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In this paper, we report on the Hopfield Neural Net-
work (HNN) for the Orienteering Problem (OP) that is
generalized to solve instances of the Close Enough Ori-
enteering Problem (CEOP). In the orienteering problems,
we are searching for a limited budget tour to maximize
collected rewards by visiting selected target locations. In
the CEOP, it is allowed to collect the reward remotely
within a non-zero communication range. Thus we can save
travel costs by collecting rewards at suitable visiting loca-
tions of the disk-shaped neighborhoods of target locations.
The proposed approach combines the HNN for the OP
with the Second-Order Cone Programming (SOCP) that is
employed to determine locally optimal locations of visits
to the disk-shaped neighborhoods of the target locations.
Regarding the reported evaluation results using standard
benchmarks, the proposed SOCP-based approach provides
solutions with the improved solution quality compared to
the previous HNN-based method with discrete samples of
the possible locations of visits.

1 Introduction

The Orienteering Problem (OP) is a routing problem with
profits inspired by the outdoor sport Orienteering. In
a particular variant of Orienteering, the participants are
given a set of locations, each associated with a reward.
The participants aim to collect as many rewards as possi-
ble by visiting the defined locations within the given time
budget. Similarly, the OP stands to maximize the sum of
the collected rewards associated with the locations such
that the tour cost does not exceed the given travel budget.
The OP has been formally introduced in [1], although, the
first approaches to solve the orienteering have been pre-
sented in [2], and since that, several approaches have been
proposed [3–6].

The OP is a suitable problem formulation for data col-
lection missions, where the utilized vehicles have a limited
travel budget. Because visiting all locations is not feasible,
the problem is to determine a subset of the most rewarding
locations that can be visited within the given travel bud-
get. Furthermore, we can exploit a non-zero communica-
tion range in a case where data can be retrieved from the
locations remotely. Thus, we can save travel costs by col-
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(a) Set 1: Tmax = 46,δ =

1,R = 200
(b) Set 64: Tmax = 45,δ = 1,R = 1320

Figure 1: Example of the CEOP solutions, where the color
of the disk-shaped neighborhoods indicates the value of
reward (low rewards are in the blue and highly rewarding
locations are in the red).

lecting data distantly and utilize the travel budget to col-
lect more rewards. Because the reward can be collected
arbitrarily within a disk-shaped neighborhood of each tar-
get locations, such a variant of the OP is referred to as the
Close Enough OP (CEOP) [7,8], albeit it can also be found
as the OP with Neighborhoods (OPN) [9–11]. An example
of the CEOP instances is depicted in Fig. 1.

In this paper, we propose a new approach to the solu-
tion of the CEOP based on the Hopfield Neural Network
(HNN) for the OP presented in [12] that is combined with
the convex optimization approach of the Second-Order
Cone Programming (SOCP). The recurrent HNN is usu-
ally used in the data reconstruction tasks, although it has
been adapted to various routing problems [13, 14]. The
HNN for the CEOP is studied in [15], where an approach
based on the discretization of the continuous neighbor-
hoods is proposed, and the problem is solved as a variant
of the Set OP [11, 16].

The drawback of the Set OP based approach is in the
pre-determination of the points of visits to the neighbor-
hoods of the target locations that are determined indepen-
dently on the final tour. We propose a generalization of the
HNN, where the locally optimal data collection points are
determined using the SOCP. Based on the empirical evalu-
ation using the existing benchmarks for the CEOP, the pro-
posed approach exhibits improved solutions quality com-
pared to the previous HNN approach based on the solution



of the discrete Set OP. Besides, the proposed SOCP-based
HNN is compared with the state-of-the-art Greedy Ran-
domized Adaptive Search Procedure (GRASP) [8]. The
proposed HNN-based method seems to provide solutions
with the competitive solution quality to the GRASP, but it
is more computationally demanding.

