
CPR: Collaborative Pairwise Ranking for Online List
Recommendations

Saurabh Gupta

Amazon

Seattle, USA

gsaur@amazon.com

Bharathan Balaji

Amazon

Seattle, USA

Runfei Luo

Amazon

Seattle, USA

ABSTRACT
Classical approaches to recommendation systems like collaborative

filtering learn a static model given the user historic interaction data.

These approaches do not perform well in dynamic environments

where the sets of users and items are continually changing. Users

convey their preferences implicitly by providing feedback in the

form of clicks, views and ratings, as they interact with the system.

Utilizing this feedback in an online manner is crucial for building a

good user experience. Contextual bandit algorithms provide a suit-

able framework for learning user preferences online by balancing

the explore-exploit trade-off. Much of the bandit literature focuses

on choosing one item, we extend these algorithms to recommend a

list of actions by assuming a cascade click model. We provide an

empirical study across different scenarios to showcase the benefits

of collaborative online learning and exploration. Finally, we pro-

pose a novel algorithm – Collaborative Pairwise Ranking (CPR),

that uses pairwise differentiable gradient descent to perform online

ranking collaboratively. We showcase that this approach outper-

forms state-of-the-art collaborative bandit approaches, especially

in the presence of noisy feedback common in practical scenarios.

CCS CONCEPTS
• Information systems→ Recommender systems; Personal-
ization; Learning to rank.

KEYWORDS
collaborative pairwise ranking, contextual bandits, online learning

to rank, ranking, recommender systems

Reference Format:
Saurabh Gupta, Bharathan Balaji, and Runfei Luo. 2020. CPR: Collaborative

Pairwise Ranking for Online List Recommendations. In 3rd Workshop on
Online Recommender Systems and User Modeling (ORSUM 2020), in conjunc-
tion with the 14th ACM Conference on Recommender Systems, September 25th,
2020, Virtual Event, Brazil.

1 INTRODUCTION
Recommendation systems are essential for modern online websites

and mobile applications, as they are known to promote sales and

service use substantially. Eighty percent of movies watched on Net-

flix came from recommendations [8], sixty percent of video clicks

came from home page recommendation in YouTube [5]. Many rec-

ommender systems are formulated in a one-way fashion: given

ORSUM@ACM RecSys 2020, September 25th, 2020, Virtual Event, Brazil
Copyright© 2020 for this paper by its authors. Use permitted under Creative Commons

License Attribution 4.0 International (CC BY 4.0).

sufficient historical data, a supervised learning model (such as lin-

ear regression [7] or factorization machines [19]), is trained to

capture the underlying preferences of users over items. In dynamic

recommendation domains, such as news, ads and videos, active

users and the set of items to recommend change frequently, hence

classical collaborative filtering type methods [20], such as matrix

factorization, break down [2].

Such dynamic scenarios can be modeled as interactive learning

systems where the model can quickly adapt to user preferences on

new content through interactions like clicks, views and purchases.

However, interactive learning systems pose several challenges. First,
since the system gets feedback only for the items that it recom-

mends, it needs to decide how to balance the exploration and ex-

ploitation - whether to explore user preferences by recommending

different items or to exploit what has been learned so far. Second,
what type of predictive model should be used (e.g., linear, decision

tree, neural networks, etc.). Some algorithms, such as LinUCB [15],

constrain the predictive model to be linear. One also needs to decide

whether the latent features based on interaction data of users and

items should be learned alongside using the observable features.

Third, in many practical cases a list of items is to be recommended.

This becomes an online ranking problem, which brings its own chal-

lenges of learning the optimal ordering of items using a ranking

loss.

Contextual bandits are a popular choice in interactive recom-

mendation systems. Li et al. [15] designed the LinUCB algorithm

to learn an item selection strategy based on user clicks to mini-

mize the long term regret using the principle of optimism under

uncertainty. hLinUCB [23] extended the algorithm to learn latent

interaction features of users and items online. Online Learning to

Rank (OLTR) algorithms provide an alternative formulation, where

the ranking model provides a list of items to the user at each impres-

sion, and then immediately learns from observed user interactions

and updates its behavior accordingly [18]. However, OLTR methods

cannot do collaborative learning across users.

