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Abstract. Encoding practical knowledge about everyday activities has proven dif-
ficult, and is a limiting factor in the progress of autonomous robotics. Learning ap-
proaches, e.g. imitation learning from human data, have been used as a way to cir-
cumvent this difficulty. While such approaches are on the right track, they require
comprehensive knowledge modelling about the data present in records of activity
episodes, and about the skills one attempts to have the robot learn. We provide a
list of competency questions such knowledge modelling should answer, summarize
some recent developments in this direction, and finish with a few open problems.
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1. Motivation: the Challenge of “Knowing How”

Despite research interest into autonomous robot systems, progress in this field is slow.
It takes considerable effort to teach a robot tasks which appear simple to a human, e.g.
cracking an egg, and therefore autonomous robotic helpers for households or care facil-
ities remain only a distant possibility. It is difficult to make explicit the practical knowl-
edge of how to perform everyday tasks – it may be easy to walk, but is definitely hard
to program a robot to do it. Recent development efforts attempt to elicit such knowledge
indirectly: collect data from humans performing an activity, and use it to learn a model
for inferring parameters or heuristics for organizing an activity’s structure. Alternatively,
learning may use data collected from other robots’ attempts to perform the task.

We think such approaches are broadly correct, but we insist on the necessity to de-
velop introspectable, formalized knowledge representations to guide them. The problem
with machine learning, as a growing body of research demonstrates, is its tendency to
learn shortcuts from idiosyncracies of the training data rather than the function intended
by the human developer [1], a fact exacerbated by the opacity of some machine learned
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models. For a cyber-physical system acting in the real world however, it is crucial that
the system is amenable to introspection and verification – it cannot be trusted otherwise.

Some of the authors of this paper are actively working on the development of an
infrastructure to gather, store, and query information about activity episodes2. An episode
is recorded in our infrastructure as a Narratively-Enabled Episodic Memory (NEEM).
We highlight the “narrative” part: a rich level of semantics on top of the records of raw
signals is necessary if such records are to be useful as training data, and we outline in
this paper that the semantics should clarify what problems and tasks the data are about.

We begin with a list of competency questions that, ideally, knowledge modelling for
autonomous robots should be able to answer. In particular, being able to answer such
questions helps to acquire knowledge via learning and to transfer it between agents.

1. What are the appropriate behaviors for a task in this situation? Most tasks can
be executed in different ways but not all are equally acceptable by humans: wast-
ing of resources, very fast/slow movements, breaking of proxemic rules, caus-
ing danger are all behavioral factors that an ideal robot should take into account.
Appropriateness is often cultural and contextual.

2. What kind of knowledge is necessary to achieve a task? Planning how to exe-
cute a task generally requires different types of knowledge: possible and allowed
actions, likely consequences, factual and typical location of items, procedural
“flair” (e.g. controller parametrizations), expectations about other agents, etc.

3. What does a particular system believe to be true? This kind of questions are
important to explain why a system makes certain decisions, why it implements
them in a certain way, and why the resulting behavior is justified or not.

4. What knowledge can be transferred between agents? It is important to under-
stand what items of knowledge may be transferable, the level of abstraction at
which they are most useful, and how to adapt them to the capabilities of the
robot. Declarative knowledge can often be copied as-is, but practical knowledge
is usually agent-dependent. Yet, it is expected that there is a level of commonality
among different agents that have the “same skills”.

5. How is experience/training data gathered? This question aims to make explicit
what data is relevant and what events are considered (un)likely. Given the sensi-
tivity of machine learning models to biases in their training data, it is not just the
availability of the data that is important; we need data about the data.

2. Machine Learning for Robots: a Very Brief Overview

There is a very vast literature about applying machine learning techniques to a variety
of applications, including robotics. We will only summarize a few results in this section,
with a focus on how they relate to the competency questions we have identified. We
believe the research results we discuss are typical of the larger situation in the field.

