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Abstract: Analysis of audio signals is widely used and
very effective technique in several domains like health-
care, transportation, and agriculture. In a general process
the output of the feature extraction method results in huge
number of relevant features which may be difficult to pro-
cess. The number of features heavily correlates with the
complexity of the following machine learning method. Di-
mensionality reduction methods have been used success-
fully in recent times in machine learning to reduce com-
plexity and memory usage and improve speed of following
ML algorithms. This paper attempts to compare the state
of the art dimensionality reduction techniques as a build-
ing block of the general process and analyze the usability
of these methods in visualizing large audio datasets.

1 Introduction

With recent advances in machine learning, audio, speech,
and music processing has evolved greatly, with many ap-
plications like searching, clustering, classification, and
tagging becoming more efficient and robust through ma-
chine learning techniques. Well performing dimension-
ality reduction methods have been successfully applied
in many areas of computer science and interdisciplinary
fields.

A very important phenomenon that justifies the use of
such methods is the curse of dimensionality. The ba-
sic idea is that the increase of dimensionality increases
the volume of space, causing the data to become sparse.
Therefore, the amount of data required for a model to
achieve high accuracy and efficiency increases greatly.

Considering audio signals, meaningful features need to
be extracted before applying any dimensionality reduction
method. Using methods for feature extraction like Short
Time Fourier Transformation (STFT), Mel-frequency cep-
stral coefficient (MFCC), or high-level descriptors like
zero-crossing-rate, representative data can be extracted
from the audio data. After extraction these features can
be projected into two-dimensional space for cluster analy-
sis and examination of class separation.

The dataset used is the UrbanSound 8k dataset, contain-
ing 8732 labeled sound excerpts (≤ 4 seconds) of urban
sounds from 10 classes, from which 5 have been used in
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this work: car horn, dog bark, engine idling, gun shot, and
street music [5].

Related work is presented in Section 2, basic mathe-
matical notation used is described in Section 3, while the
different methods of the pipeline are briefly presented in
Section 4. Section 5 contains data about the evaluation
methodology, Section 6 presents the results and conclu-
sions are formulated in Section 7.

The goal of this paper is to find a combination of feature
extraction and dimensionality reduction methods which
can be most efficiently applied to audio data visualization
in 2D and preserve inter-class relations the most.

2 Related Work

A large number of research addresses the problem of map-
ping a collection of sounds into a 2-dimensional map and
examining the results both visually and analytically.

Roma et al. [2] used MFCC and autoencoders as feature
extraction methods and compared PCA, tSNE, Isomap,
MDS, SOM and the Fruchterman-Reingold dimensional-
ity reduction to map the output of the feature extraction
process into 2D.

Fedden [7] used a very similar approach, with only
different methods tried. As far as feature extraction is
concerned, MFCCs and an autoencoder-like architecture
called NSynth were used. PCA, t-SNE, UMAP methods
were used for dimensionality reduction.

Hantrakul et al. [8] implements the usual pipeline of
applying feature extraction, reshaping, then dimensional-
ity reduction into 2D. STFT, MFCC, high-level features
and the Wavenet encoder were used for feature extrac-
tion. PCA, UMAP and t-SNE were the candidates for the
next step. The dataset consisted of different drum sample
sounds. The results were analyzed through external clus-
tering metrics like homogeneity, completeness score and
V-measure, using k-means as clustering method.

Dupont et al. [11] used MFCCs combined with spec-
tral flatness to represent the extracted information from the
audio. PCA, Isomap and t-SNE were chosen for dimen-
sionality reduction. In addition, supervised dimensional-
ity reduction methods were included as well, like LDA
(Linear Discriminant Analysis) and HDA (Heteroscedas-
tic Discriminant Analysis).

Charles Lo’s work [1] is focused on dimensionality re-
duction for music feature extraction. The author used fea-
ture vectors composed of: 13 MFCCs and high-level fea-



tures. Locally Linear Embedding (LLE), Autoencoder, t-
SNE and PCA were used to map into lower dimensions.
The dataset contained 1000 song clips equally distributed
from 10 musical genres. In order to test the results, Gaus-
sian mixture models were implemented to test cluster pu-
rity and supervised classification was also performed with
kNN classifier. tSNE achieved the best classification per-
formance.

