
Syntax Representation in Word Embeddings and Neural Networks – A Survey

Tomasz Limisiewicz and David Mareček
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Abstract: Neural networks trained on natural language
processing tasks capture syntax even though it is not pro-
vided as a supervision signal. This indicates that syntactic
analysis is essential to the understating of language in ar-
tificial intelligence systems. This overview paper covers
approaches of evaluating the amount of syntactic informa-
tion included in the representations of words for different
neural network architectures. We mainly summarize re-
search on English monolingual data on language modeling
tasks and multilingual data for neural machine translation
systems and multilingual language models. We describe
which pre-trained models and representations of language
are best suited for transfer to syntactic tasks.

1 Introduction

Modern methods of natural language processing (NLP) are
based on complex neural network architectures, where lan-
guage units are represented in a metric space [23, 28, 29,
9, 30]. Such a phenomenon allows us to express linguistic
features (i.e., morphological, lexical, syntactic) mathemat-
ically.

The method of obtaining such representation and their
interpretations were described in multiple overview works.
Almeida and Xexéo surveyed different types of static word
embeddings [1], and Liu et al. [18] focused on contextual
representations found in the most recent neural models.
Belinkov and Glass [4] surveyed the strategies of interpret-
ing latent representation. Best to our knowledge, we are
the first to focus on the syntactic and morphological abil-
ities of the word representations. We also cover the latest
approaches, which go beyond the interpretation of latent
vectors and analyze the attentions present in state-of-the-
art Transformer models.

2 Vector Representations of Words

This section introduces several types of architectures that
we will analyze in this work.

2.1 Static Word Embeddings

In the classical methods of language representation, each
word is assigned a vector regardless of its current context.
In the Latent Semantic Analysis [8], the representation was
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obtained by counting word frequency across documents on
distinct subjects.

In more recent approaches, a shallow neural network is
used to predict each word based on context (Word2Vec
[23]) or approximate the frequency of coocurence for a
pair of words (GloVe [28]). One explanation of the effec-
tiveness of these algorithms is the distributional hypothesis
[11]: "words that occur in the same contexts tend to have
similar meanings".

2.2 Contextual Word Vectors in Recurrent Networks

The main disadvantage of the static word embeddings is
that they do not take into account the context of words.
This is especially an issue for languages rich in words that
have multiple meanings.

The contextual embeddings introduced in [29] and [22]
are able to encode both words and their contexts. They are
based on recurrent neural networks (RNN) and are typi-
cally trained on language modeling or machine translation
tasks using large text corpora. The outputs of the RNN lay-
ers are context-dependent representations that are proven
to perform well when used as inputs for other NLP tasks
with much less training data available.

Another improvement of context modeling was possible
thanks to the attention mechanism [2]. It allowed passing
the information from the most relevant part of the RNN en-
coder, instead of using only the contextual representation
of the last token.

2.3 Contextual Representation in Transformers

The most recent and widely used architecture is the Trans-
former [32]. It consists of several (6 to 24) layers, and
each token position in each layer has the ability to attend
to any position in the previous layer using a self-attention
mechanism. Training such architecture can be easily paral-
lelized since individual tokens can be processed indepen-
dently; their positions are encoded within the input em-
beddings. An example of visualization of attention distri-
bution computed in Transformer trained for language mod-
eling (BERT [9]) is presented in Figure 1.

In addition to vectors, Transformer includes latent rep-
resentation in the form of self-attention weights, which are
two-dimensional matrices. We summarize the research on
the syntactic properties of attention weights in Section 5.



Figure 1: Visualization of attention mechanism in Trans-
former architecture. It shows which parts of the text are
important to compute the representation for the word “to”.
Created in BertViz framework [33].

Figure 2: Spatial distribution of word embeddings de-
pends on syntactic roles of words (visualization created by
Ashutosh Singh).

3 Measures of Syntactic Information

This sections describes the metrics used to evaluate syn-
tactic information captured by the word embeddings and
latent representation.

3.1 Syntactic Analogies

In the recent revival of word embeddings[23, 28], a strong
focus was put on examining the phenomenon of encoding
analogies in multidimensional space. That is to say, the
shift vector between pairs of analogous words is approxi-
mately constant, e.g., the pairs drinking – drank, swimming
– swam in Figure 2.

