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Abstract
The current literature clearly highlighted the need to define a fast and efficient tool for trust assessment,
even in lack of direct information, as much as possessing mechanisms allowing a matching between
a selected task and a reliable agent able to carry it out. Direct experience plays a big part, yet it
requires a long time to offer a stable and accurate performance and this characteristics may represents a
strong drawback especially within huge agents’ communities. We support the idea that category-based
evaluations and inferential processes represent a useful resource for trust assessment. Within this work,
we exploit simulations to investigate how efficient this inferential strategy is, with respect to direct
experience, focusing on when and to what extent the first prevails on the latter. Our results suggest that
in some situations categories represent a valuable asset, providing even better results.
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1. Introduction and Background

A great deal of effort has been made to assess trust within agents’ societies [1][2][3][4]. The
great majority of the approaches makes extensive use of direct experience as the main source
of information, considering recommendation/reputation and inferential processes just later,
as a secondary mechanism to refine trust assessment. Unfortunately, direct experience might
not always represent the best solution to assess trustworthiness. For instance, using direct
experience within huge networks may become unfeasible, because of their very nature: it is
hard and extremely costly to possess enough experience to judge a sufficient number of agents.
It is therefore fundamental to find an effective approach for trust assessment even in lack of
direct experience [5]. In particular, we argue that category-based evaluations and inferential
processes may represent an effective solution. Let us then introduce the formal framework
within which we will work.

We consider a population of agents 𝒜 = {𝑎1, . . . , 𝑎𝑛} which can collaborate by reciprocally
delegating the execution of some tasks.

We suppose that any agent 𝑎𝑖 ∈ 𝒜 needs to achieve a goal 𝑔, which identifies a state of the
environment (in short, the world) which the agent 𝑎𝑖 plans to achieve. The agent 𝑎𝑖 can reach
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the goal 𝑔 by executing a task 𝜏 , which affects the world. The most interesting case occurs if
the agent 𝑎𝑖 want/must delegate the execution of 𝜏 .

At an abstract level, each agent possesses some skills and resources, defined here as features
which determine its ability in carrying out the tasks it has to face. Nevertheless, not all the
features associated with an agent are crucial for the execution of 𝜏 and the majority of these
will not even be necessary. If I were to ask someone to cook for me, it would be interesting to
know how fast she/he is, how good is her/his culinary imagination or if she/he knows how to
cook specific dishes; however, knowing that she/he loves reading astrophysics books would not
be of any help.

It is therefore a fundamental precondition that an agent 𝑎𝑖 identifies which features are
necessary to carry out 𝜏 . Then, 𝑎𝑖 needs a mental representation of any other 𝑎𝑗 , which
comprises, at least, the subset of the features which are relevant to execute 𝜏 . It is also important
to underline that just the possession of these features is not enough, it is also very relevant 𝑎𝑗 ’s
willingness (following its motivations) to actually realize 𝜏 . Of course, two different tasks, say
𝜏1 and 𝜏2, require different features to be efficiently addressed.

Thanks to its mental model, 𝑎𝑖 is able to estimate the likelihood 𝜑(𝑖, 𝑗) that 𝑎𝑗 will positively
bring to completion that specific agreed task, for each agent 𝑎𝑗 ∈ 𝒜. The function 𝜑(𝑖, 𝑗)
measures the degree of trust [6] that 𝑎𝑖 (hereafter, the trustor) puts in 𝑎𝑗 (hereafter the trustee),
i.e., quantifies to what extent 𝑎𝑖 is confident that 𝑎𝑗 is capable of successfully executing 𝜏 .

It is crucial to point out that the assessment of trust is not only task-dependent but also
context-dependent, because external causes may amplify or downsize the trust between the
trustor and trustee. For instance, assume that 𝑎𝑖 wants to get to the airport one hour before
the departure of her/his flight and suppose that 𝑎𝑖 is confident that 𝑎𝑗 is able to safely drive
and she/he is knowledgeable of obstacles to traffic flow (e.g., limited access roads), and thus, 𝑎𝑖
puts a high degree of trust in 𝑎𝑗 . However, unforeseen circumstances (e.g., 𝑎𝑗 stucks in a traffic
jam) may prevent 𝑎𝑖 from being at the airport at the scheduled time: such an event negatively
influence the trust from 𝑎𝑖 to 𝑎𝑗 , even if, of course, the liability of 𝑎𝑗 is limited.