Inspired by the recent works which pose recommendation as

an interactive learning problem [18, 23, 26], we explore contextual

bandit and OLTR frameworks by applying the algorithms for list

recommendations in the presence of noisy feedback, and extend

them to overcome their respective shortcomings. Our contributions

are:

• We introduce the cascading collaborative bandits algorithm

that extends hLinUCB from top-1 to top-k recommendations

using a cascade click model [4].

• We propose Collaborative Pairwise Ranking (CPR), an OLTR

algorithm that learns the latent features of users and items.

ORSUM@ACM RecSys 2020, September 25th, 2020, Virtual Event, Brazil S. Gupta, et al.

CPR is a pairwise approach that optimizes the ranking di-

rectly, whereas cascading bandits are point-wise.

• We evaluate CPR with varying feedback noise levels in dy-

namic environments, where users and items arrive over time.

CPR outperforms state-of-the-art algorithms in our experi-

ments.

To our knowledge, CPR is the first latent factor based OLTR

method and this work is the first study making comparisons of

OLTR and bandit algorithms in a dynamic list recommendation

setting.

2 RELATEDWORK
Contextual bandits have been widely used to model interactive

recommendations [1, 15, 28]. They learn the policy based on the

estimated reward of each action using contextual information. Lin-

UCB [15] selects an action with the highest upper confidence bound

and achieves optimal regret. KernelUCB [14] extends the linear re-

ward function to kernel functions. These approaches recommend

a single item only. Cascading bandits [28] extend LinUCB and

LinTS [1] to do top-K recommendations. hLinUCB [23] combines

the benefits of online latent factor learning with the efficient explo-

ration strategies of bandits to learn hidden features of users and

items. Several other works perform online matrix factorization with

bandit exploration [12, 17, 27] for single item recommendation. In

contrast to prior bandit approaches, CPR uses pairwise ranking for

top-K recommendations.

OLTR approaches learn user preferences by approaching op-

timization as a dueling bandit problem [26]. They estimate the

gradient of the model w.r.t. user satisfaction by comparing the

current model to sampled variations of the model. Several works

have used Dueling Bandit Gradient Descent (DBGD) as a basis and

extended upon it. Notably, Hofmann et al. [11] have proposed a

method that guides exploration by only sampling variations that

seem promising from historical interaction data. DBGD uses inter-

leaving to determine the gradient direction from the resulting set

of models. Multileave Gradient Descent (MGD) [21] replaces the

interleaving of DBGD with multileaving methods. Pairwise Differ-

entiable Gradient Descent (PDGD) [18] improves DBGD and MGD

in terms of unbiased estimation using pairwise item preferences

and allows for any differentiable ranking model. In addition, PDGD

does not rely on sampling models for exploration, but instead mod-

els rankings as Plackett-Luce distributions over items. This allows

PDGD to be explorative in cases where it is uncertain about specific

items. However, PDGD cannot do collaborative learning across

users. CPR extends the PDGD algorithm to collaboratively learn

latent user/items features.

3 PROBLEM FORMULATION
Suppose we have a finite set D = {1, . . . ,D} of D total items. Let

Πk = {(a1, . . . ,ak) : a1, . . . ,ak ∈ D,ai , aj for any {i , j} be the
set of all k-rankings of distinct items from D, where k is a fixed

number representing the size of ranked list. The learning agent

takes a feature representation d of an item i as input and outputs a

score using a function fθu (di). Here, u represents the user index.

At time t , C candidate item vectorsC = {di |i ∈ D} are revealed to

the learning agent. The learning agent scores each of these items

and produces a ranked list of k items At = (a1, . . . ,ak) ∈ Π
k
. The

user u is assumed to scan this list top-down, click on relevant items

and then stop. The agent is only provided with partial feedback
based on the position of items clicked. The objective of the agent at

time t is to find the parameters θu , so that sorting the items by their

scores in descending order maximizes the Normalized Discounted

Cumulative Gain (NDCG) [24].We assume no historical information

is available at the beginning. The agent can update its parameters θ
based on the feedback from each user interaction. It needs to balance

exploration and exploitation in as few interactions as possible to

minimize poor user experience due to irrelevant recommendations.

