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Abstract: Semi-supervised learning is characterized by
using the additional information from the unlabeled data.
In this paper, we compare two semi-supervised algorithms
for deep neural networks on a large real-world malware
dataset. Specifically, we evaluate the performance of
a rather straightforward method called Pseudo-labeling,
which uses unlabeled samples, classified with high con-
fidence, as if they were the actual labels. The second ap-
proach is based on an idea to increase the consistency of
the network’s prediction under altered circumstances. We
implemented such an algorithm called Π-model, which
compares outputs with different data augmentation and
different dropout setting. As a baseline, we also provide
results of the same deep network, trained in the fully su-
pervised mode using only the labeled data. We analyze the
prediction accuracy of the algorithms in relation to the size
of the labeled part of the training dataset.

1 Introduction

One of the application domains that pay the most attention
to the progress of and new developments in machine learn-
ing is malware detection. Vendors of antivirus software
cannot keep up with the increasing number of malicious
programs and their increasingly sophisticated obfuscation
and polymorphism without using more and more advanced
machine learning methods, most importantly, methods for
anomaly detection, classification and pattern recognition.

The most successful machine learning methods for clas-
sification and pattern recognition definitely include arti-
ficial neural networks (ANN), especially deep networks.
However, they have a high number of degrees of free-
dom, thus requiring a large amount of labeled training
data, whereas most of the data for malware detection is
unlabeled because its labeling requires expensive involve-
ment of human experts. One possible way how to tackle
the lack of training data is semi-supervised learning. In a
narrow sense, this means supervised learning that simul-
taneously to labels also uses some information from addi-
tional unlabeled data, in a broad sense any combination of
supervised learning and unlabeled data, e.g., unsupervised
learning followed by supervised learning. In the context of
malware detection, however, semi-supervised ANN learn-
ing is only emerging [20, 21]. The work in progress re-
ported in this paper is a small contribution to it. It restricts
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attention only to two methods of semi-supervised ANN
learning, approaches not relying on neural networks are
outside its scope.

The next section briefly reviews using ANN in malware
detection and the overlapping area of network intrusion
detection. In Section 3, several important methods for
semi-supervised ANN learning are recalled, two of which
have been implemented for our research. The core Sec-
tion 4 describes several experiments with a real-world mal-
ware dataset, and reports their results.

2 Neural Networks in Malware and
Network Intrusion Detection

As malware detection is strongly interconnected with and
closely related to network intrusion detection, using ANN
will be reviewed here in both areas. Probably the first
proposal to use neural networks in them was in 1990 by
Lunt [15] and was implemented two years later [4] in a
network trained on inputs from audit log files.

The authors of [25] employed user commands as in-
put, but rather than trying to learn benign and malicious
command sequences, they were detecting anomalies in fre-
quency histograms of user commands calculated for each
user.

The paper by Cannady [3] summarised ANN advan-
tages and disadvantages for misuse detection. As the two
main advantages, the flexibility with respect to incomplete,
distorted and noisy data, and the generalization ability
are viewed, whereas as the main disadvantage, the ANN
black-box nature.

In the late 1990s and early 2000s, self-organizing maps
were quite popular in this context [2, 5, 24]. In particular,
Depren et al. [5] used a hierarchical model where misuse
detection based on self-organizing maps (SOMs) was cou-
pled with random forest-based rule system to provide not
only high precision, but also some sort of explanation.

Much research has been devoted to comparing differ-
ent kinds of ANN, or more generally, different classifiers
including one or more kinds of ANN, on real-world mal-
ware detection or intrusion detection data. Probably the
most popular among such data is an extensive intrusion de-
tection dataset that was used at the 1999 KDD Cup [29].
Zhang et al. [33] compared five different kinds of ANN.
Mukkamala et al. [19] compared a multilayer perceptron
(MLP) with support vector machines.

