CEUR-WS.org/Vol-2718/paper06.pdf

Analysis of delay patterns and correlations in railway traffic data

Roland Krisztidn Szabé, Toméas Horvath, and Adam Tarcsi

Eotvos Lordnd University, Faculty of Informatics, Budapest, P4zmany Péter stny. 1/C., 1117,
rolandszabo@inf.elte.hu tomas.horvath@inf.elte.hu ade@inf.elte.hu

Abstract: Traffic itself can be a huge challenge for most
commuters regardless of the transportation method of their
choice. For example, it is inevitable to experience delays
and congestion during rush hours. All commute methods
have their own specific characteristics when it comes to
delays - cars and buses suffer from traffic jams and sim-
ilar principles apply to railways as well. However, the
causes of railway delays are not that straightforward and
they need further investigation. According to our personal
experiences most passengers are not aware of the reasons
behind train delays even though they are usually encoun-
tered multiple times a day. In this paper I will present pos-
sible answers based on the data collected from the publicly
available APIs of Hungarian State Railways over the past
1.5 years.

1 Datasets

The idea of the delay analysis and prediction originates
from paper [1] where a simpler version of this concept has
been used as a module in a smart alarm clock application.
During the development of the application multiple data
sources were investigated, some of which turned out to be
unusable. In this section the details of the selected data
sources will be discussed.

1.1 Traffic

I found that the most reliable publicly available data source
for traffic is the official map of Hungarian State Railways
[2]], where all trains can be tracked in real-time. I have
created a small automated script that runs on a virtual pri-
vate server and takes a snapshot of the map approximately
every minute and stores the result in a JSON file.

Traffic data have been being collected since January
2019, which means there are roughly 1 year and 6 months
of available information (approx. 130 million records).
Due to the COVID-19 outbreak a data freeze was applied
at the end of March 2020 because of the extraordinary cir-
cumstances that affect transportation all over the world.
Hungarian State Railways canceled lots of trains and only
30% percent of a train’s capacity can be used in order to
prevent the spread of the infectious disease. This new sit-
uation significantly alters the operation of the railway sys-
tem which would have introduced a lot of noise to the ex-
isting dataset and it might not be relevant in a few months

Copyright (©)2020 for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC BY
4.0).

Table 1: Details of a train entry in a snapshot

Field name Example

Date "2019.10.29 20:09:38"
Elvira ID "5614115_191029"
Operator "MAV"

Line "40"

Train number "55808"

Relation "Budapest-Keleti - Pécs"
Latitude 46.26418

Longitude 18.10566

Delay 5

at all. Should the pandemic be over its effects could be
analyzed later on but currently it is out of scope of this
paper.

A snapshot of the map contains the following informa-
tion about each of the trains that were present at the time
the snapshot was taken (Table/T)).

1.2 Weather

In addition to the traffic data we also collected the cor-
responding weather data for every train, because we sus-
pect that weather has an influence on the delays as well.
It was not easy to find a free provider which is capable of
handling the necessary amount of requests, but after many
trials we decided to use OpenWeatherMap [3]. Its free
tier gives access to 60 location-based weather requests per
minute, which is still not enough for every individual train,
but can be sufficient to place virtual weather stations all
over Hungary with a resolution of approximately 35.5 km.

Definition 1. Virtual weather station. A virtual weather
station is a GPS position which can be queried for up-to-
date local weather information.

Calculating the coordinates of the virtual weather sta-
tions The first task is to distribute the available 60 slots
uniformly such that every train can be assigned to the clos-
est virtual weather station. Finding an exact solution to
the problem would have been infeasible, therefore we de-
cided to develop an approximation algorithm for which we
used the GeoNames geographical database [4] which con-
tains POIs in Hungary and is available for download free

of charge under the Creative Commons Attribution 4.0 li-
cense.

The algorithm (Algorithm [T)) uses a k-d tree which is
a space-partitioning data structure that allows fast nearest
neighbor searches. [5]] The k-d tree is used to place 60 vir-
tual weather stations on the map as follows: in each step
the most populated POI is selected and then its neighbor-
ing POIs are eliminated in the given radius. It results
in an approximately uniform placement of virtual weather
stations and they are located at densely populated areas
where accurate weather information benefits more people.