3.1 Baseline Algorithms
Linear Cascading Bandits: LinUCB [15] and LinTS [1] assume

that each user u is associated with an unknown preference pa-

rameter θu ∈ Rd . This preference parameter, together with the

given item’s context vector dj ∈ Rd , determines the score of item

j by r j,u = dTj θu + η, where the random noise η is drawn from a

zero-mean Gaussian distribution N (0,σ 2). CascadeLinUCB and

CascadeLinTS [28] extend the former to support top-K recom-

mendation by assuming a cascading click model. The ranked list

is produced by scoring each candidate item and sorting the scores

in descending order. For updating the agent weights, each click

∈ (0, 1) is used as a feedback for the corresponding item. We use

CascadeLinTS and CascadeLinUCB as baselines in our experiments.

Collaborative Cascading Bandits: Contextual bandit algorithms

assume that the learner has access to the features of users and

items ahead of time. This precludes use of collaborative features.

hLinUCB [23] improves upon LinUCB, and learns latent features

for users and items. The learning agent can be represented as:

r j,u = (doj ;d
h
j)

T (θou ;θ
h
u) + η, (1)

where r j,u is the payoff of item j for user u, η is random noise

drawn from a zero-mean Gaussian distribution, and doj and dhj
are the observable and latent item features respectively. θou is the

weights of the model learned for the observable item features, and

θhu is the latent user features. The observable item features doj is

an optional input to the model, and in its absence, the model will

learn only with the latent features of users and items, i.e. θhu and

dhj respectively.

hLinUCB was designed to produce the top-1 recommendation

only. Following Zong et al. [28], we extend hLinUCB to output

top-k recommendations, assuming a cascade model. We refer to

this extension as k-hLinUCB (Algorithm 1). We further create a

variant of k-hLinUCB to produce k-hLinUCB-Greedy, by turning

off the UCB exploration in k-hLinUCB. Analyzing the performance

of this algorithm against k-hLinUCB will help us see the benefits of

exploration. Without exploration, k-hLinUCB-Greedy can be seen

as a form of online matrix factorization [16]. We use k-hLinUCB
and k-hLinUCB-Greedy as baselines for comparison with our

proposed CPR algorithm.

NeuralCollaborative Filtering (NCF) [10] uses neural networks
for collaborative filtering. We use NCF as a baseline to highlight

the trade-offs between expressivity of neural networks with high

representational power and the complexity of frequent re-training

CPR: Collaborative Pairwise Ranking for Online List Recommendations ORSUM@ACM RecSys 2020, September 25th, 2020, Virtual Event, Brazil

in dynamic environments. We use this model in an online setting

where we store the interactions in an experience buffer and train

the model for 10 iterations after every 50 interactions with a batch

size of 512.

Algorithm 1: k-hLinUCB

Input: aдent : a hLinUCB instance

for t = 1 to T do
User u ∼ Uniform(1,U)

for item j = 1 to D do
Rt (j) ← agent.get_score(u, j)

end for
for i = 1 to K do
ati ← arдmaxj ∈[D]−{at

1
, ...,ati−1 }

Rt (j)

end for
// Recommend K ranked items and get feedback

At ← (at
1
, . . . ,atK)

Observe clicksCt
for i = 1 to K do
// Ingest feedback and update weights

agent.observe_feedback(u, j, cit)
end for

end for

Algorithm 2: Collaborative Pairwise Ranking (CPR)

1: Input: Randomly initialized weights θu , γd for all users/items;

predictor f ; learning rate η
2: for t = 1 to T do
3: User u ∼ Uniform(1,U)

4: Dt ← дenerate_candidate_items (u)
5: Rt ← sample_ranked_list (fθu,tγd (.),Dt) // (Eq. 2)
6: ct ← receive_clicks (Rt)
7: ∇fθu,t ← 0
8: ∇fγd,t ← 0 for all d ∈ Rt
9: for di ≻c dj ∈ ct do
10: w ← ρ (di ,dj ,R,D)
11: w ← w × P (di ≻c dj | θu,t ,γi,t ,γj,t)P (dj ≻c di |

θu,t ,γi,t ,γj,t)
12: ∇fθu,t ← ∇fθu,t +w (γi,t − γj,t)
13: ∇fγi,t ← ∇fγi,t +w (θu,t)
14: ∇fγj,t ← ∇fγj,t −w (θu,t)
15: end for
16: θu,t+1 ← θu,t + η∇fθu,t
17: γi,t+1 ← γi,t + η∇fγi,t
18: γj,t+1 ← γj,t + η∇fγj,t
19: end for

4 COLLABORATIVE PAIRWISE RANKING
The original PDGD formulation is designed for document retrieval

where the agent takes a feature representation of a document d
as input and outputs a score using fθ (d). Using PDGD requires

item features from the environment. Moreover, a separate agent

fθu (d) is learned for each user u, which is inefficient because there

is no collaborative knowledge shared across users. Collaborative

Pairwise Ranking (CPR) extends PDGD to learn collaborative user

and item features online. State-of-the-art collaborative filtering

solutions are based on latent factor models, which outperform

traditional content-based methods [3, 13] . Such agents learn ef-

fectively by propagating the user feedback across users and items.

