actor-based architecture for orchestrating cloud services. In
particular, as use case, the system aims at easing the execution of data extraction from Twitter.
The following tasks are available: retrieving data for a long period of time, without any limitation;
distributing the computing power and computational logic on different machines and making
sure that a master process will orchestrate all services.

2. Related Work

Examining the state of the art of web scraping [12], we confirm that this term is always
considered in two different contexts: (i) data collection, in which the main focus is not a real-

175



Stefano Cavalli et al. 174–183

time system, therefore speed performance is not an important factor and it does not affect results;
(ii) work within a real-time environment, where it is important to provide all the information
required and where a millisecond error could be very critical.

Nowadays, web scraping is widely used. Some of its applications include: job search [13],
weather data [14], advertisement [15], journalism [16], and health sector [17]. Financial trading
[18] is also important and requires real-time systems to be very performing. News, along with
political-economic decisions, may drastically influence a price stock within a very short time
range, where web scraping automation plays a fundamental role. In this case, web scraping is
used to design and implement automated bots that act as trading decision support systems [19].

In 2017, Trifa et al. [20] described a Personalized Multi-Agent Systems (PMAS) on a distributed
and parallel architecture in order to predict users’ topics of interest using data coming from
web scraping tools, focusing on Twitter, Facebook and LinkedIn. As previously mentioned, we
have chosen to evaluate Twitter as social network because it is still increasing its user base
against Facebook, which instead has set an interest decrease for seven consecutive years, based
on Google trends data [21] (Figure 1) which is frequently used in data analysis and statistical
topics.

Building a cloud system, in order to analyze an unlimited amount of data, avoids running into
several problems and leads to multiple advantages. Integrity, which refers to data completeness,
accuracy and consistency, must be kept safe; a cloud system always helps to provide data
integrity [22]. Along with it, connectivity, speed, scalability and store availability are also
features of cloud or cloud-hybrid systems. Working with services on a cloud-based environment
can be risky and drive into several problems [23]: large computational load can be required
and nodes could take too long for a decision-making process; recovery from mistakes that
can arise with a centralized decision making process would not be managed by the system.
By using an actor model, all these problems can be solved. This is due to the fact that each
actor is able to make decisions in this cloud-based environment, where only partial information
may be available. If one or more nodes fail, a readjustment process will take place in order
to prevent any related problem. Dealing with actor-model also brings some advantages: the
use of simple and high-level abstractions for distribution, concurrency and parallelism; an
asynchronous, non-blocking and highly performing message-driven programming model can
be easily designed; take advantage of a very lightweight event-driven processes.

Cloud orchestration and automation are well-known terms in tech industries. Based on
their context, researchers have different opinions about them, but when web services come
up, orchestration has been extensively discussed [24] along with concurrency programming.
Concurrency in today’s middleware is almost always thread-based and hardware still evolves
towards more parallel architectures. Threads are the most used way to execute code concurrently
and they should manage possible conflicts of their execution, avoiding synchronization that
seems to help on correct data ordering and consistency. However, this paradigm raises several
problems when it comes to deadlocks, maintaining data consistency and liveness. Most of the
problems with concurrency, such as deadlocks and data corruption, result from having shared
state. That is where the actors come into play: the actor model, where independent processes
exchange immutable messages, is an interesting alternative to the shared state model.

176



Stefano Cavalli et al. 174–183

Figure 2: Actor model cloud-based architecture: each node represents an actor enclosed in its cloud
environment; it can communicate exchanging messages with the master node, retrieving data coming
from Twitter. N stands for the number of actors the system is designed for.

3. System Architecture

In this section, we describe the cloud system architecture and its components, as shown in
Figure 2. The solution is composed by multiple actors that play different roles depending on
their behavior and act with different logics. The overall system combines several existing
technologies, which have strongly evolved during the last decades such as server, databases,
web services, actor model, networks and cloud. The main purpose of our work is to obtain any
number of tweets, specifying a time interval together with a language tag (i.e. "EN" for English)
and a keyword which is part of the tweets themselves.