Algorithm 1 Approximation algorithm for virtual weather
station placement

Funct getVirtualWeatherStationPositions(pois, radius)
1: pois + pois.sort(”population”,”desc”)
2: kdt < kdTree < POI > ("haversine”)
3: for poi € pois do
4 nn < kdt.searchRadius(poi, radius)
5: if nn = 0 then
6 kdt.add(poi)
7 end if
8: end for
9: return kdt

2 Analysis

2.1 Reconstruction of the railway network

In the traffic dataset there are millions of recorded GPS co-
ordinates and the majority of them can be safely discarded
after the necessary information have been extracted. For
this task we used the Representative point extraction and
updating algorithm by Zhongyi Ni et al. [6]] which is able
to calculate the most significant points along a route and is
also capable of refining these points as new data becomes
available due to its online nature. The task is to determine
the least amount of points (called the representative points)
that can accurately represent such a route.

The above-mentioned algorithm can determine the
points describing a route (Figure[I)) with an arbitrary res-
olution. However, the recorded GPS trajectories are noisy
and may contain significantly misplaced outliers. The
representative point extraction algorithm is able to prop-
erly handle noise, but it also creates new representative
points in case of outliers, therefore a support-based post-
processing step is needed, which removes representative
points that are encountered rarely.

2.2 Conflicting trains

As a dimensionality reduction method it is beneficial to
obtain the set of trains that might affect the delay of an-
other train. It can be also used to model delay-chain prop-
agation.

Figure 1: Reconstructed railway network of Hungary

Definition 2. Conflicting trains. A set of trains is said to
be in conflict when their route has common representative
points.

The algorithm (Algorithm [Z) determines the set of
representative points which are within a given distance
radius to a specific representative point rp and returns
the set of trains that travel through those points without
taking the temporal dimension into consideration, because
we only use the intersection of conflicting trains with the
currently traveling trains.

Algorithm 2 Algorithm for determining conflicting trains

Funct getConflictingTrains(allRps, rp, radius)
1: kdt < kdTree < RP > ("haversine”,allRps)
2: nn < kdt.searchRadius(rp, radius)
3. return e, {n.trainld}

2.3 Association rules

We realized that the grouping of trains can be considered
as a frequent itemset mining problem, therefore we used
the Apriori algorithm [7] for itemset mining and associa-
tion rule learning.

Definition 3. Delayed train. A train is officially consid-
ered to be delayed when its delay is greater than or equal
to 5 minutes.

The algorithm requires transactions, which can be con-
structed based on the snapshots of the map. For each snap-
shot a transaction is made based on the set of conflicting
delayed trains (Definition [2) in the given snapshot.

Association rules were generated for departure delays
(Table [2), for which the snapshots taken upon the sched-
uled departure are used. The meaning of a rule is that if
the set of antecedent trains are delayed then the consequent
train is likely to depart late with the given metrics.

Low support values are due to the fact that train 2749
is only included in a transaction when it is delayed. The

Table 2: A subset of association rules generated for train
2749

Antecedents Consequent Supp. Conf.
2879,2739 2749 0.21 0.81
2879,7039,2739 2749 0.19 0.84
2879,2859,2739 2749 0.17 0.82
2879,7039,2859,2739 2749 0.16 0.84
2879,700,7039 2749 0.15 0.80
2879,700,2859 2749 0.15 0.83
2879,6299,2739 2749 0.14 0.87
2879,7039,6299,2739 2749 0.14 0.89
2879,700,2739 2749 0.14 0.83
700,7039,2859,2879 2749 0.13 0.85
2879,2740,2739 2749 0.12 0.93
2879,2740,2859 2749 0.12 0.84

frequent itemset containing train 2749 has a support value
of 0.36 which means the train departs late roughly 36% of
the time.

2.4 Sequential rules

Besides the traditional association rule mining we can also
consider consecutive snapshots of a specific train on a
given day, which takes the temporal information into con-
sideration as well (Table [3). Sequential pattern mining is
almost the same as association rule mining, but instead of
working directly with a transaction we consider consecu-
tive transactions recorded in time.

Sequential rules can be also mined for the departure de-
lay, but they are more meaningful if we mine them along
the entire route of the train. The rule A = B means that
when the trains in A are delayed then train B will also be-
come delayed in the future. In case of association rules we
talked about trains that are usually delayed together, but
now we have an additional temporal dimension.

In order to test this method we used the SPMF open-
source data mining library [8] with the RuleGrowth algo-
rithm [9].