Although CPR can leverage observable user/item features, we leave

its empirical analysis for future work.

CPR optimizes a learning agent fθuγd (u,d), where θu and γd
are the latent features of user u and item d respectively. The aim of

the algorithm is to find the parameters θu and γd for all the users

and items so that sorting the items by their scores in descending

order provides optimal rankings. In our experiments, we assume

the scoring function f to be a dot product between θu and γd , but
the approach can be extended to non-linear models like neural

networks.

Algorithm 2 captures the details of CPR. Given a user u and a

set of candidate items D, a Plackett-Luce model is applied to the

ranking function fθuγd (.) resulting in a distribution over the item

set D:

P (d | D) =
efθuγd (u,d)∑

d ′∈D e
fθuγd′ (u,d

′)
(2)

A ranking R to display to the user u is then created by sampling

from the distribution k times, where after each placement the distri-

bution is re-normalized to prevent duplicate placements. The user

then interacts with the list and may choose to click on some or

none of the items. The algorithm assumes that the clicked items are

preferred over unclicked ones. Since the algorithm does not know

which items were observed, it assumes that every item preceding a

clicked item and the first subsequent unclicked item was observed.

We will denote preferences between items inferred from clicks as:

di ≻c dj where di is preferred over dj .
The weights of the model are updated by optimizing pairwise

probabilities over the preference pairs; for each inferred item prefer-

ence di ≻c dj , the probability that the preferred item di is sampled

before dj is sampled is increased:

P (di ≻c dj) =
P (di | D)

P (di | D) + P (dj | D)

=
efθuγi (u,i)

efθuγi (u,i) + e
fθuγj (u, j)

.

(3)

The gradient is estimated as the following weighted sum:

∇f (θ ,γ) ≈
∑

di ≻cdj

ρ (di ,dj ,R,D)[∇P (di ≻c dj)].
(4)

Following Oosterhuis and de Rijke [18], we use a reweighing

function ρ (di ,dj ,R,D) to make the gradient unbiased w.r.t the

item pair preferences. ρ uses the reverse pair ranking: R∗ (di ,dj ,R),
which is the same ranking R but with items di and dj swapped.
The reweighing function ρ (equation 5) is shown to be stable and

produces an unbiased gradient [18]. Lines 12-18 of Algorithm 2

show the gradient update equations.

ρ (di ,dj ,R,D) =
P (R∗ (di ,dj ,R) | D)

P (R | D) + P (R∗ (di ,dj ,R) | D)
(5)

ORSUM@ACM RecSys 2020, September 25th, 2020, Virtual Event, Brazil S. Gupta, et al.

CPR has some notable benefits over collaborative cascading ban-

dit algorithms like k-hLinUCB. Firstly, CPR uses a pairwise ranking

loss to order the items. It directly optimizes for the ordering of a

particular pair according to user feedback. Cascading bandits, on

the other hand, use a regression target - click or no click to optimize

the models and hence rank each item independently according to

its score. Secondly, CPR can use any differentiable model as a pre-

dictor, including non-linear models like neural networks. And lastly,

the explore-exploit trade-off in CPR is taken care of implicitly by

sampling from the Plackett-Luce distribution. CPR does not main-

tain a separate covariance matrix for each user/item to model the

uncertainty in weights, as done by most bandit algorithms. Hence,

CPR has a lot less parameters than cascading bandits.

5 EXPERIMENTS
5.1 Dataset and Interactive Setup
We evaluate the algorithms on a real world recommendation dataset

- MovieLens 100K [9]. This movie rating dataset has been widely

used to evaluate collaborative filtering algorithms [6, 12, 22, 25].

It has a total of 100K ratings given by 943 users for 1682 items.