3 Basic Notation

Given a dataset of discrete audio signals, we de-
note the i-th recording as x(i)x(i)x(i) and the dataset as
X = {x(1)x(1)x(1),x(2)x(2)x(2), ...,x(N)x(N)x(N)}. The corresponding ground-
truth labels are stored in Y = {y(1),y(2), ...,y(N)}. A single
audio element of the dataset is comprised of a number of
samples: x(i)x(i)x(i) = (x(i)1 ,x(i)2 , ...x(i)M ).

4 Methods

The building blocks of the process used in this work are
presented in the following sections and are also shown on
figure 1. As seen on the figure, a set of discrete audio sig-
nals are transformed trough consecutive methods to result
in a 2D map of datapoints.

Figure 1: Steps of the process

4.1 Band-pass filtering

Applying filtering of some kind before feature extraction
could be justifiable to remove frequency intervals that usu-
ally do not have discriminative power. The simplest such
solution is applying a band-pass filter. A band-pass filter
passes frequencies between a lower limit fL and a higher
limit fH , while rejecting frequencies outside this interval.
Band-pass filters are usually implemented using Butter-
worth filters, as these have maximally flat frequency re-
sponse in the passband.

The following low-cutoff and high-cutoff frequency
pairs have been used as band-pass filter specifications:

1. Low: 1 Hz, High: 10000 Hz

2. Low: 25 Hz, High: 9000 Hz

3. Low: 50 Hz, High: 8500 Hz

4. Low: 100 Hz, High: 8000 Hz

5. Low: 150 Hz, High: 7000 Hz

4.2 Feature Extraction

In order to extract meaningful data, that can be interpreted
by machine learning models, the step of feature extraction
is required. This step also acts as a dimensionality reduc-
tion process, because it transforms a sound segment repre-
sented by hundreds of thousands of samples to a data struc-
ture containing only a few thousand values or less. This is
a crucial step as it enables to apply dimensionality reduc-
tion methods later that will ultimately project the sample
into the lowest dimensionality of just 2 components.

STFT The Short-time Fourier transform (STFT) cap-
tures both temporal and spectral information from a sig-
nal. As a result, the STFT transforms the signal from
time-amplitude representation to time-frequency represen-
tation. Formally, the STFT is calculated by applying the
discrete Fourier transform with a sliding window to over-
lapping segments of the signal. It can be formulated in the
following way:

ST FT{x(i)x(i)x(i)} := S(i)[k,n] =
L−1

∑
m=0

x(i)[n+m]w[m]e− jk 2π
L m

(1)
where w[m] is the window function, L is the window
length, n denotes the frame number and k denotes the fre-
quency in question.

The STFT returns a complex-valued matrix, where
|S[n,k]| is the magnitude of the frequency bin k at time-
frame n.

Mel-scaled STFT As human perception of pitch (fre-
quency) is logarithmic, the Mel-scale is often applied to
the frequency axis of the STFT output. Specifically, the
Mel-scale is linearly spaced below 1000 Hz and turns log-
arithmic afterward.

The Mel-scaled frequency value can be computed from
a frequency( f ) in Hertz using the following equation:

Mel( f ) = 2595 · log10(1+
f

700
) (2)

MFCC Mel Frequency Cepstral coefficients are widely
used in audio and speech recognition, and were introduced
by Paul Mermelstein in 1976 [10]. Overview of the pro-
cess:

1. Take the Short-time Fourier transform of the signal.



2. Apply the Mel filterbank to the power spectra of each
frame, summing the energies in each frequency band.
The Mel filterbank is a set of overlapping triangular
filters.

3. Take the logarithm of the calculated energies.

4. Take the Discrete Cosine Transform (DCT) of the log
filterbank energies, resulting in a so-called cepstrum.
Intuitively, the cepstrum captures information of the
rate of change in frequency bands. The DCT is re-
lated to the DFT (Discrete Fourier Transform). While
DFT uses both sine and cosine functions to express a
function as a sum of these sinusoids, the DCT uses
only cosine functions. Formally (using the DCT-II):

C[k] =
N−1

∑
n=0

x[n] · cos
[

π

N
(n+

1
2
)k
]
, 1≤ k ≤ N

(3)

5. The MFCC coefficients are the resulting DCT coeffi-
cients.

High-level features High level descriptors that capture
temporal or spectral information about the signal are often
used in similar experiments. The following six features
have been used for frame number n:

• Root mean square:

vRMS(n) =

√
∑

L−1
m=0 x[n+m]2

L
(4)

where L is the window length.