Among more recent ANN applications to malware and
network intrusion detection, [14] should be mentioned for



using synthetically generated attack samples to train an
MLP, as well as [30] for a malware detection with recur-
rent networks. Expectedly, the kinds of ANN applied to
these two areas during the last decade are most often deep
networks [1, 7, 10]. In [16], deep learning was used to-
gether with spectral clustering to improve the detection
rate of low frequency network attacks. ability to process
raw inputs and learn their own features. Saxe et al. [26]
employed a convolutional neural network (CNN) to ex-
tract features that were subsequently used as the input for
an MLP detecting malicious activities. CNNs seem to be
particularly suitable to learn spatial features of network
traffic [31, 32]. In [31], a CNN was in addition combined
with a long short term memory learning temporal features
from multiple network packets.

To our best knowledge, there were so far only two
particular ANN applications to malware or network in-
trusion detection that included semi-supervised learning
in the narrow sense. In [20], various settings of semi-
supervised ladder networks (see Section 3) were compared
on the above mentioned intrusion detection dataset [29].
In [21] (cf. also the thesis [27]), skipgram networks [17]
extended with semi-supervised learning based on Pseudo-
labels (see Section 3) were used for Android malware de-
tection. Skipgrams are neural networks embedding large
sets of structured non-numeric data into low-dimensional
vector spaces. Whereas in [17], skipgrams were pro-
posed for the embedding of text (word2vec), the input set
in [21] is the set of rooted subgraphs around every node
of three dependency graphs representing the API depen-
dencies, permission dependencies, and information source
and sink dependencies of the considered Android appli-
cation. However, skipgrams were not used directly for
malware detection in [21], only for representation learn-
ing of the structured input, whereas the malware detec-
tion itself was performed by a support vector machine. So
far, no semi-supervised neural networks have been used
directly for malware detection, and also none have been
used with unstructured inputs simply listing values of the
evaluated features, which are encountered much more fre-
quently than dependency matrices.

3 Semi-supervised Learning of Neural
Networks

According to the overview paper [22], the following ap-
proaches are most important for semi-supervised learning
of neural networks, especially deep networks:
(i) Pseudo-labels [13], which are ANN predictions of

the correct class for unlabeled data, provided the net-
work has a sufficient confidence in such a prediction.
Formally, a prediction serves as a pseudo-label for an
unlabeled input x if

argmax
c∈C

fc(x)≥ ϑ ∑
c∈C

fc, (1)

where C denotes the set of classes, fc(x) the activity
of the output neuron corresponding to the class c ∈C
for the input x, and ϑ ∈ (0,1) is a given threshold.

(ii) Increasing the consistency of predictions for the same
input between two instances of a neural network
differing through a random perturbation. Such a
perturbation is typically introduced through random
noise or through dropout. The overall loss function
minimized during semi-supervised learning is then
the superposition of the loss of supervised learning
and a loss reflecting the inconsistency of the con-
sidered ANN instances. This approach was first ap-
plied in [23] to ladder networks, which are basically
chained denoising autoencoders. In [12], two similar
kinds of neural networks using this approach to semi-
supervised ANN learning were proposed that can be
viewed as simplifications of ladder networks. The
first kind, called Π-model, evaluates both randomly
differing ANN instances on each minibatch of data.
The second kind, called temporal ensembling, eval-
uates only one of them and then uses its predictions
in the inconsistency loss. As a compensation, predic-
tions from multiple previous network evaluations are
aggregated into an ensemble prediction.

(iii) Due to targets changing only once per epoch, tem-
poral ensembling becomes unwieldy when learning
large datasets. To overcome this problem, an ap-
proach called mean teacher has been proposed in
[28]. Instead of aggregating predictions, it aggregates
weights, more precisely, averages them.