The procedure to select the agent to which the task 𝜏 has to be delegated is thus entirely driven
from the calculation of the function 𝜑(𝑖, 𝑗): the trustor should select the agent 𝑎⋆𝑗 for which
𝜑(𝑖, 𝑗) achieves its largest value, i.e., 𝑗⋆ = argmax𝑗 𝜑(𝑖, 𝑗). Such a protocol is, unfortunately,
infeasible in real-life applications: in fact, 𝑎𝑖 is capable of estimating the trust of those agents –
in short 𝐸𝑖 – with which it interacted in the past and of which it knows features. In real-life
applications, we expect that the size of 𝒜 is much larger than that of 𝐸𝑖 and, thus, the search of
a successful partner is likely to end up in a failure.

An elegant solution to the problem of selecting partners in large agent communities is
described in [7, 8] and it relies on the concept of agent category or, in short, category.

Broadly speaking, a category is a subset of agents in 𝒜 such that each category member
possesses homogeneous features. Their unique nature makes categories very interesting and
particularly useful. Since the members of a category possess similar features, even their perfor-
mance concerning the same task will be similar. For sure, we have to consider a certain degree
of uncertainty, due to the specific peculiarities of the individuals.

The specific categories to take into consideration change with the context and with the task
of interest. For instance, suppose that 𝒜 correspond to a community of people working in food
service with different roles; chefs, waiters, and sommeliers are possible examples of categories

16



Pasquale De Meo et al. 15–27

in this context.
Because of the existence of categories, the set of agents that the trustor can evaluate signifi-

cantly expands in size and it consists of the following type of agents:

1. The aforementioned set 𝐸𝑖, which consists of the agents with which 𝑎𝑖 has had a direct
experience.

2. The set𝐶𝑖 of agents, such that each agent 𝑎𝑗 ∈ 𝐶𝑖 belongs to at least one of the categories
𝐶𝑆 = {𝐶1, 𝐶2, . . . , 𝐶𝑝}; here we suppose that 𝑎𝑖 has had a direct experience with at
least one agent in each of the categories in 𝐶𝑆.

3. The set of agents 𝑅𝑖 with which 𝑎𝑖 had no direct experience but which have been
recommended to 𝑎𝑖 by other agents in 𝒜 (for instance, on the basis of their reputation).

4. The set of agents 𝑅𝐶𝑖, such that each agent in 𝑅𝐶𝑖 belongs to a category which contain
at least one agent in 𝑅𝑖.

Advantages arising from the introduction of categories have been extensively studied in past
literature [9, 8, 7]: the trustor, in fact, could be able to estimate the performance of any other
agent 𝑎𝑗 , even if it has never met this agent (and, as observed in [7] without even suspecting its
existence), through an inferential mechanism.

As the authors of [9] say, it is possible to take advantage of categories just if a few conditions
are met. First of all, 𝒜 must be partitioned into the categories 𝒞 = {𝐶1, 𝐶2, . . .𝐶𝑚}, classifying
the agents according to their features. We assume that this classification is given and accepted
by all the agents in 𝒜. It must be possible to clearly and unequivocally link 𝑎𝑗 to a category 𝑐𝑙.
Finally, we must somehow identify the average performance of the category 𝐶𝑙 with respect
to the task 𝜏 : we will discuss in detail in Section 3 a procedure to estimate the performance –
called true quality – 𝜃𝑙(𝜏) of the category 𝐶𝑙 for task 𝜏 .

When all three of these conditions are met, then the category 𝐶𝑙’s evaluation can be used for
the agent 𝑎𝑗 , concerning the task 𝜏 since, by definition of category, all agents in 𝐶𝑙 will share
the same features of 𝑎𝑗 and, thus, if the other agents in 𝐶𝑙 are able to successfully execute the
task 𝜏 (or not), we can reasonably assume that even 𝑎𝑗 can do it (or not).

Of course, only some of the categories 𝐶1, . . . , 𝐶𝑚 possess the qualities to successfully
execute the task 𝜏 while others do not. As a consequence, the first step to perform is to match
the task 𝜏 with a set of categories capable of executing 𝜏 .