• Zero crossing rate:

vZC(n) =
1

2L

L−1

∑
m=0
|sgn(x[n+m])− sgn(x[n+m−1])|

(5)
where L is the window length. The zero crossing rate
is the number of changes of sign in consecutive audio
samples.

• Spectral centroid:

vSC(n) =
∑

K−1
k=0 k · |S[k,n]|2

∑
K−1
k=0 |S[k,n]|2

(6)

The spectral centroid indicates where the center of
mass of the spectrum is located.

• Spectral rolloff:

vSR(n) = i
∣∣∣∣
∑

i
k=0 |S[k,n]|=κ ∑

K−1
k=0 |S[k,n]|

(7)

Spectral rolloff is the frequency below which a spec-
ified percentage of the total spectral energy lies, with
κ denoting the percentage score.

• Spectral bandwidth:

vSS(n) =

√
∑

K−1
k=0 (k− vSC(n))2 · |S[k,n]|2

∑
K−1
k=0 |S[k,n]|2

(8)

The spectral bandwidth is a measure of the average
spread of the spectrum in relation to its centroid.

• Spectral flatness:

vSF(n) =
K
√

∏
K−1
k=0 |S[k,n]|

1
K ∑

K−1
k=0 |S[k,n]|

(9)

The spectral flatness is the ratio of geometric mean
and arithmetic mean of the magnitude spectrum.

4.3 Reshaping methods

After the feature extraction step, the feature set takes the
(N,k,n) form, where N is the size of the dataset, k denotes
the number of frequency bins (or features) and n is the
number of time frames. To be able to perform dimension-
ality reduction on the whole dataset, the feature set needs
to be transformed to a (N,d) form, where d is the size of
a feature vector after the reshaping transformation. Three
such methods have been found in associated papers:

Flattening Stacking consecutive rows horizontally to
form one, long 1-dimensional vector. Using this method, a
feature set of shape (k,n) will take the (1,k×n) form after
the reshaping operation. Used by [8].S11 S12 S13 . . .

S21 S22 S23 . . .
...

. . .

=⇒

[
S11 S12 S13 . . . S1N S21 S22 S23 . . .

]
Aggregation of features over frames: mean, std By
calculating some statistical features across all frames, the
spectrogram can be reduced to one feature vector, where
statistical values (µS - mean of random variable, σS - stan-
dard deviation of random variable) calculated for each fre-
quency band are stacked vertically in a continuous fashion.
Using this method, a feature set of shape (k,n) will take
the (k×A,1) form after the reshaping operation, where A
is the number of statistics calculated. Used by [2], [7],
[11].

S11 S12 S13 . . .
S21 S22 S23 . . .

...
. . .

=⇒


µS1
σS1
µS2
σS2

...

 (10)



Aggregation of features over frames: mean, std, min,
max Similar to the solution above, but with additional
minimum and maximum values calculated for each fre-
quency bin. Used by [1].

4.4 Dimensionality Reduction Methods

Once the data is reshaped, dimensionality reduction is ap-
plied in order to project the data into a lower dimensional
space.

Principal Component Analysis (PCA) Principal Com-
ponent Analyis is a basis transformation that results in a
set of orthogonal basis vectors along which the variance
of the data is maximal.

Calculating PCA involves the following steps:

1. Denote the reshaped dataset with X ∈ RN×d .

2. Standardization: subtract the mean, and divide by the
standard deviation for each feature column. Each col-
umn will a have a mean of 0 and a standard deviation
of 1.

3. Form the covariance matrix of X .

The variance-covariance matrix consists of the vari-
ances of the variables along the main diagonal and
the covariances between each pair of variables in the
other matrix positions. The covariance matrix is sym-
metric, thus it’s diagonalizable.

The covariance matrix is calculated from X using the
following formula:

C =
1

n−1
XT X , C ∈ Rd×d (11)

4. Compute the eigenvectors and eigenvalues of the co-
variance matrix. Formally, the eigendecomposition
of a matrix is described as:

C =V DV−1 (12)

where V is a square matrix whose ith columns repre-
sents the ith eigenvector of C. D is a diagonal matrix
whose diagonal elements represent the eigenvalues of
C.

These eigenvectors are called the principal compo-
nents of the dataset, ie. the axis on which the data is
more dispersed.