3.1. Multi-Actor model

As previously mentioned, a multi-actor model represents the optimal architectural choice, to
describe the distributed cloud system we have worked on. Using a master-slave connection, we
have built different nodes: the master node is designed using ActoDeS and its events manage-
ment, while slave nodes are Python services running concurrently. ActoDeS allows actors to
work on indipendent but communicating actor spaces. In order to make this communication
available ActoDeS implements a Dispatcher which takes care of messages forwarding between
different actor spaces. First of all, rather than explicit sleeping or waking up, actors react to
events that come from interactions with other actors (i.e. receiving a message). If they worked

177



Stefano Cavalli et al. 174–183

Figure 3: When clients are in IDLE state, they send a message to the master trough the WebSocket
and it replies with a set of operations coming from the List of Instruction, it than update the list
removing this specific item. In this example, two clients are busy for some other reasons and they are
not communicating with the server.

out their previous tasks and nobody send them new messages, these actors get passive and wait
for another message to receive. In this architecture, actors communicate asynchronously with
each other by sending immutable messages following a specific pattern which is later discussed.
A FIFO (First-In-First-Out) order is respected when an actor receive multiple messages from
others. Receiving messages is always a blocking operation from the actor point of view, however,
sending a new message must be non-blocking. In particular, when a slave wants to send data to
the master, it keeps going on working as a web scraping service: in this case, a non-blocking
operation cannot be performed at all.

The master node acts as a system orchestrator (Figure 3): firstly, it sets all the communication
channels between itself and all the other nodes, obviously located on separate servers. According
to the user’s requests, a list of instructions is made by the master node, which keeps it up-to-date
as needed during the execution time. The list of instructions contains a set of operations that
must be executed by the clients. At a certain point, while it is not working, a client can get
one of these instructions by establishing a WebSocket connection with the master and sending
a message to it. A WebSocket is a communication protocol, located at layer seven in the OSI
model and standardized by IETF as RFC 6455 in 2011, that provides full-duplex communications
channels over a single TCP connection. The master, which instantly reacts to this event and
wakes up, replies with a random message taken from the list of instructions and updates the
list, removing the instruction itself. While multiple clients may simultaneously connect to
the master, a FIFO (First-In-First-Out) strategy is applied in order to maintain consistency and
optimize the workload on all clients, avoiding that some of them work more than others or stay
inactive for too long, causing inefficiency. Once the client has done with its set of operations (a

178



Stefano Cavalli et al. 174–183

Figure 4: Once server sends a message to the clients, they send an http request to Twitter using a proxy
list, in order to retrieve tweet’s information. In this example, Slave_3 and Slave_N are busy and they are
not communicating with Twitter.

process which is extensively discussed below), it sends another message to the master using the
Remote Copy Protocol (RCP) to transfer files and Secure Shell (SSH) to provide authentication
and encryption. These files are all stored in the master’s server and they will be removed
from client’s one as soon as the sending process is successfully completed. When the list of
instructions is empty, it means there is no need to keep the client alive again and the server
interrupts its WebSocket.

3.2. The Twitter case study

In this section we describe the structure of the instruction list, which we have introduced
previously, and how the clients behave with Twitter 4. The so-called instruction list is a set of
operations that clients execute, regardless of the others’ behavior. In particular, each of them
receives a time range together with a language and a keyword and will take care of downloading
all the tweets that fall within those parameters listed in Table 1.

Each client operates asynchronously and executes instructions received from the server
sequentially. By the time a client receives a server’s message, containing a set of operations, it
starts its job making an HTTP request, thanks to the Python3 Requests library [25], in order to

179



Stefano Cavalli et al. 174–183

Table 1
Search parameters Lan, Interval, Kw

Parameter Description

Lan The language of a tweets..
Interval A specific interval that includes a list of tweets.
Kw A word, or sentence, that must be part of the tweets.

Table 2
Search parameters Lan, Interval, Kw

Parameter Description

Username Username of the tweet’s creator.
FullName Full name of the tweet’s creator.
User_id User id of the tweet’s creator.
Tweet_id Tweet’s id.
Tweet_url Tweet’s url.
Timestamp Tweet’s timestamp.
Replies Number of tweet’s replies.
Retweets Number of tweet’s retweets.
Likes Number of tweet’s likes.
Text Plain text of the tweet.
Html Html extracted from the tweet.

Table 3
Effective parameters Lan, Interval, Kw used while testing the entire system.

Parameter Value

Lan English
Interval 2009-01-01 / 2019-01-01
Kw Bitcoin

retrieve tweets from Twitter. We use a free proxy list [26] available from the web, which is a
list of open HTTP/HTTPS/SOCKS proxy servers that allow clients to make indirect network
connections to Twitter. This approach prevents from being banned by Twitter, once too many
http requests are made.