Syntactic analogies of this type are particularly relevant
for this overview. They include the following relations: ad-
jective – adverb; singular – plural; adjective – compara-
tive – superlative; verb – present participle – past partici-
ple. The syntactic analogy is usually evaluated on Google
Analogy Test Set [23]. 1

1The test set is called syntactic by authors; nevertheless, it mostly
focuses on morphological features.

An evaluation example consists of two word pairs rep-
resented by the embeddings: (v1,v2),(u1,u2). We compute
the analogy shift vector as the difference between embed-
dings of the first pair s = v2− v1. The result is positive if
the nearest word embedding to the vector u1 + s is u2.

WA =
|{(v1,v2,u1,u2) : u2 ≈ u1 + v2− v1}|

|{(v1,v2,u1,u2)}|
(1)

3.2 Sequence Tagging

Sequence tagging is a multiclass classification problem.
The aim is to predict the correct tag for each token of a se-
quence. A typical example is the part of speech (POS) tag-
ging. The accuracy evaluation is straightforward: the num-
ber of correctly assigned tags is divided by the number of
tokens.

3.3 Syntactic structure prediction

The inference of reasonable syntactic structures from
word representations is the most challenging task cov-
ered in our survey. There are attempts to predict both the
dependency[12, 31, 15, 7] and constituency trees [21, 13].
Dependency trees are evaluated using unlabeled attach-
ment score (UAS) or its undirected variant (UUAS):

UAS =
#correctly_attached_words

#all_words
(2)

The equation for Labeled Attachment Score is the same,
but it requires predicting a dependency label for each edge.
For constituency, trees we define precision (P) and recall
(R) for correctly predicted phrases.

P =
#correct_phrases

#gold_phrases
, R =

#correct_phrases
#predicted_phrases

(3)

Usually, F1 is reported, which is a harmonic mean of
precision and recall.

3.4 Attention’s Dependency Alignment

In Section 5 we describe the examination of syntactic
properties of self-attention matrices. It can be evaluated
using Dependency Alignment [34] which sums the atten-
tion weights at the positions corresponding to the pairs of
tokens forming a dependency edge in the tree.

DepAlA =
∑(i, j)∈E Ai, j

∑
N
i=1 ∑

N
j=1 Ai, j

(4)

Dependency Accuracy [35, 7, 15] is an alternative met-
ric; for each dependency label it measures how often the
relation’s governor/dependent is the most attended token
by the dependent/governor.

DepAccl,d,A =
|{(i, j) ∈ El,d : j = argmaxAi,·}|

|El,d |
(5)



Notation: E is a set of all dependency tree edges and El,d
is a subset of the edges with the label l and with direction
d, i.e., in dependent to governor direction the first element
of the tuple i is dependent of the relation and the second
element j is the governor; A is a self-attention matrix and
Ai,· denotes ith row of the matrix; N is the sequence length.

4 Morphology and Syntax in Word
Embeddings and Latent Vectors

In this section, we summarize the research on the syntactic
information captured by vector representations of words.
We devote a significant attention to POS tagging, which
is a popular evaluation objective. Even though it is a mor-
phological task, it is highly relevant to syntactic analysis.

4.1 Syntactic Analogies

The first wave of research on the vector representation
of words focused on the statistical distribution of words
across distinct topics – Latent Semantic Analysis [8]. It
captured statistical properties of words, yet there were no
positive results in syntactic analogies retrieval nor encod-
ing syntax.

Google Analogy Test Set was released together with a
popular word embedding algorithm Word2Vec [23]. One
of the exceptional properties of this method was its high
accuracy in the analogy tasks. In particular, the best con-
figuration found the correct syntactic analogy in 68.9 % of
cases.

The GloVe embeddings improved the results on syntac-
tic analogies to 69.3% [28]. Much more significant im-
provement was reported for semantic analogies. They also
outperform the variety of other vectorization methods.

In [24] a simple recurrent neural network was trained
by language modeling objective. The word representation
is taken from the input layer. The evaluation from [23]
shows that Word2Vec performs better in syntactic anal-
ogy task. This observation is surprising because repre-
sentations from RNN were proven effective in transfer to
other syntactic tasks (we elaborate on that in Sections 4.2
and 4.3). We think that possible explanations could be: 1.
the techniques of RNN training have crucially improved
in recent years; 2. syntactic analogy focuses on particular
words, while for other syntactic tasks, the context is more
important.