5. Sort the eigenvalues and the corresponding eigenvec-
tors in decreasing order.

6. Leave the first d′ number of eigenvalues and their cor-
responding eigenvectors. V

′
= Vi j, 1 ≤ i ≤ d,1 ≤

j ≤ d′

7. The transformed dataset will be:

Xlow_dim = XV
′
, ∈ RN×d′ (13)

t-Stochastic Neighbor Embedding (TSNE) t-SNE is a
nonlinear dimensionality reduction method developed by
Laurens van der Maaten and Geoffrey Hinton in 2008 [9].
t-SNE has the ability to preserve local structure by finding
a distribution that models the neighboring relations of
the data in the original space and mapping this into
lower dimensional embedding (ie.: finding a lower dimen-
sional distribution) while preserving local spatial relations.

Using this probabilistic approach, the first main idea is
that to convert Euclidean distances into conditional prob-
abilities that reflect these spatial similarities. Let P be the
joint probability distribution of the data in high dimen-
sional space, represented by a normal distribution:

p j|i =
1

∑k 6=i exp(− ‖x
(i)x(i)x(i)−x(k)x(k)x(k)‖2

2σ2
i

)
exp(−‖x

(i)x(i)x(i)−x( j)x( j)x( j)‖2

2σ2
i

) (14)

Intuitively, this expresses the conditional probability of xi
picking x j as its neighbor if neighbors were chosen in pro-
portion to their density around xi.

Student t-distribution (with one degree of freedom) Q is
used to model the distribution of the low dimensional data:

qi| j =
(1+‖y(i)− y( j)‖2)−1

∑k 6=i(1+‖y(i)− y(k)‖2)−1
(15)

Due to difficult optimization, t-SNE introduces a modi-
fied version of the P distribution, a symmetric probability
density function, defined as:

pi j =
pi| j + p j|i

2n
(16)

t-SNE uses gradient descent to minimise the error be-
tween the two distributions and adds a decaying momen-
tum term as an optimization. The authors introduce the
Kullback-Leibler (KL) divergence as the cost (loss) func-
tion:

C = KL(P||Q) = ∑
i6= j

pi jlog
pi j

qi j
(17)

The gradient of the cost function is the following:

∂C
∂yi

= 4∑
j
(pi j−qi j)(yi− y j) (18)

In essence, the t-SNE algorithm is based on the follow-
ing steps:

1. Compute pairwise similarities p j|i.

2. Let pi j =
pi| j+p j|i

2n .

3. Randomly sample the low dimensional points from a
Gaussian distribution with small variance (ie.: Y ∼
N(0,10−4I)).

4. Repeat the following steps for T number of iterations:
for t=1 to T do:



(a) Compute low-dimensional similarities qi j.

(b) Compute gradient ∂C
∂y .

(c) Update y(t) = y(t−1) + η
∂C
∂y + α(t)(y(t−1) −

y(t−2)), where η is the learning rate, α the
decaying weight coefficient of the momentum
term.

An important hyperparameter of the t-SNE method
is the perplexity. According to the authors, perplexity
is the measure of the assumed number of neighbors,
i.e. it balances the attention between the local and the
global structure of the dataset. While typical values are
situated between 1 and 50, the optimal perplexity value
is a function of the dataset size, thus manual tuning is
necessary.

Isomap Isomap is a nonlinear dimensionality re-
duction method, belonging to the group of manifold
learning methods [4]. It assumes that the data cannot
be well represented in a subspace, but it can by a manifold.

The steps of the Isomap algorithm are:

1. Construct a weighted neighborhood graph using k-
NN or ε-radius and assign the Euclidean distances
between the nodes to the edge weights.

2. Compute the shortest path between each node us-
ing the Floyd-Warshall or Dijkstra’s algorithm. Con-
struct a distance matrix D from these pairwise
geodesic distances.

3. Apply the multidimensional scaling (MDS) algo-
rithm on the distance matrix calculated above. The
following steps are part of the classical MDS algo-
rithm. Firstly, double centering is applied to the
squared distance matrix, using the centering matrix:
H = I− 1

n eeT , where e is a N · 1 column vector con-
taining 1-s.

B =−1
2

HD2H (19)

4. Calculate the eigendecomposition of B.

B = PΛP−1 (20)

where P contains the eigenvectors and Λ is a diagonal
matrix containing the eigenvalues.