(iv) In [18], the most sophisticated among the four con-
sidered approaches has been proposed, called virtual
adversarial training, due to using a loss function pro-
posed by Goodfellow et al. to train networks against
adversarial inputs [8], and known as adversarial loss:

Ladv(x,θ) = D[q(·|x), p(·|x+ radv;θ)] (2)
where radv = arg max

‖r‖≤ε

D[q(·|x), p(·|x+ r;θ)], (3)

In (2)–(3), q(·|x) represents our knowledge of the true
conditional distribution of labels given a particular in-
put x, whereas p(·|x;θ) represents the corresponding
distribution implied by the neural network for partic-
ular values of their parameters θ , ε > 0 and D is some
non-negative function on pairs of probability distribu-
tion, such as cross entropy, which was used in [18].
And the term “virtual” refers to the fact that in su-
pervised learning, this loss needs to be minimized on
unlabeled inputs instead on adversarial ones

So far, we have managed to implement the first two of
those approaches, the second in both variants Π-model and
temporal ensembling. Some details of our implementation
are given below.



3.1 Our Implementation of ANN Learning

Most parts of the two algorithms we used share the same
implementation. Fundamentally, they only differ in the
way they compute the unsupervised component of the loss
function. Firstly, both methods use the same MLP ar-
chitecture with ReLU as the activation function in the
hidden layers and utilize the same optimizing algorithm
Adam [11] with the initial learning rate set to 0.001,
β1 = 0.99, and β2 = 0.999. As was shown above, the
optimized loss function is defined as a weighted sum of
supervised and unsupervised loss L = LS +w(t)LU . The
weight w(t) depends on the ratio between the number of
labeled and all data, and the current epoch. Following a
proposal in [22], we ramp up the value of the weight using
a Gaussian curve:w(t) = w max

|L |
|L |+|U | exp

(
−5(1− t)2

)
,

where t = max( e
ru
,1), e is number of the current epoch,ru

is the length of the rump up period and wmax is a pa-
rameter specifying the maximum weight. Increasing the
weight of the unsupervised loss during the training is nec-
essary as the network needs to learn to classify the su-
pervised data first. Eventually, it can learn to incorporate
the unlabeled information as well. Similarly, at the later
phase of the training, the learning rate and the β1 param-
eter of the Adam optimizer are decreased to improve the
exploitation:lre = wd lre−1 and β1 = 0.4wd + 0.5, where
wd = exp

(
−12.5t2

)
,t = max( e

rd
,1) and rd is the length of

the ramp down period. We also included a type of elitism
to select the resulting model with the lowest total loss per
epoch calculated with the maximal weight for the unsuper-
vised component instead of a weight in the current epoch.

The unsupervised loss in the Pseudo-labeling algorithm
is calculated using cross-entropy between network’s pre-
dictions and pseudo-labels, but only for predictions with
confidence above a specified threshold ϑ (cf. (1)). We
compute the vector of pseudo-labels y′ for every data sam-
ple x using the corresponding network output f (x) in the
following manner:

y′i =
{

1 if i = argmaxi′ fi′(x)
0 otherwise (4)

Then the resulting formula based on cross entropy for the
unsupervised loss component LU of a particular data sam-
ple x is:

LU (x) =−
|C|

∑
i=1

y′i log(yi), (5)

where |C| is the number of classes.
We also implemented two variants of the consistency

preserving, self-ensembling algorithms: The Π-model and
the temporal ensembling. Both approaches use mean
squared error (MSE) to compute unsupervised loss. What
is different is the target for which MSE is evaluated. The
Π-model compares two predictions of the same state of
the network using different inputs and different dropped

out neurons. To augment the data for the second predic-
tion, we multiplied the input feature vector with a noise
sampled from normal distribution N (1, σ2). We chose to
multiply the data with the noise instead of adding it be-
cause it is invariant to the differing variances of the indi-
vidual features.

The second variant, temporal ensembling, compares the
prediction of the network in the current epoch with the pre-
dictions obtained in the previous epoch. The dropout and
data augmentation can be used as well. So the unsuper-
vised loss LU for this approach is calculated as follows:

LU (x) =
|C|

∑
i=1

(yi− ỹi)
2, (6)

where y is the current output of the network in the training
step and ỹ is the output of the network in a different state
or for augmented input.

Our open-source implementation is publicly available at
https://github.com/c0zzy/semi-supervised-ann.