The support values are much higher in this case, because
rules are mined along the entire route of the train. The
support value of the frequent itemset containing train 2749
is 0.71 which means even though the train departed late
only 36% of the time it got delayed 71% of the time during
its trip.

2.5 Other factors

In addition to the delay propagation there might be other
factors that contribute to the delay of trains, like weather
and temporality. In this section some of these factors will
be analyzed with possible explanations and conclusions.

Table 3: A subset of sequential rules generated for train
2749

Antecedents Consequent Supp. Conf.
2879 2749 0.63 097
7049 2749 0.61 0.97
2669,2879 2749 0.60 0.97
2669,6099 2749 0.61 0.90
2669 2749 0.67 0.90
6099 2749 0.63 0.87
2649 2749 0.61 0.86
7009 2749 0.61 0.84

Definition 4. Average delay. The average of the trains’
average delays along their route on a given day.

Definition 5. Average minimum (maximum) delay. The
average of the trains’ minimum (maximum) delays along
their route on a given day.

Month It turned out that summer is the only specific sea-
son which has a peak in the average delays followed by
autumn (Figure [2). This effect might be caused by main-
tenance works, but there is no available historical mainte-
nance data to confirm this theory. It’s likely not caused by
the number of passengers since there is no school in Hun-
gary during the summer, which significantly reduces the
number of passengers in the rush hours. Higher tempera-
tures also seem to have an effect on the delays.

Figure 2: Average delays grouped by month

Average delay by month

Average minimum delay
B Average delay

E Average maximum delay

January

February

March
April
May

June

July
g us T -

Month

September
October

November ——

December ‘

I T T T T T T
o 1 2 3 4 5 6
Delay (minutes)

Day of the week By looking at the average of all trains we
can claim that Monday and Friday have the largest delays
on average, while weekends have somewhat lower average
delays (Figure[3). It would be nice to have a dataset related
to the number of passengers because the larger amount of

passengers may cause delay peaks at the beginning and
at the end of the workweek. The number of passengers
may also have a correlation with the lower delays during
the weekend, but we suspect that it is likely caused by the
sparser schedule, which effectively reduces delay propa-
gation.

Figure 3: Average delays grouped by day of the week

Average delay by day of the week
Average minimum delay N Average maximum delay

B Average delay

Monday

Tuesday

Wednesday

Thursday

Day of the week

Friday

Saturday

Sunday

0 1 2 3 4 5
Delay (minutes)

Holidays Holidays do not seem to have a significant effect
on the average delays (Figure). The peaks were mostly
predictable according to the previous researches - Pente-
cost Monday and Saint Stephen’s Day have slightly higher
average delays but they are both in the Summer, which has
the highest average delay among the seasons and Good
Friday is a Friday, which has above average delay if we
compare it to the other days of the week. As a conclusion,
events do not seem to cause extraordinary delays, because
they can be planned ahead.

Figure 4: Average delays grouped by holidays in 2019

Average delay by holidays

Average minimum delay B Average maximum delay
I Average delay

New Year's Day -
Revolution Day -
Good Friday

Easter Sunday -
Easter Monday
Labour Day -
Pentecost Sunday
Pentecost Monday
Saint Stephen's Day -
Republic Day

All Saints' Day
Christmas Day -
Second Day of Christmas
New Year's Eve

Holiday

T T T T
[} 1 2 3 4
Delay (minutes)

Time of the day By looking at the chart containing the
delays grouped by hours, the rush hours can be clearly

marked as delay peaks (Figure[3). It can be concluded that
as the number of passengers and the density of the sched-
ule increase, the average delay increases as well. Accord-
ing to the research, most relations have this pattern.

Two other peaks can be observed between 23:00 and
01:00. In order to understand them domain knowledge is
needed. The reason behind the existence of the peaks is
that only a very small number of train travels by that time
in the country (sometimes even less than 10), and when
some of them are delayed, it causes a huge impact on the
average.

Figure 5: Average delays grouped by hour

Average delay by hour

Average minimum delay I Average maximum delay

B Average delay

i

9 10111213 141516 17 18 19202122 23
Hour

Delay (minutes)

Temperature The chart shows that the average delays in-
crease as temperature tends to either -10 or +30 Celsius
degrees (Figure [6). Due to the distribution of trains, the
ends of the chart are noisy, but the trendline can be easily
seen.