5. The lower dimensional embedding of the datapoints
is given by:

Xlow_dim = Pd′ ·Λ
1
2
d′ (21)

where Λ
1
2
d′ contains the square roots of the d′ largest

eigenvalues, and Pd′ is the matrix containing the
eigenvectors corresponding to the first d′ largest
eigenvalues.

Self Organizing Map (SOM) Self Organizing Maps
(SOMs) were introduced by Finnish professor Teuvo Ko-
honen in 1982 [12]. They are a type of Artificial Neural
Network, that learns a two-dimensional representation of
an input data of arbitrary dimension through an unsuper-
vised learning process. Architecturally, SOMs contain two
types of neurons (nodes): input and map neurons. The
number of input nodes correspond to the dimensionality
of the data, while the number of map nodes are arbitrar-
ily chosen, and are arranged into a rectangular grid (map).
Every input node is connected to every map node, with a
certain weight wi j associated to it.
The learning process can be summarized in the following
way:

1. Randomly initialize all weights.

2. Pick one random sample from the dataset.

3. For each node of the map, calculate the Euclidean
distance between the input vector and the node’s as-
sociated weight vector:

d j(x(i)x(i)x(i)) =
d′

∑
k=1

(x(i)k −w jk)
2 (22)

where d′ is the dimensionality of the input data, x(i) is
the input vector and w jk represents the weight asso-
ciated to the connection between the j-th map node
and the k-th element of the input vector. The node
that produces the smallest distance is called the BMU
(Best Matching Unit).

4. The weights of the BMU, as well as the weights of its
neighboring nodes, are updated. The radius of neigh-
bors to be updated is initially large, but it is reduced
after each iteration.

wt+1
jk = wt

jk +η(t)Tj,BMU (t)(x
(i)
k −wt

jk) (23)

where η(t) is the decaying learning rate, BMU is the
index of the Best Matching Unit and Tj,BMU (t) is the
neighborhood function of the form:

Tj,BMU (t) = e−dist( j,BMU)/2σ(t)2
(24)

If the distance between the two map nodes with in-
dices j and BMU is larger, then the output of the
neighborhood function will be smaller, and the j-th
node will not get a significant update, as opposed to
a closer node. The σ(t) parameter shrinks with time,
considering smaller and smaller neighborhoods.

5. If t exceeds the maximal iteration number, the algo-
rithm stops.

5 Evaluation

For the evaluation of the class separability on the resulting
2D map, external cluster analysis metrics are used to an-
alyze the correspondence between the ground-truth labels
and the results of the clustering algorithm.



5.1 Clustering

K-means is used for clustering, as it performed more pos-
itively during preliminary testing, as opposed to other
methods like hierarchical clustering, DBSCAN or OP-
TICS. The number of centroids was fixed to the number
of classes, namely 5. The algorithm ran 10 times with dif-
ferent centroid seeds.

5.2 Evaluation metrics

We concentrated on using external clustering evaluation
methods that compare the labels assigned by a clustering
algorithm with ground truth labels; similarly to [6], [8].
Notation: TP - number of pairs of points that are in the
same cluster and in the same class, FP - number of pairs of
points that are in the same cluster but in different classes,
TN - number of pairs of points that are in different clusters
and in different classes, FN - number of pairs of points that
are in different clusters but in the same class.

Adjusted Rand Index

RI =
T P+T N

T P+FP+T N +FN
(25)

Fowlkes-Mallows score

FM =

√
T P

T P+FP
· T P

T P+FN
(26)

V-measure It is calculated as the weighted (here β = 1)
harmonic mean between homogeneity (h) and complete-
ness (c), which are also external cluster analysis metrics.
Homogeneity is satisfied when every cluster contains only
data points which are members of a single class. Com-
pleteness is satisfied when all points that are members of
the same class, are also the members of the same cluster.

Vβ =
(1+β ) ·h · c
(β ·h)+ c

(27)

The evaluation of the results with these supervised met-
rics measures the extent to which audio recordings of the
same class get projected to points that are close to each
other and form spatially coherent, independent clusters.

5.3 Distribution of data

Five categories of sound samples were used from the Ur-
banSound8k dataset: car horn (150 samples), dog bark
(150 samples), street music (142 samples), gunshot (150
samples), idling engine (150 samples).

The recordings of each category contain recordings of
varying noise levels, environmental sounds and overlap-
ping sounds.