At a basic level, such a matching could be implemented through a a function 𝜓(𝐶𝑙, 𝜏) which
takes a category 𝐶𝑙 and a task 𝜏 and returns True if agents in 𝐶𝑙 are capable of executing
𝜏 , False vice versa. The computation of the function 𝜓 requires an analytical and explicit
specification of: (a) the chain of actions to perform to execute 𝜏 and (b) for each action mentioned
in (a), the features an agent should possess to perform such an action.

The protocol above easily generalizes to the case in which the trustor has a limited experience
(or, in the worst case it has no previous experience): in this case, in fact, the trustor 𝑎𝑖 could
leverage the sets of agents 𝑅𝑖 and 𝑅𝐶𝑖.

2. Related Work

The growing need to deal with bigger and bigger agents’ networks makes it difficult to find
reliable partners to delegate tasks. It becomes clear that, in such situations, direct experience
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[10] is not enough to allow us facing this problem. Going beyond this dimension becomes
essential, on the light of the knowledge we already have, identifying models and methodologies
able to evaluate our interlocutors and possibly to select adequate partners for the collaborative
goals we want to pursue.

Several authors proposed trust propagation as a solution to this topic. Trust propagation
[11][12] starts from the assumption that if 𝑎𝑖 trusts 𝑎𝑗 and 𝑎𝑗 trusts 𝑎𝑘, then it is reasonable
to assume that 𝑎𝑖 can trust 𝑎𝑘 to some extent. Exploiting this and other assumptions, this
technique allows propagating a trust value from an agent to another one, without requiring a
direct interaction. The confusion in the reasoning process here is due to the consideration of a
generic trust value for an individual, leaving aside the reason why we trust it: the task we want
to delegate to it.

Many articles have discussed the use of categories/stereotypes in trust evaluations [13][14].
This is a very useful instrument, allowing to generalize an individual’s evaluation, concerning
a specific task to other agents owning similar characteristics. It represents a useful proxy
for individuating knowledge about specific trustees [15], elicited in particular in all those
circumstances precluding the development of person-based trust [16]. Here the intuition is that,
given a specific task 𝜏 , the performance of the agent we are evaluating are related to the values
of the features it needs to carry out the task itself. Along these lines, it is natural to assume
that other individual owning similar values, i.e. belonging to the same category, have the same
potential to solve 𝜏 .

Pursuant to these considerations, our contribution within this work concerns the investigation
of how efficient this inferential strategy is, with respect to direct experience, focusing on when
and to what extent the first prevails on the latter.

3. Inferring the quality of categories

In this section we illustrate our procedure to estimate the performance (in short called the true
quality) 𝜃𝑙(𝜏) of agents in the category 𝐶𝑙 to successfully execute a particular task 𝜏 .

Because of the assumptions of our model (illustrated in Section 1), agents belonging to the
same category share the same features and, thus, their performances in executing 𝜏 are roughly
similar; this implies that if an agent 𝑎𝑗 ∈ 𝐶𝑙 is able (resp., not able) to execute 𝜏 , then we expect
that any other agent 𝑎𝑞 ∈ 𝐶𝑙 is also able (resp., not able) to execute 𝜏 .

In the following, we suppose that agents in 𝐶𝑙 are able to execute 𝜏 , i.e. in compliance with
notation introduced in Section 1, we assume that 𝜓(𝐶𝑙, 𝜏) = True. In contrast, if 𝜓(𝐶𝑙, 𝜏) =
False, it does not make sense to estimate 𝜃𝑙(𝜏).

The next step of our protocol consists of selecting one of the agents, i.e., the trustee, in 𝐶𝑙

to which delegate 𝜏 ; to this purpose, we could select, uniformly at random, one of the agents
in 𝐶𝑙, as illustrated in [7]. However, agents are individual entities and, thus, slight differences
in their features exist. Because of these differences, an agent (say 𝑎𝑗) may have better (resp.,
worse) performance than another agent (say, 𝑎𝑞) in executing 𝜏 .

In the light of the reasoning above, the true quality 𝜃𝑙(𝜏) quantifies the expected performance
of an arbitrary trustee in 𝐶𝑙 in the execution of 𝜏 .

We assume that 𝜃𝑙(𝜏) ranges in (−∞,+∞): positive (resp., negative) values of 𝜃𝑙(𝜏) are an
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indicator of good (resp., bad) performances.
The first step to compute 𝜃𝑙(𝜏) consists of modelling the performance 𝑓𝑗(𝜏) of an arbitrary

agent 𝑎𝑗 ∈ 𝐶𝑙 in executing 𝜏 . To capture uncertainty in the performance of 𝑎𝑗 , we represent
𝑓𝑗(𝜏) as a Gaussian random variable with mean 𝜇𝑗 and variance 𝜎2𝑗 .