The ratings were given on a scale of 1-5 stars. We adopt the setup

used by Kawale et al. [12] to evaluate an interactive learning agent

on a static dataset of the ratings matrix. Specifically, at the 0
th

interaction round, no entry of the reward matrix has been revealed.

At every round t, we randomly sample one of the users present in

the data to interact with the system; this can be a user the system

has already interacted with in previous rounds (warm-start), or

a new one (cold-start). We generate a candidate list of items by

randomly sampling L movies from the movies that this user has

rated. If a user has rated less than L movies, then we use all of the

rated movies as candidates. We do not show all the rated movies as

candidates on purpose to simulate a highly dynamic environment

in the beginning, with cold users and items being exposed over

time. The learning agent decides which items to show to the user. It

ranks the L items and presents the top K items to the user in every

round.

We simulate users following the OLTR setup of Oosterhuis and

de Rijke [18]. At each item, the user decides whether to click it or

not, modeled as a probability conditioned on the true relevance

label R : P (click = 1 | R). After a click has occurred, the userâĂŹs

information need may be satisfied and they may stop viewing

items. The probability of a user stopping after a click is modeled

as P (stop = 1 | click = 1,R). As shown in Table 1, we use three

different click model probability configurations to represent three

different types of users – 1) a perfect user, who clicks on all relevant

items and does not stop browsing until they have visited all of the

items. This type of users contribute the least noise, as they make

no mistakes and the feedback is entirely accurate. 2) a navigational
user, who is very likely to click on the first highly relevant item that

they see and stop there. 3) an informational user, who sometimes

clicks on irrelevant items and contributes a significant amount of

noise in click feedback.

We use Cumulative (online) Normalized Discounted Cumulative

Gain (NDCG) to evaluate the learning agents. Cumulative NDCG

is calculated by summing NDCG scores from successive iterations

with a discount factor γ set to 0.99995. We apply the discount factor

Table 1: Instantiations of CascadingClickModels as used for
simulating user behavior in experiments

P (click = 1 | R) P (stop = 1 | click = 1,R)

Rating 1 2 3 4 5 1 2 3 4 5

perf 0 .2 .4 .8 1 0 0 0 0 0

nav .05 .3 .5 .7 .95 .2 .3 .5 .7 .9

inf .4 .6 .7 .8 .9 .1 .2 .3 .4 .5

Table 2: Cumulative NDCG@10 for different agents and
clicks models after 30,000 impressions. The numbers are
scaled down by a factor of 10,000 for easier readability.

Perf Nav Inf

CPR 1.137 .908 .894

k-hLinUCB 1.090 .881 .859

k-hLinUCB-Greedy 1.104 .826 .819

CascadeLinUCB 1.076 .849 .845

CascadeLinTS 1.032 .841 .829

NCF .926 .802 .773

Random .790 .769 .751

to reduce the weightage of interactions that happen later in the

process as compared to the cold start interactions. In other words,

we want to weigh the cold start interactions more. This will capture

the user experience more accurately. We use a high discount factor

so that the contributions of interactions later in the process do

not fade away. Another measure of interest can be the cumulative

regret over T rounds, RT = E[
∑T
1
rA∗,θ ∗ − rAt ,θt], where A

∗
is the

optimal ranking and At is the ranking that the agent showed at

time t . We refrain from evaluating agents using this metric as it

is rank unaware. If we include position weights into account for

calculating the reward, then cumulative regret becomes similar to

cumulative NDCG and hence we just report the latter.

5.2 Experimental runs
We simulate runs consisting of 30,000 impressions; each run was re-

peated 10 times with different random seeds under each of the three

click models. We set η = 0.1 and use uniform random initialization

of weights. We fix the size of recommended items list to k = 10.

For collaborative models, we keep the embedding dimension fixed

to 16. To generate the candidate list, we randomly sample L = 50

movies from the list of movies that the user has rated in the dataset.

5.3 Results
As seen in Figure 1 and Table 2, CPR consistently outperforms

other agents in terms of the user experience which is measured

by Online NDCG. In the perfect click model assumption, we see

that the second best performer is k-hLinUCB-Greedy. Through this

observation, we conclude that in case of a perfect scenario with

no noise, the agent can be confident about what it has learned and

need not continuously explore. Initial exploration in k-hLinUCB-

Greedy is implicit due to random initialization of the parameters.