3.2 Validation using a simple artificial experiment

Firstly, we tried our implementations of two semi-super-
vised methods mentioned above and a fully supervised
baseline on a two-dimensional example. We chose sim-
ple generated moon-shaped data, which are often used for
testing of classification or clustering algorithms. The data
consist of two classes, that are linearly inseparable but do
not overlap so that the classification can be performed with
no error. The advantage is that we can easily visualize the
classification decision border in two dimensions and ex-
amine the behavior of the algorithm. For every method in
this experiment, we used the same MLP architecture with
two hidden layers, the first having 64 neurons and the sec-
ond 32 neurons.

In Figure 1, we present two different arrangements of
labeled and unlabeled data, each solved by the fully su-
pervised learning, Pseudo-labeling, and Π-model. In the
first experiment, we tested the ability of the algorithm to
learn from a small amount of data, there are two moon-
shaped clusters, each having 1000 samples, where only 16
of each are labeled. We let each network to train for 300
epochs. Even though the supervised learning had avail-
able samples distributed over the whole cluster, it was not
able to learn the correct shape using only 32 samples. The
Pseudo-labeling algorithm could not improve the results
using the unlabeled data. However, the results of the Π-
model are notably better as it managed to capture the moon
shape quite well.

In the second experiment, we tried if the algorithms can
deal with a drift in the training data. This time we used
clusters with 10,000 samples and labeled only 1000 points
that lie near the center, for each class. We trained the net-
works for 100 epochs as having it run longer did not im-
prove the results of either of the methods. The supervised



algorithm could only use the labeled data that are linearly
separable. So it learned to classify the labeled data with
zero error, and we present it only as a baseline for compar-
ison. Pseudo-labeling again failed to use the information
contained in the unlabeled data, and its accuracy was sim-
ilar to the fully supervised learning. Also in this task, the
Π-model was able to use the smoothness of the data and
performed the best of three methods. To quantify the re-
sults, we summarized the prediction accuracy tested on the
whole clusters in Table 1.

Table 1: A summary of test accuracy on the moonshaped
data. The table compares Pseudo-labeling, Π-model, and
fully supervised learning on a test data covering the whole
moon cluster. There are results of two experiments. In
the first one, only 16 points out of 1000 were uniformly
selected and labeled for both classes. In the second, we
labeled 1000 points in the center out of 10,000 samples
for both classes.

Method Test case
16 pts uniform 1000 pts in center

Supervised 89.1 % 46.2 %
Pseudo-label 85.4 % 42.9 %

Π-model 95.7 % 76.0 %

Completing these experiments, we observed that the re-
sults of the Pseudo-labeling correspond to the idea behind
the algorithm. It makes the network’s decision more con-
fident as it uses the interim predictions as if they were the
true labels. Also, the decision border did not seem to con-
verge to a stable finale state throughout the learning. It
kept shifting closer to one or the other class, roughly in
the range where the confidence of the supervised learning
was low. We managed to get decent results using the Π-
model, and it proved to be able to capture the smooth dis-
tribution of data. However, the algorithm was susceptible
to inappropriate setting of hyperparameters. It often hap-
pened that one class became dominant during the training,
and the Π-model could not recover from that.

4 Experiments with a Real-World Malware
Dataset

4.1 Data

We tested our implementation using a large real-world
malware detection dataset containing anonymized data
provided by the company Avast. The data concern Win-
dows Portable Executables (PE) files, which were col-
lected during 380 weeks. It consists of 540 real-valued
features derived directly from the binary PE files. Unfor-
tunately, the company did not reveal the semantics of the
individual features. Each file is labeled with one of the five
classes: malware, adware, infected, potentially unwanted

program, and clean. There were some features with zero
or very low variance in the dataset. Therefore we used
principal component analysis (PCA) to reduce the dimen-
sionality of the feature space and speed up the training.
First, we min-max normalized the data between 0 and 1,
and then we projected them to the subspace spanned by
the 128 main components while keeping more than 99 %
of the explained variance.