2.1. What are the appropriate behaviors for a task in a given situation?

Ethics and AI is itself a hot topic for philosophical and vision papers, but we are not
aware of any results tackling this with machine learning. To our knowledge, there are no
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datasets or benchmarks for what would be moral or culturally appropriate behavior – i.e.,
the usual way of pumping out results from machine learning is not applicable –, and this
is clearly a situation that needs principled modelling of what norms on behavior are, how
they can be acquired from humans, and how they might be verified in a learned system.

2.2. What kind of knowledge is necessary to achieve a task?

In an attempt to provide more generalizable action concepts, carefully engineered curric-
ula were used to help an agent learn how to act in a simulated pixelworld [2] or a tabletop
setting with objects of simple shapes [3]. “Simpler actions” are used to build complex
ones. While a promising approach, the curricula are too specific to the demonstrations in
the papers. E.g., what the authors call “containment” in the pixelworld will not give an
agent a general intuition about containment. Also, capability reasoning is limited in this
approach. The robot cannot identify subactions it would need to master first, the way a
human can see they need a way to control objects if the task is to position them.

2.3. What does a particular system believe to be true?

A recent report surveys opportunities for knowledge graph techniques for explainable
AI [4]. Briefly, current XAI techniques focus too much on feature correlations and offer
little support for reasoning, e.g. causal reasoning. To this we would add that, in so far as
an XAI technique relies on approximating a model making decisions with a simpler one,
faithfulness issues appear. Therefore, it is important that an agent’s knowledge about its
own situation, at least at a level of abstraction that determines the actions it initiates, be
represented in an interpretable way.

2.4. What knowledge can be transferred between agents?

The correspondence problem – e.g. different body shapes – is well known in imitation
learning and approaches to adjust trajectories from a human teacher to a robot student
exist [5]. However, the robot is dependent on the engineer to provide such trajectory ad-
justments, which may change when a new task needs to be learned. A deeper understand-
ing of skills, their effects and physical requirements, is needed to autonomously reason
about heuristics to tackle the correspondence problem.

2.5. How is experience/training data gathered?

Unfortunately many papers tend to not put much weight on this issue and its implica-
tions for what a robot learns. E.g. a claim is made that, via imitation learning, a robot is
taught to kick a stationary ball forward [6]. The result is impressive given the difference
between human and robot, but a skill hasn’t been learned yet: the training data contains
only humans who start facing the ball, and who successfully kick it. Additional effort is
necessary to learn how to adapt what is imitated to new circumstances [5], but this new
training process is liable to introduce error via unexamined biases in the training data [1].



3. Knowledge Transfer Toward Robots

Knowledge representation and reasoning in autonomous robot control is a fairly exten-
sive field of research with developments in both service and industrial robotics. Olivares-
Alarcos et al. provide a comprehensive comparison of different approaches [7]. We will
further focus in this section on what has been already done to support learning and
knowledge transfer towards robots.

An immediate problem is that knowledge is often implicitly encoded, e.g. in the con-
trol system of the robot or in physical models for simulation, raising the question of how
to organize such heterogeneous information sources in a coherent knowledge base [8].
KnowRob [9,10] and Perception and Manipulation Knowledge (PMK) [11] are two ex-
amples of systems attempting to do so, by presenting themselves to their users via a
logic-based query interface where logical expressions are grounded in subsymbolic pro-
cedures, e.g. robot localization algorithms giving probability distributions for location.

The need for a distributed knowledge service where experiential data for robots
could be pooled and queried on demand has become clear in recent years. Fundamental
work has been done in the RoboEarth project [12] where Rapyuta, a cloud-robotics plat-
form, was developed [13], allowing the delegation of computationally heavy tasks into
the cloud platform. It also provided the robots with access to a knowledge repository
including task knowledge. Another example of a cloud-robotics platform is openEASE
which attempts to provide a cloud storage for experiential knowledge [14]. openEASE
stores activity episodes as heterogeneous data sets including symbolic descriptions of
activities and quantitative data recorded during the activity, allowing robots to extract
knowledge from stored situations that are, by some relevant metric, similar to the situa-
tions they face. The increased control over the training data allows the robot to formalize
its own learning problem and curate the dataset so that it is appropriate to the task.