The rest of the paper is organized as follows. A brief
overview of the existing approaches to the CEOP is pre-
sented in Section 2. The CEOP is formally defined in Sec-
tion 3. The utilized baseline HNN for the OP is described
in Section 4 and the proposed SOCP-based improvements
are introduced in Section 5. The evaluation results are re-
ported in Section 6. The concluding remarks are discussed
in Section 7.

2 Related Work

The Orienteering Problem (OP) belongs to the class of
routing problems with profits motivated by data collec-
tion missions. The OP can be considered a combination of
the two NP-hard problems, the Traveling salesman prob-
lem in finding the most cost-efficient tour, and the Knap-
sack problem in determining the most rewarding subset
of the target locations. Thus finding an optimal solution
is computationally demanding, and therefore, heuristics
have been proposed, such as the S-algorithm, D-algorithm,
and route improvement heuristic in [2], the Center of grav-
ity heuristic in [1], the Four-phase heuristic [3], the Five-
step heuristic [4]. Besides, combinatorial meta-heuristics
have been adopted to solve the OP, such as the Variable
Neighborhood Search (VNS) [17] and the Greedy Ran-
domized Adaptive Search (GRASP) [5]. Moreover, two
sets of benchmark instances have been established based
on the problems studied in [2,4]. In contrast to that, only a
few approaches to the CEOP are reported in the literature:
the Growing Self-Organizing Array (GSOA) [7], the VNS-
based approach [11], and the GRASP-based method [8],
that are overviewed in the rest of this section.

The GSOA [7, 18] is an unsupervised learning method
based on the Self-Organizing Map (SOM) [6, 9, 10]. The
GSOA stands for an array of nodes representing the re-
quested route. It is iteratively adapted towards the target
locations by determining the closest point of the route to
a randomly selected target. The node is added to the ar-
ray at the closest point position, and it is adapted with its
neighboring nodes towards the target location. The GSOA
addresses the continuous optimization (of determining lo-
cations of visits to the neighborhoods) during the insertion
of the node into the array when a point from which the
data can be obtained is determined using the communica-
tion range.

A similar approach to address the continuous neighbor-
hoods as in the GSOA is utilized in the GRASP-based so-
lution of the CEOP proposed in [8]. The GRASP consists
of two steps: construction and local search. In the con-
struction step, a route is constructed by iteratively adding

new locations according to an insertion heuristic until the
route is unchanged. Afterward, the route is improved in
the local search step, where data collection points are iter-
atively refined to shorten the travel cost allowing insertion
of new target locations into the final route. The VNS-based
approach [11] addresses the continuous optimization of
the CEOP by discretizing the disk-shaped neighborhoods
into a finite set of locations and solving the problem as the
Set OP [16].

All the methods are reported to provide solutions of
high quality, although they have particular drawbacks. The
GSOA is a fast constructive heuristic utilized in many rout-
ing problems; however, once it converges to a stable state,
the solution does not further improve. On the other hand,
the VNS provides better quality solutions than the GSOA,
but it is more computationally demanding. So far, the
GRASP provides the solutions to the CEOP of the best
quality in the shorter computational time than the GSOA.

In the current work, we investigate the Hopfield Neu-
ral Network (HNN) for the OP [12] in the solution of
the CEOP. The first attempt to solve the CEOP by the
HNN is presented in [15], where the disk-shaped neigh-
borhoods are discretized, and the problem is solved as a
variant of the Set OP, albeit the problem is referred as the
OPN in [15]. The network is represented as the three-
dimensional matrix, where the third dimension represents
discretized locations within the neighborhood. The ob-
jective of the network is to minimize a complex energy
function that addresses the constraints of the CEOP. Once
the network converges to a local minimum, a route is con-
structed from the network and further improved. Although
the quality of the obtained solutions is relatively weak
compared to the GSOA, VNS, and GRASP based heuris-
tics, the expected advantage of the HNN is in the possi-
ble parallelization of the energy function computation and
also in the potential to address sequence-dependent gener-
alization of the routing problems. Therefore, we propose
to address the solution quality of the HNN-based solutions
of the CEOP by the deployment of the Second-Order Cone
Programming (SOCP) in determining locally optimal dis-
tant locations of visits to the target locations. The HNN for
the OP and the employed SOCP are thoroughly described
in Section 4 and Section 5, respectively.