5.4 Hyperparameters

A specific hyperparameter-configuration notation is intro-
duced for presenting the results, which is formatted in the
following way: F-FE-NrBin-Reshape-DimRed-Hyperp.
The meaning of the symbols and the possible values of
the hyperparameters are described below:

• F: value between 0 and 5. 0 means no filtering, 1-5
encode the cutoff frequency pairs identified in section
4.1.

• FE: identifier of feature extraction method: STFT,
Mel scaled STFT (mel), MFCCs or high-level fea-
tures (feat).

• NrBin: number of frequency bins: 13, 20, 40 bins.
Only valid for the STFT, Mel-STFT, MFCC methods.

• Reshape: identifier of reshaping method as described
in section 4.3:

1. Flattening.

2. Calculating mean and standard deviation across
frames.

3. Calculating mean, standard deviation, mini-
mum and maximum values across frames.

• DimRed: Dimensionality reduction method, with 4
possibilities and possible further parameters for some
methods (Hyperp):

1. PCA - no further hyperparameter was identified,
that would significantly influence the outcome.

2. t-SNE - identified hyperparameter: Perplexity.
Values to be tested: 20, 40, 60.

3. Isomap - identified hyperparameter: Number of
neighbors. Values to be tested: 20, 40, 60.

4. SOM - identified hyperparameter: Sigma. Val-
ues to be tested: 1, 2, 4.

All possible value combinations for the different hyper-
parameters described above generates 1500 different runs.
Gridsearch was executed over the whole set of combina-
tions. Each configuration was run 3 times to ease the ef-
fects of random components.

6 Results

Table 1., Table 5., Table 6. show the top 10, the middle
10 and the worst 10 results according to the mean of the
clustering indices. Similarly, Table 2., Table 3., Table 4
show the best 3 results for each dimensionality reduction
method. As one can see processes containing MFCC as
feature extraction method and TSNE as dimensionality
reduction method performed the best and are presented in
the top results. Not just the top 10 but the best 26 results
are all variations of this configuration. Although several



Figure 2: Best result.

Figure 3: Second best result.

researchers didn’t find significant differences between the
performance of audio feature extraction methods e.g.:
[3], our research showed the superiority of MFCC-TSNE
combination compared to other examined combinations.
MFCC outperforms the STFT and the high level statistical
feature extraction (which are more general methods for
not only audio, but other signals as well). TSNE performs
well with every feature extraction method: it occupies the
top 5 results for each feature extraction method in our
experiments.

Configuration Σ ARI FM V-m
5-mfcc-40-2-tsne-20 0.525 0.466 0.579 0.530
4-mfcc-40-2-tsne-20 0.510 0.455 0.568 0.506
4-mfcc-40-3-tsne-20 0.496 0.439 0.553 0.497
4-mfcc-40-3-tsne-40 0.494 0.435 0.551 0.498
3-mfcc-40-3-tsne-20 0.492 0.435 0.550 0.491
5-mfcc-40-3-tsne-20 0.488 0.429 0.545 0.488
2-mfcc-40-2-tsne-20 0.484 0.426 0.545 0.482
0-mfcc-40-3-tsne-40 0.480 0.419 0.537 0.485
1-mfcc-40-3-tsne-20 0.479 0.422 0.540 0.474
0-mfcc-40-2-tsne-40 0.478 0.419 0.537 0.479

Legend: Σ = Mean of all cluster metrics, ARI = adjusted Rand
index, FM = Fowlkes-Mallows index, V-m. = V-measure

Table 1: Cluster evaluation results: best 10.

The top 3 results are illustrated on Figures 2, 3 and 4.

Figure 4: Third best result.

Configuration Σ ARI FM V-m
3-mfcc-40-2-pca-False 0.404 0.319 0.477 0.417
4-mfcc-40-2-pca-False 0.393 0.302 0.466 0.411
2-mfcc-40-2-pca-False 0.376 0.286 0.450 0.390

Table 2: Best 3 PCA results

Configuration Σ ARI FM V-m
0-mfcc-40-2-isomap-40 0.423 0.332 0.486 0.452
0-mfcc-40-2-isomap-60 0.422 0.331 0.484 0.451
0-mfcc-40-3-isomap-40 0.412 0.318 0.476 0.441