4.2 Experimental Design

At first, we analyzed the hyperparameters of each algo-
rithm and optimized those that we expected to have the
greatest impact on the results during early tests of our
implementation. We chose the data from five weeks be-
tween 50th and 55th week. We performed stratified ran-
dom sampling and selected 10,000 training and 5000 test-
ing records. We kept only 5 % of the labeled from the
training set, and the rest remained unlabeled. Using this
data, we evaluated the classification accuracy for various
sets of hyperparameters.

For the Pseudo-labeling algorithm, we optimized the
threshold ϑ and the maximal weight wmax for the unsu-
pervised loss component. For the consistency preserving
algorithms, we optimized the standard deviation σ of the
noise used in data augmentation and again the parameter
wmax. Furthermore, we repeated the search of parameters
for all six combinations of variants of the algorithm, which
were: Π-model or temporal ensembling and whether to
use dropout, augmentation or both. We took the parame-
ters from the following sets:

wmax ∈ {0.1,1,2,5,10,15,20,30,50},
σ ∈ {0.01,0.05,0.1,0.15,0.2,0.3,0.5},
ϑ ∈ {0.5,0.7,0.8,0.9,0.95,0.98,0.99}.

However, because of the high time requirements, we re-
stricted attention among the two similar models proposed
in [12] only to the Π-model. For the same reason, we did
not perform the full factorial search through all possible
combinations. Instead we optimized only one parame-
ter at time, keeping others on default values which were:
wmax = 30, σ = 0.1 and ϑ = 0.9. Among all these tuned
hyperparameters, the most critical from the point of view
of the predictive accuracy were the maximal weight, and
the standard deviation of the Π-model noise. The rest of
the hyperparameters we used as stated in the original pa-
pers or we modified them slightly according to our obser-
vations because the domain of our dataset is entirely differ-
ent. The final values of the chosen hyperparameters used
in experiments follow in Table 2. For the fully supervised
training, we enabled the dropout and the data augmenta-
tion in the same manner as with the Π-model. In every
experiment, we used the same MLP architecture with five
layers and the topology 128-96-64-32-5.

Then we measured the performance of the Pseudo-
labeling, Π-model, and the purely supervised baseline



(a) Supervised (b) Supervised

(c) Pseudo-labeling (d) Pseudo-labeling

(e) Π-model (f) Π-model

Figure 1: A comparison of the decision border of three algorithms on simple moon-shaped data. The decision border
is visualized as a transition from blue to red. The saturation expresses the classification confidence of the network. The
labeled data are shown as cyan or orange circles, while unlabeled are drawn in gray. On the left side, we randomly labeled
only 16 samples out of 2000 from each class. On the right side, we labeled 1000 samples close to the center out of 5000
from each class.



Table 2: Final setting of model hyperparameters.

Common
Number of training epochs 100
Training batch size 100
Weight ramp-up period ru 70
Optimizer ramp-down period rd 20
Initial learning rate 0.001

Pseudo-Labeling
Pseudo-labeling threshold ϑ 0.9
Maximal weight wmax 10

Consistency preserving
Consistency preserving variant Π-model
Use dropout Yes
Use data augmentation Yes
Maximal weight wmax 20
Standard deviation σ of the noise 0.2

for different proportions of labeled data. We varied
the ratio r = |L | : (|L | + |U |) in the set of values
{0.5%,1%,2%,5%,10%,25%,50%,75%}. As the train-
ing union of labeled and unlabeled data, we took 10,000
stratified samples from 5 consequent weeks and split them
in the considered ratios. Then we trained 20 separate in-
stances of the network and calculated the average accu-
racy on a stratified test set of size 5000 for them. We re-
peated this experiment for four arbitrarily chosen distinct
groups of weeks: 1-5, 51-55, 101-105, and 151-155. We
also evaluated the performance of trained networks on the
data from all of the following weeks. This is particularly
interesting from the point of view of the considered appli-
cation domain. Because the structure of malware changes
over time, the prediction accuracy of the newer data tends
to get worse. That means that if semi-supervised learn-
ing could overcome this problem, it could be beneficial.
Therefore, we tried to take the data from newer periods
than the labeled weeks as the unlabeled training set. So
we trained the network using labeled data together with
unlabeled data from several weeks later. Unfortunately,
we did not manage to outperform the standard fully su-
pervised learning this way using any of the implemented
methods, so we refrained from it. We present the results
of these experiments in the following section.