3 Problem Statement

The CEOP is a variant of the OP motivated by data collec-
tion missions, where the goal is to collect the most reward-
ing data from a set of target locations S, starting and ending
at the predefined targets, while the traveled tour remains
within the given travel budget Tmax. The targets S are re-
warded by a score ri depending on the importance of the
particular target, and data can be remotely collected within
δ distance from the particular target location; thus, form-
ing a disk-shaped neighborhood with the radius δ . The
CEOP can be defined as follows.



Let S = {sss1, . . . ,sssn} be a set of n target locations, where
sssi ∈ R2, and δ be a communication radius associated with
every location sssi ∈ S, except the start and end locations that
are denoted sss1 and sssn, respectively, since it is requested to
visit precisely these locations. Each location is associated
with the reward ri > 0, except sss1 and sssn that are assigned
with zero reward r1 = rn = 0. The CEOP stands to deter-
mine a tour maximizing the sum of the collected rewards
R, while the tour length does not exceed the given travel
budget Tmax. Since the tour length is limited, only a subset
of k locations Sk ⊆ S can be visited. The tour visiting the
subset Sk of the targets can be described as a sequence of
visits Σ = (σ1, . . . ,σk), where 1≤ σi ≤ n, ∀i 6= j : σi 6= σ j,
and σ1 = 1,σk = n, together with a set of waypoint loca-
tions P=(ppp1, . . . , pppk), pppi ∈R2, where each pppi is within the
communication radius δ of the corresponding location sssσi ,
i.e., ‖pppi− sssσi‖ ≤ δ . The CEOP is defined as the optimiza-
tion Problem 1, where

∥∥pppi− ppp j
∥∥ denotes the Euclidean

distance between the locations pppi and ppp j.

Problem 1 Close Enough Orienteering Problem (CEOP).

maximizek,Σ,P R = ∑
k
i=1 rσi

s.t. ∑
k−1
i=1

∥∥pppi− pppi+1
∥∥≤ Tmax

2≤ k ≤ n
‖pppi− sssσi‖ ≤ δ

ppp1 = sss1 , pppk = sssn

4 Hopfield Neural Network for OP

The herein proposed solution to the CEOP is based on
the Hopfield Neural Network (HNN) for the OP presented
in [12] that is briefly described in this section to keep the
paper self-contained. The HNN consists of three main
parts: the problem representation, the energy function, and
the improvement heuristics, such as 2-Opt [19], the inser-
tion and deletion heuristics. The HNN is conceptualized
as a state matrix Φ ∈ Rn,n+1, where each cell denotes the
continuous activation level Φi, j ∈ [0,1]. Each activation
level Φi, j is updated by the sigmoid activation function

Φi, j =
1

1+ e−α
(1)

with

α = ln(Φi, j)− ln(1−Φi, j)−
∂E

∂Φi, j
∆t (2)

where E is the energy function and ∆t is the time step.
Each activation level Φi, j is referred to as a state, and

it denotes that the location sssi is visited at the j-th position
of the tour. If the value of Φi, j is close to 1, then it is
likely that the location sssi is selected to be visited at the j-
th position. The start and end locations are requested to
visit; hence the states Φ1,1 and Φn,n are forced to 1. The
last column of Φi,n+1 is used to calculate the reward of
the tour. Thus, if the location sssi is to be included in the

route, the last column is set to 1, Φi,n+1 = 1, otherwise
Φi,n+1 = 0.