Figure 6: Average delays grouped by temperature

Average delays by temperature
—— Average minimum delay —— Average maximum delay

—— Average delay

S w
L L

Delay (minutes)
w
L

\—//

W e

T T T T T
-10 0 10 20 30
Temperature

[N)
N

Weather type As far as the type of weather is concerned,
precipitation usually increases the delays (Figure[7). The
most troublesome types are related to snow in the winter
and unexpected thunderstorms in the summer. Nearly all
rain types have higher average delays than clear sky.

Figure 7: Average delays grouped by weather type

Top 20 average delays by weather type

Average minimum delay BN Average maximum delay
B Average delay

Heavy Intensity Shower Rain -
Freezing Rain -

Shower Sleet
Dust 1

Heawvy Snow -{
Sleet {

Shower Rain

13 Thunderstorm With Light Rain
= Moderate Rain -
Shower Drizzle
Drizzle Rain
Drizzle

Heavy Intensity Rain

Few Clouds
Thunderstorm With Rain
Light Intensity Drizzle Rain
Clear Sky -

Scattered Clouds

T T T T T T T
] 1 2 3 4 5 6 7
Delay (minutes)

2.6 Delay heatmap

An interesting visualization method is to generate a
heatmap of delay changes (Figure [8). It allows us to
see where the delay accumulates during the trip and these
peaks might suggest track problems, busy stations, or any
other hidden issues that we are not aware of.

Figure 8: Delay heatmap of train 2749 between Monor and
Budapest-Nyugati

In this figure, red means larger average increase of de-
lay and blue means a lower average increase of delay. The
green patches represent moderate average increases of de-
lay.

3 Departure delay prediction

Traveling in an unreliable environment on a daily basis
can be nerve-wracking. The official mobile application of
Hungarian State Railways has a delay forecasting mech-
anism, but it is quite limited in its current form. When a
train is already moving then the schedule is automatically

adjusted by its current delay. This estimation is not so re-
liable on the long term, but it can give you an idea about
the scale of the expected delay under the current circum-
stances.

Another problem is that the forecast lacks a very impor-
tant indicator, as it cannot tell whether the train is going to
depart late or on-time. The forecast is only available after
the train has already departed. The two main goals are to
find a method to predict the departure delay and to improve
the long term reliability of the delay forecast mechanism
already present in the application.

Departure delay prediction is a special problem, be-
cause we do not have any information yet about the train
we are interested in. Whether the train is going to depart
late or on-time can only be predicted based on its observ-
able environment. The input for the departure delay pre-
diction problem is a set of snapshots taken at the scheduled
departure time for which the target value is the delay of the
train on its first appearance on the day.

3.1 Association rules

The first idea is that the previously mined association rules
(Table [2) should be applied and see if we can predict
whether a train is going to be delayed or not upon depar-
ture.

The algorithm (Algorithm [3) of the model is very sim-
ple, it only requires a set of association rules extracted
based on the input for departure delays. A train is consid-
ered to be delayed if it is a consequent in a rule for which
all the antecedent trains are delayed in a given snapshot
of the map. The hyper-parameters of the model are the
minimum support and minimum confidence of the rules.

Algorithm 3 Algorithm for predicting the departure delay
(association rules)
Funct predictDepartureDelayAr(snapshot, rules)

1: delayedTrains < getDelayedTrains(snapshor)
2: for rule € rules do
3 if rule.getAntecedents() C delayedTrains then
4: return True
5 end if

6: end for

7: return False

The results (Table [d) are impressive, but according to
the research it turned out there are simply not enough in-
formation for the association rule mining algorithm in its
current form which causes underfitting. Trains are catego-
rized as either delayed or on-time, which cannot properly
handle the following situation: when an antecedent train is
delayed more than a given threshold (for example 10 min-
utes) then the consequent train can depart on-time as they
are far away from each other and a slot becomes available
for the consequent train. Otherwise, the delay of the an-
tecedent train propagates to the consequent train.

Table 4: Departure delay prediction metrics for train 2749
using the association rules on the test set

Precision Recall Fl-score Support
On time 0.85 0.85 0.85 194
Late 0.72 0.71 0.72 105
Accuracy 0.80 299

3.2 Train embedding

In order to solve the underfitting problem that affects the
association and sequential rules, a different approach is
necessary. It is not enough to have an indicator whether a
train is delayed or not, the exact numeric values are needed
instead. It is also important to have an input with fixed
length for the algorithms.