4.3 Results and Their Discussion

Using the hyperparameters setting presented in the previ-
ous section, we measured the average test accuracy of 20
training runs of our three implementations in relation to
the proportion of the labeled data in the training data set.
The results can be found in Table 3. We can see that the
performance of the fully supervised learning depends on
the number of labeled data as it is the only learning source

for the network. The results of the semi-supervised algo-
rithms Pseudo-labeling and Π-model are more interesting.
Both algorithms bring a slight increase in the accuracy of
low ratios of the labels. The most noticeable improvement
is when there are only around 1 or 2 % of labels. When
the ratio gets above 10 %, the accuracy gain is negligi-
ble, and for the higher values, the semi-supervised effect
is even negative. Also, it seems that Π-model outperforms
Pseudo-labeling, as its accuracy is higher in most of the
measurements.

To verify our observations, we tested whether the dis-
tributions of predictive accuracy achieved by the three
considered methods significantly differ from each other.
Those distributions are for the considered ratios of labeled
to all data shown in Figure 2, but – due to lack of space
– only for the networks trained on data from the first five
weeks. Firstly, we applied the Friedman test [6] to reject
the hypothesis that all three methods can be considered
equal. Then we performed a post hoc pairwise test to find
out among which of them there were differences at the 5
% level of family-wise significance with Holm [9] correc-
tion. We took the data from all of the following weeks and
evaluated the accuracy for all considered ratios of labeled
and all data, training for each of them 20 models. A signif-
icant difference between the compared methods was found
for 80 among the 96 compared pairs corresponding to the
32 combinations of training weeks and ratios. We summa-
rized the results in Table 4, where we compared the aver-
age accuracy for the three implemented methods. When
we consider only tests with ratio up to 5 %, where the im-
provement was visible, then the Pseudo-labeling was sig-
nificantly better than supervised learning in 3 cases and the
Π-model in 11 cases. Pseudo-labeling was significantly
better than Π-model only in 3 out of 14 significant com-
parisons.

We also visualized the progress of the classification ac-
curacy over time for networks trained during three arbi-
trarily chosen sequences of 5 contiguous weeks in Fig-
ure 3. To capture the variance of the results, we plotted
three quartiles. Because the accuracy oscillated greatly
through the individual weeks, we used a moving average
with a window size of five weeks to smooth the curves
(the accuracy during the first five weeks, for which a win-
dow of that size has not been available, is dashed). We
can see that both semi-supervised algorithms slightly im-
proved the accuracy of the network on the roughly first
30 weeks. The Pseudo-labeling is around 1 or 2 % bet-
ter than supervised learning, while Π-model gets another
1 or 2 % above the Pseudo-labeling. However, all three
trained networks share the trend of decreasing predictive
accuracy during the early weeks when the moving aver-
age has been applied, though the number of such weeks
is network-specific. After around 40 weeks, the results of
all three methods are very similar. As the properties of the
data shift over time, the overall results on the data beyond
50 weeks got considerably worse and fluctuated more for
all methods.



Table 3: Comparison of the Π-model, Pseudo-labeling and the supervised baseline, for different ratios of labeled and all
data. The table depicts the percentage of the average testing accuracy in four different periods. The S columns contain
the results of the supervised baseline, the ∆ Ps and ∆ Π columns show the difference using pseudo-labeling and Π-model,
respectively.