4.2 Part of Speech Tagging

Measuring to what extent a linguistic feature such as POS
is captured in word representations is usually performed
by the method called probing. In probing, the parameters
of the pretrained network are fixed, the output word rep-
resentations are computed as in the inference mode and
then fed to a simple neural layer. Only this simple layer is
optimized for a new task.

The number of probing experiments rose with the ad-
vent of multilayer 2 RNNs trained for language modeling
and machine translation.

Belinkov et al. [3] probe a recurrent neural machine
translation (NMT) system with four layers to predict part
of speech tags (along with morphological features). They
use Arabic, Hebrew, French, German, and Czech to En-
glish pairs. They observe that adding a character-based
representation computed by a convolutional neural net-
work in addition to word-embedding input is beneficial,
especially for morphologically rich languages.

In a subsequent study [4], the source language of trans-
lation now is English and the experiments are conducted
solely for this language. It is noted that the most mor-
phosyntactic representation is usually obtained in the mid-
dle layers of the network.

The influence of using a particular objective in pre-
training RNN model is comprehensively analyzed by
Blevins et al. [5]. They pre-train models on four objectives:
syntactic parsing, semantic role labeling, machine transla-
tion, and language modeling. The two former objectives
may reveal morphosyntactic information to a larger extent
than other mentioned here settings. Particularly, the probe
of RNN syntactic parser achieves near-perfect accuracy in
part of speech tagging.

The introduction of ELMo [29] brought a remarkable
advancement in transfer learning from the RNN language
model to a variety of other NLP tasks. The authors ex-
amined POS capabilities of the representations and com-
pared the results with the neural machine translation sys-
tem CoVe [22], which also uses RNN architecture.

Zhang et al. [39] perform further experiments with
CoVe and ELMo. They demonstrate that language model-
ing systems are better suited to capture morphology and
syntax in the hidden states than machine translation, if
comparable amounts of data are used to train both systems.
Moreover, the corpora for language modeling are typically
more extensive than for machine translation, which can
further improve the results.

Another comprehensive evaluation of morphological
and syntactic capabilities of language models was con-
ducted by Liu et al. [17]. Probing was applied to a language
model based on the Transformer architecture (BERT)
and compared with ELMo and static word embeddings
(Word2Vec). They observe that the hidden states of Trans-
former do not demonstrate a major increase in probed POS
accuracy over the RNN model, even though it is more com-
plex and consists of a larger number of parameters.

POS tag probing was also performed for languages other
than English. For instance, Musil [25] trains translation
systems (with RNN and Transformer architecture) from
Czech to English and examines the learned input embed-
dings of the model and compares them to a Word2Vec
model trained on Czech.

2Layer numbering in this work: We are numbering layers starting
from one for the layer closest to the input. Please note that original papers
may use different numbering.
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Figure 3: Accuracy of POS tag probing from RNN representation by the pre-training objective.
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Figure 4: Accuracy of POS tag probing from RNN latent
vectors compared with static word embeddings

In Figures 3 and 4, we present a comparison of different
settings for POS tag probing. Each point denotes a pair of
results obtained in the same paper and the same dataset,
but with different types of embeddings or pretraining ob-
jectives. Therefore, we can observe that the setting plotted
on the y-axis is better than the x-axis setting if the points
are above identity function (red dashed line). We cannot
say whether a method represented by another point per-
forms better, as the evaluation settings differ.

Figure 4 clearly shows that the RNN contextualization
helps in part of speech tagging. As expected, the informa-
tion about neighboring tokens is essential to predict mor-
phosyntactic functions of words correctly. It is especially
true for the homographs, which can have various part of
speech in different places in the text.

The influence of RNN’s pre-training task is presented
in Figure 3. Machine translation captures much better POS
information than auto-encoders, which can be interpreted
as translation from and to the same language. It is likely
that the latter task is straightforward and therefore does

not require to encode morphosyntax in the latent space.
The difference between the results of machine translation
and language modeling is small. Zhang et al. [39] show
that using a larger corpus for pre-training improves the
POS accuracy. The main advantage of language models is
that monolingual data is much easier to obtain than parallel
sentences necessary to train a machine translation system.