The solution (Algorithm 4 Table [3) is that each con-
flicting train that travels when a specific train departs is
considered as a unique feature with its current delay. If a
previously encountered conflicting train is not present at
the time, its delay becomes O as it likely won’t affect the
delay-chain. First, the algorithm is called with an empty
state vector and a subset of trains from a snapshot. If the
identifier of a train is not contained in the state vector then
it is appended to it. For each train identifier in the state
we determine whether it is present in the current input or
not and we append its current delay to the embedding. If
a train is not found in the input, its current delay is con-
sidered to be 0. The returned state can be then re-used to
embed another set of trains. Before training, the embed-
dings can be safely padded with zeros to have a common
length.

Algorithm 4 Algorithm for creating train embeddings

Funct embed(state,trains)
1: embedding + ||
2: for train € trains do
3 if train.getld() ¢ state then
4 state.append (train.getld())
5: end if
6: end for
7: for trainld € state do
8 if trainld € trains then
9: embedding.append (trains.getDelay(trainld))
10: else

11: embedding.append(0)
12: end if
13: end for

14: return state, embedding

They usually have high dimensions but they can be vi-
sualized using dimensionality reduction methods (Figure
[9). In the following picture trains that depart on-time are

Table 5: An example train embedding

406 472 580 609 619 709 2617

3 18 1 3 3 0 2
3 20 2 3 4 0 1

denoted by green squares and trains that depart late are
marked as red squares.

Figure 9: Embeddings for train 2749 visualized using 3-
dimensional PCA

3.3 Support-vector machine

A support-vector machine [[I0] tries to find a hyperplane
in an n-dimensional space which separates, and therefore
classifies the data points. This hyperplane should have
maximum margin, which means it should have maximal
distance between the two classes, so future data points can
be classified more reliably.

For each train, a unique model is trained. In our exam-
ple, the space is 45-dimensional and the hyperplane sepa-
rates the trains that depart on-time and the trains that de-
part late. For the SVM experiment we’ve implemented a
grid-search (Table [6) and executed it on the training set
with 5-fold cross-validation with the following parame-
ters:

Table 6: Parameter grid for the SVM experiment

Possible values

0.001,0.01,0.1, 1, 10
linear, poly, rbf, sigmoid
0.001, 0.01, 0.1, 1

0.0, 0.001, 0.01, 0.1, 1, 10

Parameter name

Regul. parameter (C)
Kernel

Kernel coeff. (gamma)
Indep. term (coef0)

The grid-search optimizes the hyper-parameters of the
SVM model on the training dataset which results in better

metrics during the evaluation phase. The best parameters
were C=1, coef0=10, gamma=0.01 and kernel=poly. (Ta-

ble

Table 7: SVM prediction metrics for train 2749

Precision Recall Fl-score Support
On time 0.92 0.97 0.94 194
Late 0.94 0.84 0.88 105
Accuracy 0.92 299

3.4 Random Forest Classifier

A random forest [[11] is an ensemble model which fits mul-
tiple decision trees and outputs their mode. Each decision
tree splits the dataset a variable number of times based on
the delays of the conflicting trains and outputs whether the
train is going to depart late or not.

The training methodology was similar to SVM’s, we ran
a grid-search (Table[8) with 5-fold cross-validation on the
training set with the following parameters:

Table 8: Parameter grid for the Random Forest Classifier

Possible values

200, 600, 1200, 1800
10, 50, 100, unlimited

Parameter name

n_estimators
max_depth

min_samples_split 2, 5, 10
min_samples_leaf 1,2,4
bootstrap True, False

The results (Table 0 are slightly better than the SVM’s,
and the trained model also helps with the explainability
of the delay-chains, which is useful to prevent them
from occurring in the future. The best parameters were
bootstrap=true, max_depth=10, min_samples_leaf=2,
min_samples_split=10 and n_estimators=200.

Table 9: Random Forest Classifier prediction metrics for
train 2749

Precision Recall Fl-score Support
On time 0.97 1.00 0.98 194
Late 1.00 0.90 0.95 105
Accuracy 0.97 299

4 Generic delay prediction

Based on the research experiences with departure delays
it is time to solve the prediction problem in general with

deep neural networks. As it was mentioned before, the de-
lay estimation in the official mobile application is not so
reliable on the long term, therefore it would be beneficial
to find a method for predicting the real schedule. The rea-
son behind choosing deep neural networks is that state-of-
the-art multivariate time series forecasting methods tend
to use these technologies. [12]]

The general delay prediction task will be formulated as
a regression problem instead of classification, because it
is more informative for the end-user and there are signif-
icantly more data available when we consider snapshots
after departure as well.