The assumption that all of the agents in the same category should reach the same performance
implies that 𝜇𝑗 = 𝜃𝑙(𝜏) for each agent 𝑎𝑗 ∈ 𝐶𝑙.

The variance 𝜎2𝑗 controls the amount of variability in the performances of the agent 𝑎𝑗 : large
(resp., small) values in 𝜎2𝑗 generate significant (resp., irrelevant) deviations from 𝜃𝑙(𝜏). In this
paper we considered two options for 𝜎2𝑗 , namely:

1. Fixed Variance Model: we suppose that 𝜎2𝑗 = 𝜎2 for each 𝑎𝑗 ∈ 𝐶𝑙.
2. Random Variance Model: we suppose that 𝜎2𝑗 is a uniform random variable in the interval

[𝛼, 𝛽].

Based on these premises, the procedure to estimate 𝜃𝑙(𝜏) is iterative and, at the 𝑘-th iteration
it works as follows:

a) We select, uniformly at random, an agent, say 𝑎𝑗 from 𝐶𝑙

b) We sample the performance 𝑓 𝑗(𝑘) ∼ 𝑓𝑗(𝜏) of 𝑎𝑗

Steps a) and b) are repeated 𝑁 times, being 𝑁 the number of agents we need to sample
before making a decision. In addition, in Step a), agents are sampled with replacement, i.e., an
agent could be selected more than once. The algorithm outputs the average value of sampled
performances, i.e.:

𝜃̂𝑙(𝜏) =
1

𝑁

𝑁∑︁
𝑘=1

𝑓 𝑗(𝑘) (1)

Our algorithm actually converges to the true value 𝜃𝑙(𝜏) as stated in the following theorem:

Let 𝑁 be the number of agents queried by our algorithm and let 𝜃̂𝑙(𝜏) be the estimation of
the true quality 𝜃𝑙(𝜏) the algorithm returns after 𝑁 rounds. We have that in both the fixed
variance and random variance models 𝜃̂𝑙(𝜏) converges to 𝜃𝑙(𝜏) at a rate of convergence of 1√

𝑁
.

Let us first analyze the individual agent performances 𝑓𝑗(𝜏) and we are interested in com-
puting the mean and variance of 𝑓𝑗(𝜏). If we opt for the Fixed Variance Model, then 𝑓𝑗(𝜏) is a
Gaussian random variable with mean 𝜃𝑙(𝜏) and the variance is equal to a constant value 𝜎2.
In contrast, if we are in the Random Variance Model, then the estimation of the mean and the
variance of 𝑓𝑗(𝜏) can be obtained by law of total mean and the law of total variance [17], which
state that for two arbitrary random variables 𝑋 and 𝑌 , the following identities hold true:

E(𝑋) = E(E(𝑋 | 𝑌 )) (2)

Var(𝑌 ) = E(Var(𝑌 | 𝑋)) + Var(E(𝑌 | 𝑋)) (3)
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We apply Equations 2 and 3 to 𝑋 = 𝑓𝑗(𝜏) and 𝑌 = 𝜎; if we condition on 𝜎 = 𝜎, then 𝑓𝑗(𝜏)
is a Gaussian random variable with mean equal to 𝜃𝑙(𝜏) and variance equal to 𝜎 and therefore:

E(𝑓𝑗(𝜏)) = E(E(𝑓𝑗(𝜏) | 𝜎 = 𝜎)) = E(𝜃𝑙(𝜏)) = 𝜃𝑙(𝜏)

In addition,

E(Var(𝑓𝑗(𝜏) | 𝜎 = 𝜎)) = E(𝜎) =
𝛼+ 𝛽

2

and
Var(E(𝑓𝑗(𝜏) | 𝜎 = 𝜎)) = Var(E(𝜃𝑙(𝜏))) = Var(𝜃𝑙(𝜏)) = 0

which jointly imply

Var(𝑓𝑗(𝜏)) =
𝛼+ 𝛽

2

As a consequence, independently of the agent 𝑎𝑗 , we have that the agent performances 𝑓𝑗(𝜏)
have the same distribution which we denote as 𝑓(𝜏). Therefore, in both the Fixed Variance Model
and Random Variance Model, the algorithm selects a random sample of agents 𝑍1, 𝑍2, . . . , 𝑍𝑁

of size 𝑁 in which, for each 𝑘 such that 1 ≤ 𝑘 ≤ 𝑁 , 𝑍𝑘 is the average performance of the agent
selected at the 𝑘-th iteration and it is distributed as 𝑓(𝜏). The algorithm calculates:

𝑆𝑁 =
𝑍1 + 𝑍2 + . . .+ 𝑍𝑛

𝑁
(4)

Because of the Central Limit Theorem [17], the distribution of 𝑆𝑁 gets closer and closer to a
Gaussian distribution with mean 𝜃𝑙(𝜏) as 𝑁 → +∞ with a rate of convergence in the order of
1√
𝑁

and this end the proof.

4. Experimental Analysis

We designed our experiments to answer two main research questions, namely:

RQ1 What are the benefits arising from the introduction of categories in the selection of a
trustee against, for instance, a pure random search or a direct-experience based strategy?

RQ2 How quickly our algorithm to estimate 𝜃𝑙(𝜏) converges?

In what follows, we first describe a reference scenario in which our task consists of recruiting
a chef from a database of applicants (see Section 4.1). Then, in Sections 4.2 and 4.3, we provide
an answer to RQ1 and RQ2.

4.1. The reference scenario

We assume that features associated with our task are as follows: (i) Culinary Education, measured
as the (overall) number of hours spent in training courses with qualified chef trainers, (ii)
Expertise, i.e., the number of years of professional experience, (iii) Language Skills, defined as
the number of foreign languages in which the applicant is proficient, (iv) Culture, measured on
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Table 1
Some tasks associated with the recruitment of a professional chef and their requirements

Task Culinary Expertise Language Culture Creativity
Education Skills

𝜏1 150 5 2 6 7
𝜏2 200 4 2 6 6
𝜏3 300 4 2 7 6

Table 2
Some features associated with categories 𝐶1- 𝐶5

Category ID. Culinary Expertise Language Culture Creativity
Education Skills

𝐶1 250 5 2 8 7
𝐶2 250 3 2 6 5
𝐶3 300 3 1 4 5
𝐶4 100 6 1 4 5
𝐶5 400 3 1 4 5

a scale from 0 (worse) to 10 (best) and which is understood as the ability of preparing different
kind dishes (e.g. fish, meat, vegetarian and so on) in different styles (e.g. Indian, Thai or Italian)
and (v) Creativity, measured on a scale from 0 (worse) to 10 (best). The list of features is, of
course, non-exhaustive. We suppose that each feature is associated with a plausible range: for
instance, in Table 1, we consider three potential tasks and the corresponding requirements.

In the following, due to space limitations, we concentrate only on the task 𝜏1 and we suppose
that five categories exist, namely: Professional Chefs - 𝐶1, who are trained to master culinary art.
Members in 𝐶1 are able to provide creative innovation in menu, preparation and presentation,
Vegan Chefs -𝐶2, specialized in the preparation of plant-based dishes, Pastry Chefs -𝐶3, who are
capable of creating chocolates and pastries, Roast Chefs - 𝐶4, who have expertise in preparing
roasted/braised meats and Fish Chefs - 𝐶5, who are mainly specialized in the preparation of dish
fishes. Each category consists of 100 agents and, thus, the overall number of agents involved in
our experiments is 500. Features associated with categories 𝐶1-𝐶5 are reported in Table 2.

In our scenario, only agents in 𝐶1 are able to fulfill 𝜏1; agents in other categories are, for
different reasons, unable to execute 𝜏1: for instance, the expertise of agents in categories 𝐶2, 𝐶3

and 𝐶5 is not sufficient while agents forming categories 𝐶3-𝐶5 correspond to applicants with a
high level of specialization in the preparation of some specific kind of dishes (e.g., fish-based
dishes) but they are not sufficiently skilled in the preparation of other type of foods and, thus,
agents in these categories showcase an insufficient level of culture.