The essential part of the HNN is the complex energy
function E for which the second derivative w.r.t. the cur-
rent state is used as the weights of the network. The aim of
the network is to minimize the energy function designed to
meet the constraints of the OP. The energy function for the
OP [12] is

E =
a
2

n

∑
i=1

n

∑
j=1

n

∑
h=1
h 6=i

Φi, j Φh, j (3)

+
b
2

( n

∑
i=1

n

∑
j=1

Φi, j−n
)2

(4)

+
c
2

Γ

( n

∑
i=1

n−1

∑
j=1

n

∑
h=1
‖sssi− sssh‖Φi, j Φh, j+1−Tmax

)
(5)

+d (2−Φ1,1−Φn,n) (6)

+ e
n

∑
i=1

(
Φi,n+1 (1−

n

∑
j=1

Φi, j)

)
(7)

− f
n

∑
i=1

ri Φi,n+1, (8)

where a,b,c,d,e, f are parameters of the network and

Γ(x) =

{
x2 if x≥ 0
0 otherwise

. (9)

The energy function E consists of six terms; each term is
associated with the multiplication parameter and ensures
a given constraint of the OP is met. The first term (3) as-
sociated with the parameter a penalizes multiple activated
states in the same column to ensure only one location can
be visited at the time. The second term (4) associated with
the parameter b ensures the maximal number of activated
states is less or equal to n. If the number is less than n,
the activated states are consecutively repeated. The third
term (5) penalizes routes that their traveled length exceeds
the travel budget Tmax. The term (6) associated with the
parameter d ensures that route starts and ends at the start
location sss1 and end location sssn, respectively. The next
term (7) associated with the parameter e sets Φi,n+1 = 1
if the location sssi is included in the route. Finally, the last
term (8) is used to maximize the sum of collected rewards.

Having the network representation and the energy func-
tion, the states of Φ are iteratively updated according to the
activation function (1). A brief overview of how the rep-
resentation and energy function is utilized in the solution
for the OP follows.

First, the state matrix is initialized to random values,
and parameters are initialized to predefined values. Then,
a random row of Φ is selected, and all states of the row
are updated according to the activation function (1). The
selection and update are repeated until a local minimum is
reached. The local minima occur when for any state Φi, j

the value of
∣∣∣− ∂E

∂Φi, j
∆t
∣∣∣ is less than a predefined thresh-

old ϑ three times in succession. When a local minimum



is reached, a route is constructed from the state matrix by
selecting a state with the largest value for each column.
Afterward, the local improvement by the 2-Opt [19] is ap-
plied to the route. If the traveled route does not violate
the travel budget Tmax, the parameter f of the network is
increased; otherwise, f is decreased to satisfy the length
constraint. The locally improved route is further tweaked
by utilizing the cheapest insertion heuristic as in Defini-
tion 1 and the deletion heuristic as in Definition 2, and
thus more locations can be visited and more rewards can
be collected.

Definition 1. Location sssinsert to be inserted into the route
at position j.

sssinsert, j = argmax
sssi∈S\Sk,sss j∈Sk

∥∥sssi− sss j
∥∥+∥∥sssi− sss j+1

∥∥−∥∥sss j− sss j+1
∥∥

ri
.

Definition 2. Location sssremove to be removed from the
route

sssremove = argmax
sssi∈Sk

‖sssi− sssi+1‖
ri

.

The state matrix is then adjusted according to the im-
proved route, and the process of finding a local minimum
of the adjusted network is repeated for the predefined num-
ber of repetitions. Then, the parameters and the state ma-
trix are reinitialized, and the process starts again. The
whole process is repeated for the predefined number of
iterations.

In [12], the authors state that the promise of the HNN
is in combination with the traditional heuristics; hence
we follow the combination of the HNN and heuristics in
the solution of the CEOP. The proposed extensions of the
HNN are described in the following Section 5.