Ratio Weeks: 1–5 Weeks: 51–55 Weeks: 101–105 Weeks: 151–155
S ∆ Ps ∆ Π S ∆ Ps ∆ Π S ∆ Ps ∆ Π S ∆ Ps ∆ Π

0.5 % 67.9 +0.4 +3.1 63.9 +2.8 +3.5 56.8 +5.2 +6.8 67.6 +0.3 +1.9
1 % 71.0 +1.7 +4.5 67.1 +5.0 +6.4 61.8 +6.9 +9.0 70.3 +5.7 +6.4
2 % 76.8 +1.3 +2.5 73.9 +3.4 +5.7 69.7 +5.9 +6.2 76.6 +1.9 +2.0
5 % 82.4 -0.1 +1.1 82.2 +0.4 +2.4 77.8 +3.7 +3.3 80.4 +0.2 +0.8
10 % 85.1 +0.0 +1.1 86.1 -0.4 +0.8 83.2 +1.0 +1.1 81.7 +0.3 +0.6
25 % 88.3 -0.4 +0.3 89.2 -0.5 +0.1 87.4 +0.7 +0.3 83.1 +0.3 +0.3
50 % 89.9 -0.4 -0.1 90.6 -0.7 +0.0 89.8 -0.3 -0.2 84.2 -0.1 -0.2
75 % 90.4 -0.1 -0.1 91.2 -0.3 -0.3 90.7 -0.1 -0.4 84.4 +0.3 -0.2

100 % 90.9 91.4 91.3 84.8
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Figure 2: Boxplots summarizing the distributions of predictive accuracy achieved by supervised learning (S), pseudo-
labeling (P) and the Π-model (Π) for the considered ratios of labeled to all data and the networks trained on data from the
first five weeks

5 Conclusion

In this paper, we presented an application of semi-super-
vised learning of deep neural networks to malware data.
At the beginning, we recalled the current state of detecting
malware with artificial neural networks and introduced the
principles of neural semi-supervised learning. Then we
outlined four semi-supervised approaches to deep learn-
ing. We covered two semi-supervised algorithms, Pseudo-
labeling and Π-model in more detail and compared them
with the fully supervised baseline. We evaluated the classi-
fication accuracy on a real-world malware dataset divided
to 380 weeks by the time of the first recording of the re-
spective binary file. Despite having been developed for
the classification of image data, the results showed that
both methods could improve the performance of a neural
network on malware data. However, implemented algo-
rithms have the limitation of being beneficial only when
the proportion of labeled data is low, ideally around 1 %.

We have also found that these semi-supervised methods
can increase the accuracy on data newer than the training
set, for which drift in structure is likely to occur, but only
to a certain extent. Based on our experiments, the slightly
more complex algorithm Π-model has got slightly better
results than Pseudo-labeling in most cases.
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Figure 3: The progression of the classification accuracy on later weeks using Pseudo-labeling, Π-model, and fully su-
pervised learning, trained using set with 1 % of labels. For each plot, there are three quartiles visualized; the median is
drawn with a solid line, while the first and the third quartiles are dotted. The curves correspond to the moving average
with the window size of five weeks. The first five dashed weeks are means of all previous weeks. The first five weeks at
the beginning of each plot were used for the training.



Table 4: Multiple comparisons test of three methods for
different ratios of labeled to all data, tested on the data
from all of the following weeks till the end. Each cell
contains a triplet of symbols representing the results of
three post hoc pairwise tests. The order of the comparisons
is: supervised to Pseudo-labeling, supervised to Π-model,
and Pseudo-labeling to Π-model. The dash means that the
difference was not statistically significant and the letters
S, P, and Π mark whether supervised, Pseudo-labeling, or
Π-model were significantly better than the other compared
algorithm.

Ratio Training weeks
1–5 51–55 101–105 151–155

0.5 % P, – , Π P , S , Π P , – , Π P , – , Π

1 % P, – , – S , Π, Π P , – , Π P , Π, Π

2 % S, S , Π S , S , Π P , Π, P S , S , –
5 % – , S , Π – , S , P P , Π, P P , S , Π

10 % – , – , Π P , S , Π S , S , P S , S , Π

25 % P, Π, Π S , S , Π S , P , P S , S , Π

50 % – , Π, Π – , S , Π S , Π, P S , S , Π

75 % S, Π, – S , Π, – S , – , P S , S , Π
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