Table 3: Best 3 Isomap results

Configuration Σ ARI FM V-m
5-mfcc-40-3-som-1 0.399 0.326 0.470 0.401
4-mfcc-40-2-som-1 0.399 0.326 0.476 0.395
4-mfcc-40-2-som-4 0.398 0.339 0.472 0.382

Table 4: Best 3 results SOM

Configuration Σ ARI FM V-m
3-mel-13-2-tsne-60 0.213 0.143 0.317 0.180
0-mel-40-2-som-2 0.213 0.126 0.326 0.187

4-mfcc-13-1-pca-False 0.213 0.138 0.320 0.181
5-feat-6-2-tsne-40 0.213 0.134 0.308 0.196

4-feat-6-2-isomap-60 0.212 0.115 0.334 0.189
4-mel-20-3-som-2 0.212 0.132 0.329 0.177
1-feat-6-3-som-1 0.212 0.138 0.312 0.187

2-mfcc-13-1-pca-False 0.212 0.137 0.323 0.177
0-mel-13-2-tsne-20 0.212 0.139 0.315 0.183

3-stft-20-2-pca-False 0.212 0.074 0.369 0.194

Table 5: Middle 10 results

According to the results, the V-measure index is the
closest to the mean of all albeit it goes without saying that
the mean is heavily dependent on the selected indexes. The
mean for the top results is very close to the value of the V-
Measure index. Unfortunately the middle and the worst



results are not correlating to the V-Measure index.

Configuration Σ ARI FM V-m
4-stft-13-1-som-1 0.137 0.060 0.260 0.090

5-feat-6-1-isomap-40 0.137 0.050 0.267 0.092
4-mel-20-1-som-1 0.136 0.037 0.293 0.079
4-feat-6-1-som-1 0.133 0.060 0.252 0.087

0-mel-13-1-som-1 0.133 0.047 0.271 0.081
2-feat-6-1-som-1 0.132 0.059 0.254 0.084
0-feat-6-1-som-1 0.132 0.057 0.254 0.086
1-feat-6-1-som-4 0.130 0.057 0.247 0.085
2-feat-6-1-som-2 0.126 0.054 0.247 0.077
4-feat-6-1-som-2 0.120 0.046 0.241 0.075

Table 6: Worst 10 results

7 Conclusions

As it has been pointed out, the MFCC-TSNE combination
achieved the best results. MFCC’s success is supported by
its widespread use in environmental sound classification
[13] and it is also recommended and used by the authors of
the dataset [5]. Apart from this observation, other conclu-
sions can be drawn. By examining the impact of filtering,
it is obvious that none of the five filtering variants were
able to improve the results. Mel-scaled STFT and high-
level features produced inefficient data representations and
received weak evaluation scores. The poor performance
of the Mel-scale could be attributed to it being optimized
for speech. Using just 6 high-level descriptors is probably
insufficient to represent the audio data well. The perfor-
mance of these feature extraction methods is dependant
on the nature of the dataset, some methods may perform
better for some specific type of sounds. Considering the
optimal number of frequency bins, higher values achieved
better results, i.e. using 40 frequency bins proved to be the
best choice. This is understandable, as more dimensions
can hold more data, but it is likely that based on the curse
of dimensionality, there is an upper limit at which perfor-
mance starts to degrade. As far as the optimal reshaping
method is concerned, both the second and third methods
attained top 5 positions, while the first method (flattening)
had a significantly weaker performance, as it is included
in every list of worst performances. Yet again, the poor
performance of the flattening method is a consequence of
the curse of dimensionality phenomenon.

Considering dimensionality reduction methods, t-SNE
clearly emerged as a winner, both in a visual and metri-
cal sense. TSNE is famous for generally producing well
separated, good visualizations, as pointed out by its au-
thors [9]. While t-SNE achieved the best results according
to the evaluation metrics, SOM also succeeded in produc-
ing well separable, good quality clusterings. For Isomap,
many resulting plots were elongated and inhomogeneous.
This may be explained by the fact that Isomap expects the
data to lie on a manifold, but in actuality the data is not

structured in such way. PCA also had poor results in the
majority of the cases, probably in consequence of assum-
ing that the data lies on a linear subspace, thus being un-
able to discover nonlinear relations.

7.1 Future work

Our future plan is to refine the developed process, elab-
orate new ones and apply the accumulated knowledge in
medical and agricultural research, through classification of
breathing sounds (COVID-19 detection) and bee sounds.
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