5 Proposed Method

The essential modification of the HNN to solve the CEOP
is the term (5) of the energy function associated with the
parameter c. The original term penalizes routes that ex-
ceed the travel budget and considers the Euclidean dis-
tance between two target locations. Since we aim to solve
the CEOP, the disk-shaped neighborhoods need to be con-
sidered in (5), and the proposed form of (5) is highlighted
in the modified energy function:

E =
a
2

n

∑
i=1

n

∑
j=1

n

∑
h=1
h6=i

Φi, j Φh, j +
b
2

( n

∑
i=1

n

∑
j=1

Φi, j−n
)2

(10)

+
c
2

Γ

( n

∑
i=1

n−1

∑
j=1

n

∑
k=1

n

∑
h=1

D(sssk,sssi,sss j)Φk, j−1 Φi, j Φh, j+1−Tmax

)
(11)

+d (2−Φ1,1−Φn,n)+ e
n

∑
i=1

(
Φi,n+1 (1−

n

∑
j=1

Φi, j)

)
(12)

− f
n

∑
i=1

ri Φi,n+1. (13)

The function D(sssk,sssi,sss j) denotes the estimate of the min-
imal distance between three locations sssk,sssi,sss j using a de-
termined waypoint location pppi for the location sssi as de-
picted in Fig. 2. We utilize the exact locations sss j and sssk in-
stead of the waypoint locations ppp j and pppk, since the HNN
is robust, the effect of the term (11) in the energy function
can be influenced by the parameter c. Furthermore, the es-
timate between three exact locations can be precomputed,
and thus the computational demands are lower than using
the waypoint locations.

sk pi

si

sj

Figure 2: Estimation of the distance between three loca-
tions sssk,sssi,sss j using the waypoint location pppi of the loca-
tion sssi (dark gray).

The value of the function D can be determined by var-
ious approaches, such as a geometric approach, or an ap-
proach based on the solution of the Second-Order Cone
Programming (SOCP). In the geometric approach, we can
consider already established waypoint locations instead of
the target locations. Then, the value function becomes
D(pppk, pppi, ppp j), and pppi can be determined as the closest point
to the line segment (pppk, ppp j). The geometric approach may
seem conceptually suitable; however, it does not scale to
more than three locations. Since we aim to utilize the stud-
ied HNN in the sequence-dependent problems with var-
ious lengths of the sequences in the future, we utilize a
more general formulation of the SOCP. Thus the value of
the function D together with the partial waypoint location
is determined by the solution of the corresponding SOCP
that is a convex optimization Problem 2 with affine con-
straints solved optimally by an optimization solver.

Problem 2 Second-Order Cone Programming (SOCP).

min
m−1

∑
i=0

fff i (14)

s.t.
fff 2

i ≥ wwwT
i ·wwwi ∀i = 0, . . . ,m (15)

wwwi = xxxi+1− xxxi ∀i = 0, . . . ,m−1 (16)
‖xxxi− sssi‖ ≤ δ

2 ∀i = 0, . . . ,m (17)
xxx1 = sss1,xxxm = sssm (18)
xxxi ∈ R2 ∀i = 0, . . . ,m (19)

Problem 2 stands to determine a set of m waypoint loca-
tions xxxi such that the tour formed by the locations is of the
minimal length. The objective function of Problem 2 is a



linear function that stands to minimize the variable fff (14),
while the constraints represented by Equations (15) to (18)
are met. The optimization problem consists of three vari-
ables fff ∈ Rm, www ∈ Rm,2, xxx ∈ Rm,2 represented as vectors,
where the variable xxx represents the set of waypoint loca-
tions xxxi ∈ R2. The variable www is an auxiliary variable that
denotes the difference in coordinates between two consec-
utive waypoint variables (16), and it is used to calculate
the length of the line segment between two waypoint loca-
tions (15). (17) ensures that each waypoint location xxxi is
within the given communication radius δ from the respec-
tive location sssi. (18) is employed to ensure the start and
end waypoint locations correspond to the start and end lo-
cations, respectively.