Once an http request is made, the Python Beautifulsoup4 library is used in order to parse the
content, retrieving all possible information a tweet may hold (Table 2).

4. Experimental Results

We have implemented the previously described system and a set of experiments has been
performed. Using twenty-two different clients and one server, while working on a distributed
and cloud environment, we have chosen the parameters described in Table 3.

The first problem we faced on is that when dealing with such systems, we will not have

180



Stefano Cavalli et al. 174–183

the data size, nor the execution time, until the execution itself is finished. Nobody has any
idea about how long it could takes to retrieve all those tweets, since we do not know how
many tweets may have been posted for a specific term in a given time interval. Choosing the
parameters mentioned above, we have realized that the execution time took 8 hours and 23
minutes (in a distributed system, it is the maximum execution time of the node that takes the
longest time to complete its work), and 53,353,764 tweets have been collected in multiple files
with comma-separated values (CSV) format, for a total physical size of 73 GB.

While working in a distributed cloud system the workload is shared among the nodes,
choosing a sequential approach within a non-distributed actor-model it requires a longer
execution time. The process includes one server which involves just one client. The client
receives all the information coming from the server and works on each request by processing
the data received from Twitter. However, this architecture shows no advantages at all, delaying
the execution time up to 193 hours and 52 minutes using the same parameters we already
focused on in the actor-model system.

5. Conclusion

The proposed actor-based approach shows how it is possible to obtain a large amount of data
coming from Twitter, using a distributed cloud-based system. The API limits imposed by Twitter
are incresingly difficult to avoid and restrict the scientific research progress in many field, such
as the Natural Language Processing (NLP). The actor-model we choose optimizes every single
action in order to guarantees a well distributed workload between all nodes, drastically reducing
the possibility that an IP address may be banned by Twitter using a list of free proxies available
on the web.

References

[1] Appeal from the United States District Court for
the Northern District of California, https://parsers.me/
appeal-from-the-united-states-district-court-for-the-northern-district-of-california, last
accessed October 2020.

[2] Twitter Q1 2020 Financial Report, https://s22.q4cdn.com/826641620/files/doc_financials/
2020/q1/Q1-2020-Earnings-Press-Release.pdf, last accessed October 2020.

[3] G. Lombardo, P. Fornacciari, M. Mordonini, L. Sani, M. Tomaiuolo, A combined approach for
the analysis of support groups on facebook-the case of patients of hidradenitis suppurativa,
Multimedia Tools and Applications 78 (2019) 3321–3339.

[4] E. Franchi, A. Poggi, M. Tomaiuolo, Social media for online collaboration in firms and
organizations, International Journal of Information System Modeling and Design (IJISMD)
7 (2016) 18–31.

[5] P. Fornacciari, M. Mordonini, A. Poggi, L. Sani, M. Tomaiuolo, A holistic system for troll
detection on twitter, Computers in Human Behavior 89 (2018) 258–268.

[6] M. Tomaiuolo, G. Lombardo, M. Mordonini, S. Cagnoni, A. Poggi, A survey on troll
detection, Future Internet 12 (2020) 31.

181

https://parsers.me/appeal-from-the-united-states-district-court-for-the-northern-district-of-california
https://parsers.me/appeal-from-the-united-states-district-court-for-the-northern-district-of-california
https://s22.q4cdn.com/826641620/files/doc_financials/2020/q1/Q1-2020-Earnings-Press-Release.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2020/q1/Q1-2020-Earnings-Press-Release.pdf


Stefano Cavalli et al. 174–183

[7] G. Lombardo, A. Ferrari, P. Fornacciari, M. Mordonini, L. Sani, M. Tomaiuolo, Dynamics
of emotions and relations in a facebook group of patients with hidradenitis suppurativa,
in: International Conference on Smart Objects and Technologies for Social Good, Springer,
2017, pp. 269–278.

[8] G. Angiani, S. Cagnoni, N. Chuzhikova, P. Fornacciari, M. Mordonini, M. Tomaiuolo, Flat
and hierarchical classifiers for detecting emotion in tweets, in: Conference of the Italian
Association for Artificial Intelligence, Springer, 2016, pp. 51–64.

[9] P. Fornacciari, M. Mordonini, Social network and sentiment analysis on twitter: Towards
a combined approach., in: KDWeb, 2015.