4.1 Input

For each day the snapshots containing a given train ¢ are
collected in ascending order by their timestamp (Table[T0).
It must be noted that there can be a different amount of
snapshots for each day, because a delayed train obviously
travels for a longer period of time. In this section a daily
collection of ordered snapshots for a given train ¢ will be
referred as the input.

Table 10: A subset of the input for train 2749 on a given
day

Date Train Delay Lat Lon

19-06-16 06:39 2749 0 4735 1943
19-06-16 06:40 2749 0 47.35 1943
19-06-16 06:40 2749 0 47.35 19.42
19-06-16 06:41 2749 1 47.36 19.42

Based on the data, there are two kinds of preprocessed
inputs for each day, a vector of auxiliary features and a
matrix of time-series features (Table [T T)).

The auxiliary features include an indicator whether the
given day is a weekday, an indicator whether the given
train departs during the rush hours and the one-hot en-
coded representation of the month upon departure.

For the time-series features a similar train embedding
is used as before, the only difference is that this time the
train we are interested in is also included in the embed-
ding. The embedding has a much higher dimensionality,
because conflicting trains are embedded over the entire
route of the train. In order to keep the input dimension
manageable, only the characteristics of the train embed-
dings are used.

An entry in the time-series input contains the current
delay of the train, the classified weather and the mean,
standard deviation, minimum and maximum values of the
delays of the conflicting trains.

Let’s suppose that train ¢ traveled during k days over the
interval covered by the dataset and the number of time-
series features for all of its snapshots are m. Thus the 3D

Table 11: Preprocessed time-series input on a given day

Delay Weather Mean STD Min Max

0 3 120 269 O 13
0 3 125 265 O 13
0 3 132 262 0 13
1 3 135 260 O 13

input of the network has dimensions (k,/;,m) where [; is
the number of snapshots on the i day.

4.2 Output

For each entry in the time-series input the corresponding
output becomes the vector of true delays in the future after
n minutes where n € {5,10,20,30}. Let’s assume that the
train we are interested in is ¢ and its current delay is de-
termined by d,(X;). For each snapshot X; let the output y;;
equal to the delay of train 7 at snapshots X;p; (j = 1..4).
In case of out of bounds indices the delay of ¢ at the last
snapshot of the day is used instead.

Vi = [di(Xiys), di (Xit10), dr (Xit20), di (Xit30)]

Official model The main goal of the generic delay pre-
diction task is to obtain a more accurate forecast than it is
currently available in the official mobile application. In or-
der to have a meaningful comparison, we have to recreate
the model of the official forecast method and calculate its
loss and other metrics alongside our model. Fortunately,
the official model is not too complicated, it simply substi-
tutes the current delay for all future occurrences.

VI — (4, (X), i (X) i (X) i (X))

LSTM model Our model has to support both the auxiliary
and time-series features, therefore a multi-input network is
necessary. This problem is similar to the image captioning
task, where an image is chosen as an auxiliary feature and
the words of the generated caption are sequence-like. [[13|
14] Due to the fact that there can be a varying number of
snapshots per day some sort of recurrent neural network
(RNN) is needed, which can handle the temporal nature of
the data as well. The output of an RNN depends not only
on the current input but on the previous outputs as well.
Its memory is very useful for the prediction of the delays,
because it can learn complicated delay patterns.

The RNN can also have a preset initial state, where we
can store the representation of the auxiliary features and
the resulting network models P(X; | |Xo.;, auxiliary). [15]
This auxiliary condition allows us to have a single network
for all trains if we include a train identifier, but due to re-
source constraints this was not used during the research.

Figure 10: Comparison of different 10-minute prediction
models for train 2749 on a given day

Prediction for train 2749

5
— Tue
LSTM
20 Official
15

10

10-minute delay forecast (minutes)

o 10 20 k] 40 50
Elapsed time since departure (minutes)

Table 12: Evaluation of the generic prediction model on
train 2749

n=5 n=10 n=20 n=30

LSTMMSE 1.03 201 423 7.07
LSTM R? 097 095 0091 0.84
Official MSE 128 3.03 7.63 12.92
Official R2 097 093 0.83 0.72

4.3 Evaluation

The first evaluation was performed on train 2749. Out of
the 236 available occurrences only 231 were used, where
the maximum delay along the route was less than 30 min-
utes. There is simply not enough data for the outliers
where delay may occasionally exceed 250 minutes.