Besides, the solution of the SOCP is also utilized in the
improvement of the route after the application of the 2-
Opt heuristic [19]. The proposed HNN-SOCP solver to
the CEOP is overviewed in Algorithm 1.

Algorithm 1: HNN-SOCP for the CEOP
Input: S = {sss1, . . . ,sssn} – a set of target locations
Input: I,R – the number of iterations and repetitions
Input: Tmax – the travel budget
Parameters : a = 1, b = 1, c = 20, d = 1, e = 20,

f = 15, ∆ϑ = 2, ∆t = 0.0001
Output: (Σ, P) – a sequence of visits Σ to the subset of

the target locations Sk with the corresponding
waypoint locations P

1 Φ← init_network(S)
2 foreach i in I do
3 Φ← reset_network()
4 a,b,c,d,e, f ,∆ϑ ,∆t← reset_params()
5 foreach r in R do
6 while local optima is not reached do
7 L← get_random_level()
8 Φ∗,L = 1

1+e
ln(Φ∗,L)−ln(1−Φ∗,L)−

∂E
∂Φ∗,L

∆t

9 (Σ′,P′)← construct_route(Φ)
10 (Σ′,P′)← 2-Opt(Σ′,P′)
11 (Σ′,P′)← SOCP-Opt(Σ′,P′)
12 if L (Σ′,P′)≤ Tmax then
13 f ← f −1

14 else
15 f ← f +1

16 while no. improvements is not reached do
17 if L (Σ′,P′)< Tmax then
18 (Σ′,P′)← insertion(Σ′,P′)

19 else
20 (Σ′,P′)← deletion(Σ′,P′)

21 if L (Σ′,P′)≤ Tmax and R(Σ′,P′)> Rbest
then

22 (Σ,P)← (Σ′,P′)
23 Rbest ←R(Σ′,P′)

24 Φ← adjust_network(Σ′,P′)

25 return (Σ,P)

6 Results

The proposed HNN with the SOCP-based modifications
denoted as the HNN-SOCP has been empirically evalu-
ated and compared with the Set OP based HNN [15] (fur-
ther referred as the HNN) to observe how the continuous
optimization affects the performance of the HNN-based
solution of the CEOP. In addition, the GRASP method [8]
is also considered in the herein reported evaluation study
to show the performance of the HNN-based approaches in
comparison to the currently best (to the best of the authors’
knowledge) performing solver to the CEOP.

The approaches are evaluated on five datasets: Set 64,
and Set 66 of Chao sets [4] and Set 1, Set 2, and Set 3
of Tsiligirides sets [2]. Chao sets contain 40 problem sce-
narios with budgets ranging from 5 to 130, and Tsiligrides
sets contain 49 problem scenarios with budgets varying
from 5 to 110. For each problem instances, the commu-
nication radius δ is selected from δ ∈ {0.5,1.0,1.5,2.0}.
Due to the excessive number of problem instances, de-
tailed results are reported only for five selected instances
with the particular budget Tmax. The selected instances are
with budgets slightly above the median value of budget
ranges for a particular scenario because low budgets are
quite constraining, and high budgets usually allow cover-
ing all locations.

The evaluated HNN-SOCP is implemented in C++
1 us-

ing CPLEX solver [20] for the solution of the SOCP and
the computational environment is a single-core of the In-
tel Core i5-4460 CPU running at 3.2 GHz. The results for
the HNN are adopted from [15] and have been obtained
by a different computational environment. Therefore, the
computational times of the HNN [15] are adjusted by the
factor 0.81 according to [21] to take into account different
environments.

Since all the algorithms are randomized, the evaluation
is performed among several trials, and results are reported
using two performance indicators, %PDB and %PDM, and
the maximal sum of collected rewards R obtained among
the performed trials. The %PDB indicates the quality
of solutions measured as the percentage deviation of the
best solution Rbest obtained among performed trials to the
reference solution Rref, i.e., %PDB = Rbest−Rref

Rref
· 100%.