To simplify discussion we suppose that, through a proper normalization, the performance
𝑓(𝜏1) (see Section 3) of an individual agent as well as the true quality 𝜃𝑙(𝜏1) of a category 𝐶𝑙

(for l = 1 . . . 5) range from 0 to 1. Here, the best performance of an agent can provide (resp., the
highest true quality of a category) is 1.
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Figure 1: Feedback 𝑓(𝜏) provided by the trustee. Fixed Variance Model with 𝜎 = 0.05

4.2. A comparison of category-based search with random-based search and
direct-experience search

In our first experiment, we compare three strategies to search for a trustee, namely: a) Random-
Based Search: here, the trustor selects, uniformly at random, a trustee to execute 𝜏1. The trustor
measures the performance 𝑓(𝜏1) provided by the trustee in the execution of 𝜏1 . b) Category-
Based Search: here, the trustor considers only agents in the most appropriate category (which
in our reference scenario coincides with 𝐶1); as suggested in [7], the trustor selects, uniformly
at random, one of the agents in 𝐶1 to act as trustee. Once again, the trustor measures the
performance 𝑓(𝜏1) provided by the trustee in the execution of 𝜏1. (c) Direct-Experience Search:
we suppose that the trustor consults up to 𝐵 agents in the community, being 𝐵 a fixed integer
called budget. The trustor records the performance of each consulted agent but it does not
memorize its category (it may be that the trustor is unable to perceive/understand the trustee’s
category). At the end of this procedure, the trustor selects as trustee the agent providing the
highest performance 𝑓(𝜏1) among all consulted agents. The Direct-Experience Search strategy
can be regarded as an evolution of the Random-Based Search strategy in which the trustor
learns from its past interactions it uses its knowledge to spot the trustee. Here, the budget 𝐵
regulates the duration of the learning activity the trustor pursues.

In our experimental setting, we considered two values of 𝐵, namely 𝐵 = 10 and 𝐵 = 30 and
we discuss only results in the Fixed Variance Model with 𝜎 = 0.05 and 𝜎 = 0.15. We applied
the Random-Based, the Category-Based and the Direct-Experience Search strategies 20 times; a
sketch of the probability density function (pdf) of 𝑓(𝜏1) for each strategy is shown in Figure 1
and 2.

As expected, Category-Based Search performs consistently better than the Random-Search
one. In addition, the standard deviation of 𝑓(𝜏1) in Category-Based Search is much smaller than
that observed in the Random-Based strategy and such a behaviour depends on the different
degree of matching of categories 𝐶1-𝐶5 with the task 𝜏1: in other words, if the trustee is in 𝐶1,
the performances it provides are constantly very good; in contrast, in Random-Based Search
strategy, the measured performance may significantly fluctuate on the basis of the category to
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Figure 2: Feedback 𝑓(𝜏) provided by the trustee. Fixed Variance Model with 𝜎 = 0.15

which the trustee belongs to and this explains oscillations in 𝑓(𝜏1).
The analysis of the Direct-Experience Search strategy offers many interesting insights which

are valid for both 𝜎 = 0.05 and 𝜎 = 0.15. Firstly, notice that if 𝐵 = 10, then the Direct-
Experience Search strategy achieves significantly better performances than the Random-Based
strategy, which indicates that an even short learning phase yields tangible benefits. If𝐵 increases,
the trustor is able to see a larger number of agents before making its decision and, in particular,
if 𝐵 is sufficiently large, then the trustor might encounter the best performing agent 𝑎⋆ in the
whole community. In this case, the Direct-Experience strategy would outperform the Category-
Based Search strategy: in fact, in the Category-Based strategy, the trustor chooses, uniformly at
random, one of the agents in 𝐶1 which provides a performance worse than (or equal to) 𝑎⋆. In
short, for large values of 𝐵, the Direct-Experience strategy achieves performances which are
comparable and, in some cases, even better than those we would obtain in the Category-Based
strategy, as shown in Figure 1 and 2. However, the budget 𝐵 has the meaning of a cost, i.e., it is
associated with the time the trustor has to wait before it chooses the trustee and, thus, in many
practical scenarios, the trustor has to make its decisions as quick as possible.

It is also instructive to consider a further strategy, called Mixed-Based Search, which combines
the Random-Based Search strategy with the Category-Based Search strategy.