The following metrics (Figure [T0} Table [T2) were cal-
culated using 3-fold cross-validation.

For this train the LSTM model gives better and better
results as n increases compared to the official model.

On average, the proposed LSTM model outperforms the
official model, but only when significant outliers are omit-
ted from the dataset. The proposed model is not able to
learn extreme delays yet reliably due to their rare nature,
but the official model is able to forecast them easily by
simply substituting the current delay in a linear manner.
This is not a huge issue, because if a train is delayed that
much it usually skips its trip on that day entirely and pas-
sengers are informed on multiple platforms.

4.4 Conclusion

The analysis and the machine learning models presented
in this paper could be useful for the betterment of railway
services in Hungary and they may also increase the satis-
faction of the passengers. Hungarian State Railways also
expressed their interest in the continuation of the research
project in cooperation with our university.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Roland Krisztian Szabd. Smart alarm clock based on traffic
and weather information, 2018.

MAV Szolgiltaté Kozpont Zrt. MAV-START térkép, 2020.
[Online; accessed 16-January-2020].

Openweather Ltd. OpenWeatherMap, 2020. [Online; ac-
cessed 16-January-2020].

GeoNames Team. GeoNames dump (Hungary), 2020. [On-
line; accessed 16-January-2020].

Jon Louis Bentley.
trees used for associative searching.
18(9):509-517, September 1975.
Zhongyi Ni, Lijun Xie, Tian Xie, Binhua Shi, and Yao
Zheng. Incremental road network generation based on ve-
hicle trajectories. ISPRS International Journal of Geo-
Information, 7(10), 2018.

Rakesh Agrawal and Ramakrishnan Srikant. Fast algo-
rithms for mining association rules in large databases. In
Proceedings of the 20th International Conference on Very
Large Data Bases, VLDB ’94, pages 487-499, San Fran-
cisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.
Philippe Fournier-Viger. SPMF open-source data mining
library, 2020. [Online; accessed 17-March-2020].
Philippe Fournier-Viger, Roger Nkambou, and Vincent
Shin-Mu Tseng. Rulegrowth: Mining sequential rules com-
mon to several sequences by pattern-growth. In Proceed-
ings of the 2011 ACM Symposium on Applied Computing,
SAC 11, page 956-961, New York, NY, USA, 2011. As-
sociation for Computing Machinery.

Multidimensional binary search
Commun. ACM,

Corinna Cortes and Vladimir Vapnik. Support-vector net-
works. Mach. Learn., 20(3):273-297, September 1995.
Tin Kam Ho. Random decision forests. In Proceedings of
the Third International Conference on Document Analysis
and Recognition (Volume 1) - Volume 1, ICDAR °95, page
278, USA, 1995. IEEE Computer Society.

Papers with Code. Multivariate Time Series Forecasting,
2020. [Online; accessed 08-May-2020].

Andrej Karpathy and Fei-Fei Li.
alignments for generating image descriptions.
abs/1412.2306, 2014.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-
mitru Erhan. Show and tell: A neural image caption gener-
ator. CoRR, abs/1411.4555, 2014.

Philippe Rémy. Conditional RNN, 2019. [Online; accessed
17-March-2020].

Deep visual-semantic
CoRR,

EFOP-3.6.3-VEKOP-16-2017-00001: Talent Manage-

ment in Autonomous Vehicle Control Technologies — The
Project is supported by the Hungarian Government and co-
financed by the European Social Fund.

	Datasets
	Traffic
	Weather
	Calculating the coordinates of the virtual weather stations

	Analysis
	Reconstruction of the railway network
	Conflicting trains
	Association rules
	Sequential rules
	Other factors
	Month
	Day of the week
	Holidays
	Time of the day
	Temperature
	Weather type

	Delay heatmap

	Departure delay prediction
	Association rules
	Train embedding
	Support-vector machine
	Random Forest Classifier

	Generic delay prediction
	Input
	Output
	Official model
	LSTM model

	Evaluation
	Conclusion