CPR: Collaborative Pairwise Ranking for Online List Recommendations ORSUM@ACM RecSys 2020, September 25th, 2020, Virtual Event, Brazil

10000 20000 30000
Impressions

2000

4000

6000

8000

10000

12000

C
um

ul
at

iv
e

N
D

C
G

Perfect

10000 20000 30000
Impressions

Navigational

10000 20000 30000
Impressions

Informational

Random k-hLinUCB k-hLinUCB-Greedy CPR NCF CascadeLinUCB CascadeLinTS

Figure 1: Performance (online NDCG@10) of different agents on MovieLens-100K under three different click model assump-
tions - Perfect, Navigational and Informational. The Random agent recommends items at random from the candidate list.

We also observe that k-hLinUCB, which learns latent features of

users and items, performs consistently better than CascadeLinUCB

and CascadeLinTS. The latter rely on usingmovie genres as features.

As we move towards navigational and informational models, which

are noisier, we can see the benefits of exploration. Performance

of k-hLinUCB gets better, while k-hLinUCB-Greedy starts getting

worse.

The Neural Collaborative Filtering performs worse than all other

algorithms, which can be attributed to three reasons: 1) It does

not react to user feedback instantly, as we update the model after

every 50 interactions. 2) The model ranks the items greedily, so

the performance gets worse in the noisier feedback environments,

i.e., with navigational and informational simulated users. 3) The

NCF model is the most complex of all the models and might require

more data or better hyperparameter tuning.

6 CONCLUSION AND FUTUREWORK
We study the problem of interactive recommender systems, that

can react quickly to changes in dynamic environments by capturing

user feedback online. We introduced a novel OLTR learning algo-

rithm called Collaborative Pairwise Ranking (CPR), which learns

latent features of users and items to perform effective collaborative

learning across users. We provide an extensive study of CPR with

other state-of-the-art approaches in contextual and collaborative

bandits, and their extensions to ranking. We showcase the superior

performance of CPR on a real-world dataset, by simulating a noisy

interactive environment.

For future work, we want to explore more complex model ar-

chitectures, like neural networks and how to train them efficiently

in an online manner. We also plan to incorporate different click

modeling solutions for more accurate and realistic user behavior

modeling.

REFERENCES
[1] Shipra Agrawal and Navin Goyal. 2012. Analysis of thompson sampling for the

multi-armed bandit problem. In Conference on learning theory. 39–1.

[2] Marko Balabanović and Yoav Shoham. 1997. Fab: content-based, collaborative

recommendation. Commun. ACM 40, 3 (1997), 66–72.

[3] Robert M Bell and Yehuda Koren. 2007. Lessons from the Netflix prize challenge.

Acm Sigkdd Explorations Newsletter 9, 2 (2007), 75–79.
[4] Nick Craswell, Onno Zoeter, Michael Taylor, and Bill Ramsey. 2008. An ex-

perimental comparison of click position-bias models. In Proceedings of the 2008
international conference on web search and data mining. 87–94.

[5] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet,

Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake Livingston, and Dasarathi

Sampath. 2010. The YouTube Video Recommendation System. In Proceedings of
the Fourth ACM Conference on Recommender Systems (Barcelona, Spain) (RecSys
âĂŹ10). Association for Computing Machinery, New York, NY, USA, 293âĂŞ296.

https://doi.org/10.1145/1864708.1864770

[6] Luis M De Campos, Juan M Fernández-Luna, Juan F Huete, and Miguel A Rueda-

Morales. 2010. Combining content-based and collaborative recommendations: A

hybrid approach based on Bayesian networks. International journal of approximate
reasoning 51, 7 (2010), 785–799.

[7] Souvik Debnath, Niloy Ganguly, and Pabitra Mitra. 2008. Feature weighting

in content based recommendation system using social network analysis. In

Proceedings of the 17th international conference on World Wide Web. 1041–1042.
[8] Carlos A. Gomez-Uribe and Neil Hunt. 2016. The Netflix Recommender System:

Algorithms, Business Value, and Innovation. ACM Trans. Manage. Inf. Syst. 6, 4,
Article 13 (Dec. 2016), 19 pages. https://doi.org/10.1145/2843948

[9] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History

and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1–19.

[10] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[11] Katja Hofmann, Anne Schuth, Shimon Whiteson, and Maarten De Rijke. 2013.