The %PDM measures the robustness of the found solu-
tions determined as the percentage deviation of the mean
of the sum of collected rewards Ravg over the trials to the
reference solution Rref, and it is computed as %PDM =
Ravg−Rref

Rref
· 100%. The reference value Rref is selected as

the best solution found among all methods and performed
trials. Due to the high number of instances, the reported
results in Table 1 are aggregated values, where %PDB and
%PDM denote the average value of %PDB and %PDM for
the particular scenario with all selected travel budgets.

The particular methods have been parameterized as fol-

1Source codes of the proposed HNN-SOCP are publicly available at
https://github.com/comrob/ceop-hnn-socp.

https://github.com/comrob/ceop-hnn-socp


Table 1: Aggregated performance indicators for the se-
lected CEOP instances.

Problem GRASP [8] HNN [15] HNN-SOCP
%PDB %PDM %PDB %PDM %PDB %PDM

Set 64

δ = 0.5 0.00 2.53 10.53 12.84 10.53 17.58
δ = 1.0 0.00 1.64 5.38 10.63 0.00 1.03
δ = 1.5 0.00 0.18 6.25 6.83 0.00 0.00
δ = 2.0 0.00 0.00 2.68 4.24 0.00 0.00

Set 66

δ = 0.5 0.00 2.51 13.10 15.50 19.65 23.89
δ = 1.0 0.00 2.82 16.50 21.17 5.50 9.58
δ = 1.5 0.00 2.52 16.06 20.91 1.21 4.82
δ = 2.0 0.00 0.40 12.50 16.18 0.00 0.60

Set 1

δ = 0.5 0.00 2.07 9.76 15.85 4.88 6.10
δ = 1.0 0.00 1.09 10.87 13.70 2.17 2.39
δ = 1.5 0.00 2.21 13.46 17.69 3.85 5.77
δ = 2.0 3.51 5.44 17.54 19.82 0.00 0.00

Set 2

δ = 0.5 0.00 1.11 4.44 14.78 2.22 6.22
δ = 1.0 0.00 0.22 4.44 5.78 0.00 5.33
δ = 1.5 0.00 0.22 4.44 4.44 0.00 1.78
δ = 2.0 0.00 0.00 4.44 4.44 0.00 3.67

Set 3

δ = 0.5 0.00 1.64 1.72 6.21 1.72 3.97
δ = 1.0 0.00 0.63 4.76 6.83 0.00 2.22
δ = 1.5 0.00 1.34 7.46 8.81 1.49 1.79
δ = 2.0 0.00 1.53 9.72 11.81 1.39 2.64

Table 2: Results for the selected CEOP instances.

Problem Tmax
GRASP∗ [8] HNN [15] HNN-SOCP

R T [s] R T [s] R T [s]

Set 64

δ = 0.5 45 1140 0.062 1020 157.486 1020 163.699
δ = 1.0 45 1338 0.015 1266 211.228 1338 181.535
δ = 1.5 45 1344 0.005 1260 260.347 1344 191.205
δ = 2.0 45 1344 0.004 1308 292.635 1344 188.050

Set 66

δ = 0.5 60 1145 0.047 995 150.014 920 200.655
δ = 1.0 60 1545 0.032 1290 194.808 1460 217.480
δ = 1.5 60 1650 0.016 1385 219.205 1630 204.701
δ = 2.0 60 1680 0.004 1470 243.154 1680 203.833

Set 1

δ = 0.5 46 205 0.003 185 8.330 195 11.323
δ = 1.0 46 230 0.003 205 11.519 225 9.221
δ = 1.5 46 260 0.003 225 15.039 250 8.484
δ = 2.0 46 275 0.001 235 17.531 285 8.475