[10] F. Bergenti, A. Poggi, M. Tomaiuolo, An actor based software framework for scalable
applications, in: International Conference on Internet and Distributed Computing Systems,
Springer, 2014, pp. 26–35.

[11] G. Lombardo, P. Fornacciari, M. Mordonini, M. Tomaiuolo, A. Poggi, A multi-agent
architecture for data analysis, Future Internet 11 (2019) 49.

[12] R. Diouf, E. N. Sarr, O. Sall, B. Birregah, M. Bousso, S. N. Mbaye, Web scraping: State-of-
the-art and areas of application, in: 2019 IEEE International Conference on Big Data (Big
Data), 2019, pp. 6040–6042.

[13] A. Phaphuangwittayakul, S. Saranwong, S. Panyakaew, P. Inkeaw, J. Chaijaruwanich,
Analysis of skill demand in thai labor market from online jobs recruitments websites, in:
2018 15th International Joint Conference on Computer Science and Software Engineering
(JCSSE), 2018, pp. 1–5.

[14] Fatmasari, Y. N. Kunang, S. D. Purnamasari, Web scraping techniques to collect weather
data in south sumatera, in: 2018 International Conference on Electrical Engineering and
Computer Science (ICECOS), 2018, pp. 385–390.

[15] A. Maududie, W. E. Y. Retnani, M. A. Rohim, An approach of web scraping on news website
based on regular expression, in: 2018 2nd East Indonesia Conference on Computer and
Information Technology (EIConCIT), 2018, pp. 203–207.

[16] E. N. SARR, O. SALL, A. DIALLO, Factextract: Automatic collection and aggregation of
articles and journalistic factual claims from online newspaper, in: 2018 Fifth International
Conference on Social Networks Analysis, Management and Security (SNAMS), 2018, pp.
336–341.

[17] A. Amalia, R. M. Afifa, H. Herriyance, Resource description framework generation for tropi-
cal disease using web scraping, in: 2018 IEEE International Conference on Communication,
Networks and Satellite (Comnetsat), 2018, pp. 44–48.

[18] B. B. P. Maurya, A. Ray, A. Upadhyay, B. Gour, A. U. Khan, Recursive stock price prediction
with machine learning and web scrapping for specified time period, in: 2019 Sixteenth
International Conference on Wireless and Optical Communication Networks (WOCN),
2019, pp. 1–3.

[19] K. Salah-ddine, K. Abouloula, E. Brahim, Money management limits to trade by robot
trader for automatic trading, International Journal of Engineering 7 (2018).

[20] A. Trifa, A. H. Sbaï, W. L. Chaari, Evaluate a personalized multi agent system through
social networks: Web scraping, in: 2017 IEEE 26th International Conference on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE), 2017, pp. 18–20.

[21] R. Kruthika, P. Balasubramanian, V. Sureshkumar, Relationship between google trends

182



Stefano Cavalli et al. 174–183

data and index returns, in: 2018 International Conference on Computation of Power,
Energy, Information and Communication (ICCPEIC), 2018, pp. 042–045.

[22] A. M. Talib, R. Atan, R. Abdullah, M. Azrifah, Cloudzone: Towards an integrity layer of
cloud data storage based on multi agent system architecture, in: 2011 IEEE Conference on
Open Systems, 2011, pp. 127–132.

[23] F. De la Prieta, S. Rodríguez, J. Bajo, J. M. Corchado, A multiagent system for resource
distribution into a cloud computing environment, in: Y. Demazeau, T. Ishida, J. M. Corchado,
J. Bajo (Eds.), Advances on Practical Applications of Agents and Multi-Agent Systems,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 37–48.

[24] X. Kang, C. Zhou, X. Liu, H. Sun, Y. Huang, Improving performance for decentralized
execution of composite web services, in: 2013 IEEE Ninth World Congress on Services,
IEEE Computer Society, Los Alamitos, CA, USA, 2010, pp. 582–589.

[25] Python Requests Library, https://requests.readthedocs.io/, last accessed October 2020.
[26] Free Proxy List, https://free-proxy-list.net/, last accessed October 2020.

183

https://requests.readthedocs.io/
https://free-proxy-list.net/

	1 Introduction
	2 Related Work
	3 System Architecture
	3.1 Multi-Actor model
	3.2 The Twitter case study

	4 Experimental Results
	5 Conclusion