Reusing historical interaction data for faster online learning to rank for IR. In

Proceedings of the sixth ACM international conference on Web search and data
mining. 183–192.

[12] Jaya Kawale, Hung H Bui, Branislav Kveton, Long Tran-Thanh, and Sanjay

Chawla. 2015. Efficient Thompson Sampling for Online Matrix-Factorization

Recommendation. In Advances in Neural Information Processing Systems 28,
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (Eds.). Curran

Associates, Inc., 1297–1305.

[13] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-

niques for recommender systems. Computer 42, 8 (2009), 30–37.
[14] Andreas Krause and Cheng S Ong. 2011. Contextual gaussian process bandit

optimization. In Advances in neural information processing systems. 2447–2455.
[15] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A Contextual-

Bandit Approach to Personalized News Article Recommendation. In Proceedings
of the 19th International Conference on World Wide Web (Raleigh, North Carolina,

USA) (WWW âĂŹ10). Association for Computing Machinery, New York, NY,

USA, 661âĂŞ670. https://doi.org/10.1145/1772690.1772758

[16] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. 2010. Online

Learning forMatrix Factorization and Sparse Coding. Journal of Machine Learning

https://doi.org/10.1145/1864708.1864770
https://doi.org/10.1145/2843948
https://doi.org/10.1145/1772690.1772758

ORSUM@ACM RecSys 2020, September 25th, 2020, Virtual Event, Brazil S. Gupta, et al.

Research 11, 2 (2010), 19–60. http://jmlr.org/papers/v11/mairal10a.html

[17] Atsuyoshi Nakamura. 2015. A ucb-like strategy of collaborative filtering. In Asian
Conference on Machine Learning. 315–329.

[18] Harrie Oosterhuis and Maarten de Rijke. 2018. Differentiable unbiased online

learning to rank. In Proceedings of the 27th ACM International Conference on
Information and Knowledge Management. 1293–1302.

[19] Steffen Rendle. 2010. Factorization machines. In 2010 IEEE International Confer-
ence on Data Mining. IEEE, 995–1000.

[20] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John

Riedl. 1994. GroupLens: an open architecture for collaborative filtering of netnews.

In Proceedings of the 1994 ACM conference on Computer supported cooperative
work. 175–186.

[21] Anne Schuth, Harrie Oosterhuis, Shimon Whiteson, and Maarten de Rijke. 2016.

Multileave gradient descent for fast online learning to rank. In Proceedings of the
Ninth ACM International Conference on Web Search and Data Mining. 457–466.

[22] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. 2015.

Autorec: Autoencoders meet collaborative filtering. In Proceedings of the 24th
international conference on World Wide Web. 111–112.

[23] Huazheng Wang, Qingyun Wu, and Hongning Wang. 2016. Learning hidden

features for contextual bandits. In Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management. 1633–1642.

[24] Yining Wang, Liwei Wang, Yuanzhi Li, Di He, Wei Chen, and Tie-Yan Liu. 2013. A

theoretical analysis of NDCG ranking measures. In Proceedings of the 26th annual
conference on learning theory (COLT 2013), Vol. 8. 6.

[25] Bin Xu, Jiajun Bu, Chun Chen, and Deng Cai. 2012. An exploration of improving

collaborative recommender systems via user-item subgroups. In Proceedings of
the 21st international conference on World Wide Web. 21–30.

[26] Yisong Yue and Thorsten Joachims. 2009. Interactively optimizing information

retrieval systems as a dueling bandits problem. In Proceedings of the 26th Annual
International Conference on Machine Learning. 1201–1208.

[27] Xiaoxue Zhao, Weinan Zhang, and Jun Wang. 2013. Interactive collaborative

filtering. In Proceedings of the 22nd ACM international conference on Information
& Knowledge Management. 1411–1420.

[28] Shi Zong, Hao Ni, Kenny Sung, Nan Rosemary Ke, Zheng Wen, and Branislav

Kveton. 2016. Cascading bandits for large-scale recommendation problems. arXiv
preprint arXiv:1603.05359 (2016).

http://jmlr.org/papers/v11/mairal10a.html

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 Baseline Algorithms

	4 Collaborative Pairwise Ranking
	5 Experiments
	5.1 Dataset and Interactive Setup
	5.2 Experimental runs
	5.3 Results

	6 Conclusion and Future Work
	References