Set 2

δ = 0.5 38 450 0.000 430 4.640 440 5.566
δ = 1.0 38 450 0.000 430 5.532 450 3.701
δ = 1.5 38 450 0.000 430 12.482 450 3.643
δ = 2.0 38 450 0.000 430 45.091 450 3.662

Set 3

δ = 0.5 50 580 0.003 570 11.885 570 14.069
δ = 1.0 50 630 0.001 600 14.156 630 13.086
δ = 1.5 50 670 0.002 620 17.079 660 12.400
δ = 2.0 50 720 0.002 650 18.419 710 12.144

∗Solutions of Set 2 are reported with T = 0 [s] in [8], hence the same results are reported here.
They are practically found in less than 1 ms.

lows. The GRASP has been run for 20 trials. The HNN
is executed for 10 trials for 2 iterations and 10 repeti-
tions with the parameters set to a = 1, b = 1, c = 10,
d = 20, e = 10, f = 15, the local minimum threshold
ϑ = 2, the time step ∆t = 0.0001, and the number of sam-
ples is m = 10. The proposed HNN-SOCP is executed
for 10 iterations and 20 repetitions with a slightly adjusted
parameters set to a = 1, b = 1, c = 20, d = 1, e = 20,
f = 15, the local minimum threshold ϑ = 2, and the time
step ∆t = 0.0001. The values of the function D are pre-
computed as a distance matrix, and the computation time
is not included in the reported results since the matrix is
precomputed only once for each scenario regardless of the
travel budget.

The aggregated results are reported in Table 1 and re-
sults for the selected instances in Table 2. Overview of

Set 1, Tmax=46 Set 2, Tmax=38 Set 3, Tmax=50 Set 64, Tmax=45 Set 66, Tmax=60
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Figure 3: Average sum of collected rewards with standard
deviations visualized as the error bars.
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Figure 4: Average computational times of the respective
algorithms with standard deviations visualized as the error
bars.

the results is presented in Fig. 3 and Fig. 4. The reported
results indicate that the proposed HNN-SOPC provides
competitive results in almost half of the presented prob-
lems, and in one case, the HNN-SOCP even outperforms
the GRASP. However, the computational demands of the
HNN-SOCP are significantly higher than of the GRASP,
as depicted in Fig. 4. Overall, the proposed HNN-SOCP
provides higher quality solutions for the problems with
larger radii since the neighborhoods overlap, and we can
collect rewards from multiple locations by one visit.

The SOCP-based modifications overall improve the per-
formance of the HNN-based approach in comparison to
the original HNN to the CEOP [15] based on the explicit
discretization of the disk-shaped neighborhoods. How-
ever, the HNN-SOCP struggles to address problems with
small communication radii. The computational times of
both HNN-based approaches are similar, although the
HNN-SOCP is run with five times more iterations and two
times more repetitions, and thus more solutions are pro-
cessed. It is because the HNN-SOCP has less complex
problem representation, and the network converges faster.



7 Conclusion

In this paper, we report the study of solving the Close
Enough Orienteering Problem (CEOP) by the Hopfield
Neural Network (HNN). The original HNN for the OP
has been combined with the convex optimization approach
of the Second-Order Cone Programming (SOCP) to tackle
the continuous neighborhoods of the CEOP. The proposed
HNN-SOCP has been empirically evaluated and compared
with the GRASP-based approach and the former HNN-
based approach with the explicit discretization of the disk-
shaped neighborhoods utilized as the baseline method. Al-
though the HNN-SOCP does not outperform the GRASP-
based solver, it significantly improves the existing HNN
approaches to the CEOP in terms of the solution quality
that becomes competitive to the GRASP.

In our future work, we aim to study the influence of the
HNN parameters on the performance since the parameters
are an essential part of the HNN. Besides, we also aim
to utilize the HNN, particularly the possibility of the par-
allelization of the energy function, in the solution of the
multi-vehicle and sequence-dependent routing problems.
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