In Mixed-Based Search, we assume the existence of a warm-up phase in which the trustor
selects the trustee by means of the Random-Based Search strategy; unlike the Direct-Experience
Search strategy, the trustor collects not only 𝑓(𝜏1) but it also records the category of the
trustee. In this way, the trustor is able to identify (after, hopefully, a small number of steps) the
category with the highest true quality, i.e., 𝐶1. From that point onward, the trustor switches to
a Category-Based strategy and it selects only agents from 𝐶1. From a practical standpoint, we
suppose that a performance 𝑓(𝜏1) ≥ 0.6 is classified as an indicator of good performance (in
short, positive signal); as soon as the trustor has collected 2 positive signals, it makes a decision
on the best performing category and it switches to the Category-Based Search strategy.

We are interested at estimating, through simulations, the length ℓ of the warm-up phase, i.e.,
the number of agents that the trustor has to contact before switching to the Category-Based
search strategy. In Figure 3 and 4 we plot the pdf of ℓ.
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Figure 3: Probability Density Function of the Warm-up length (ℓ) in the Mixed-Search strategy. Fixed
Variance Model with 𝜎 = 0.05

Figure 4: Probability Density Function of the Warm-up length (ℓ) in the Mixed-Search strategy. Fixed
Variance Model with 𝜎 = 0.15

Here, the variance 𝜎 has a minor impact and we notice that, the pdf achieves its largest value
at ℓ ≃ 10, i.e., 10 iterations are generally sufficient to identify the best performing category.

4.3. The rate of convergence of our algorithm

We conclude our study by investigating how the Fixed Variance Model and the Random Variance
model influence the rate at which our algorithm estimates the true quality 𝜃𝑙(𝜏) of a category.

To make exposition of experimental outcomes simple, we suppose that 𝜃𝑙 = 1 (which models
a scenario in which agents in 𝐶1 showcase an exceptionally high ability in executing 𝜏1).

We considered the Fixed Variance Model with 𝜎 ∈ {0.05, 0.1, 0.15} and the Random Variance
Model in which 𝜎 is uniformly distributed in [0.01, 0.3].

We investigated how 𝜃̂𝑙(𝜏) varied as function of the number 𝑁 of queried agents; obtained
results are reported in Figure 5.

The main conclusions we can draw from our experiment are as follows:
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Figure 5: Variation of 𝜃̂𝑙(𝜏) as function of 𝑁 .

1. Individual agent variability (modelled through the parameter 𝜎) greatly affects the rate at
which 𝜃̂𝑙(𝜏) converges to 𝜃𝑙(𝜏). Specifically, Figure 5 suggests that less than 5 iterations
are enough to guarantee that |𝜃̂𝑙(𝜏) − 𝜃𝑙(𝜏)| < 10−2 if 𝜎 = 0.05. In addition, as 𝜎
gets larger and larger, we highlight more and more fluctuations in 𝜃̂𝑙(𝜏): as an example,
if 𝜎 = 0.15 (green line), we highlight the largest fluctuation in 𝜃̂𝑙(𝜏) and, at a visual
inspection, at least 𝑁 = 30 queries are needed to achieve a significant reduction in
|𝜃̂𝑙(𝜏)− 𝜃𝑙(𝜏)|.

2. An interesting case occurs in the Random Variance Model: in some iterations of the
algorithm, agents with a small variability are selected (i.e., we would sample agents with
𝜎 ≃ 0.01) while in other cases agent with a larger variability are selected (here 𝜎 ≃ 0.3).
Overall, agents with small variability fully balance agents with high variability and, thus,
the algorithm converges to 𝜃𝑙(𝜏) (red line) generally faster than the case 𝜎 = 0.1 (orange
line) and 𝜎 = 0.15 (green line).

5. Conclusions

Although highly populated networks are a particularly useful environment for agents’ collabo-
ration, the very nature of these networks may represent a drawback for trust formation, given
the lack of data for evaluating the huge number of possible partners. Many contributions in the
literature [8, 18] showed that category-based evaluations and inferential processes represent a
remarkable solution for trust assessment, since they allow agents to generalize from trust in
individuals to trust in their category and vice versa, basing on their observable features. On that
note, we cared about stressing the tight relationship between trust and the specific task, target
of the trust itself. With the purpose of investigating the role of agents’ categories, we considered
a simulated scenario, testing in particular the performance of a category-based evaluation, with
respect to a random-based search - which it is easily outperformed - and a direct-experience
one, showing that, in case of little direct experience, categories grant a better result. Moreover,
we proved that, if not available, it is possible to estimate the category’s true quality 𝜃𝑙(𝜏) in a
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reasonably short amount of time. Future research will attempt to test these findings on a real
data set.
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