In order for a repository of episodic memories to be useful as a generator of training
data or even a “cheat sheet” to suggest ready-made plans and parametrizations to the
robot, it should be able to answer several questions such as, is there any episode from
a situation similar to the one a robot wants to learn about? If so, how many episodes
are matched? Can the performance in the recorded episode be adapted to the current
situation? Some of these questions are addressed in the works presented in [15,16].

To judge similarity of episodes, information present in a recorded episode should
also allow answering questions such as what are the entities in the environment, what are
their initial states, what are the sensors the robot/environment has, what type of sensors
can be used to perceive the environment in the current situation [11].

As we have previously mentioned in our discussion of learning approaches for
robots, it should be possible to store episodes of failure as well, both to understand what
kind of failures can happen, when they do, and how to recover from them. This requires
an ontological characterization of failure, its causal mechanisms, its impact on other ac-
tivities the robot might perform, and what the criteria for successful failure handling are.
These questions are addressed in the work presented in [17]

Stored episodes must also contain information relevant for the task and motion plan-
ning (TAMP) modules of a robot, such as: 1) the appropriate interaction parameters (fric-
tion, slip, maximum force) required by physics-based motion planners to correctly in-
teract with rigid bodies; 2) the spatial relations (on, inside, right, etc.) between the ob-
jects in a cluttered scenario; 3) the feasibility of actions due to geometric issues like arm



reachability or collisions; 4) the feasibility of actions due to object features (e.g., over-
weight objects); 5) the geometric constrains that limit the motion planner space; 6) action
constraints regarding the interaction with objects; and 7) the initial scene for the planner
regarding for instance the potential grasp poses. Knowledge can play a significant role to
guide the TAMP by answering all aforementioned points [18,11].

4. Further Open Problems for a Formal Modelling of Knowledge Transfer

In this paper we have discussed knowledge transfer as a means to acquire and adapt suit-
able behaviors to execute tasks, and summarized some existing work into achieving this
with knowledge-enabled approaches. If we look at this issue in full generality, the dis-
cussion in Sec. 3 leaves out important aspects which are hard to model, and that we an-
ticipated in part in the list of competency questions of Sec. 1. In complex socio-technical
systems, e.g. hospitals or retirement homes, it is not enough to learn how to accomplish a
task in a standard way. When to act, how to adapt to surrounding events, how to interact
with nearby humans are important aspects to the success of an activity, but these aspects
are culturally dependent and rely on a shared understanding of the situation.

Some formal proposals have pushed forward in terms of a trait-based theory of cul-
ture [19]. The idea, supported by studies in anthropology, is to model culture as a combi-
nation of four types of traits: knowledge traits about factual knowledge, behavioral traits
about recognized ways to behave, rule traits about general principles and guidelines and
interpretation traits, i.e. functions that take as input perception and previous situations
(among other things) and output the most common way to make sense of this information
in the given cultural group; e.g. being in a restaurant if people are distributed over tables
eating food, or in an emergency state when a certain sound is heard or there is a person
lying unresponsive on the street. These approaches are far from being implemented, and
the actual development of suitable cultural knowledge remains an open problem.

Another issue illustrated by our competency questions is modelling capabilities. In-
tuitively speaking, a capability is something which, if an agent possesses it, allows that
agent to perform some kind of tasks. Complexity comes from finding a principled, for-
mal answer about what kind of entity a capability is, what other entities it might depend
on and in what way, and how it might compare to analogous capabilities of different
agents. A simple capability model might be obtained by mapping sets of the robot’s hard-
ware parts to tasks; an example of this in the multi-robot, outdoor setting can be seen
in the SHERPA project [20]. However, different robots may use different hardware for
performing similar tasks, and defective hardware may be worked around by a process of
adaptation. When adding new tasks to the repertoire of a robot it is not clear, without a
deeper modelling of capabilities and how they relate to each other, how such a simple,
hardware-to-tasks mapping should be updated – in particular, not when the new tasks
don’t use the old ones, with the old parametrizations, as subroutines.
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