4.3 Syntactic Structure Induction

Extraction of dependency structure is more demanding be-
cause instead of prediction for single tokens, every pair of
words need to be evaluated.

Blevins et al. [5] propose a feed-forward layer on top
of a frozen RNN representation to predict whether a de-
pendency tree edge connects a pair of tokens. They con-
catenate the vector representation of each of the words and
their element-wise product. Such a representation is fed as
an input to the binary classifier. It only looks on a pair of
tokens at a time, therefore predicted edges may not form a
valid tree.

Another approach, induction of the whole syntactic
structures from latent representations was proposed by He-
witt and Manning [12]. Their syntactic probing is based on
training a matrix which is used to transform the output of
network’s layers (they use BERT and ELMo). The objec-
tive of the probing is to approximate dependency tree dis-
tances between tokens 3 by the L2 norm of the difference
of the transformed vectors. Probing produces the approx-
imate syntactic pairwise distances for each pair of tokens.
The minimum spanning tree algorithm is used on the dis-
tance matrix to find the undirected dependency tree. The
best configuration employs the 15th layer of BERT large
and induces treebank with 82.5% UAS on Penn Treebank
with Stanford Dependency annotation (relation directions
and punctuation were disregarded in the experiments). The

3Tree distance is the length of the tree path between two tokens



result for BERT is significantly higher than for ELMo,
which gave 77.0% when the first layer was probed.

The paper also describes an alternative method of ap-
proximating the syntactic depth by the L2 norm of la-
tent vector multiplied by a trainable matrix. The estimated
depths allow prediction of the root of a sentence with
90.1% accuracy when representation from the 16th layer
of BERT large is probed.

4.4 Multilingual Representations

The subsequent paper by Chi et al. [6] applies the set-
ting from [12] to the multilingual language model mBERT.
They train syntactic distance probes on 11 languages and
compare UAS of induced trees in four scenarios: 1. train-
ing and evaluating on the same languages; 2. training on
a single language, evaluating on a different one; 3. train-
ing on all languages except the evaluation one; 4. train-
ing on all languages, including the evaluation one. They
demonstrate that the transfer is effective as the results in all
the configurations outperform the baselines4. Even in the
hardest case – zero-shot transfer from just one language,
the result is at least 6.9 percent points above the base-
lines (for Chinese). Nevertheless, for all the languages, no
transfer-learning setting can beat the training and evaluat-
ing a probe on the same language.

The paper includes analysis of intrinsic features of the
BERT’s vectors transformed by a probe. Noticeably, the
vector differences between the representations of words
connected by dependency relation are clustered by relation
labels, see figure 5.

Multilingual BERT embeddings are also analyzed by
Wang et al. [36]. They show that even for the multilingual
vectors, the results can be improved by projecting vector
spaces across languages. They use Biaffine Graph-based
Parser by Dozat and Manning [10], which consists of mul-
tiple RNN layers. Therefore, the experiment is not strictly
comparable with probing as the most of syntactic informa-
tion is captured by the parser, and not by the embeddings.
The article compares different types of vector representa-
tions fed as an input to the parser. It is demonstrated that
cross-lingual transformation on mBERT embedding im-
proves the results significantly in LAS of parser trained
on English and evaluated on 14 languages (including En-
glish); on average, from 60.53% to 63.54%. In compar-
ison to other cross-lingual representations, the proposed
method outperforms transformed static embeddings (Fast-
Text with SVD) and also slightly outperforms contextual
embeddings (XLM).

5 Syntax in Transformer’s Attention
Matrices

Besides the vector representations of individual tokens,
the Transformer architecture offers another representation

4There are two baselines: right-branching tree and probing on ran-
domly initialized mBERT without pretraining

Figure 5: Two dimensional t-SNE visualization of probed
mBERT embeddings from [6]. Analysis of the clusters
shows that embeddings encode information about the type
of dependency relations and, to a lesser extent, language.

with a possible syntactic interpretation – the weights of the
self-attention heads. In each head, information can flow
from each token to any other one. These connections may
be easily analyzed and compared to syntactic relations pro-
posed by linguists. In this section, we will summarize dif-
ferent approaches of extracting syntax from attention. We
present the methods both for dependency and constituency
structures.

5.1 Dependency Trees

Raganato and Tiedemann [31] induce dependency trees
from self-attention matrices of a neural machine transla-
tion encoder. They use the maximum spanning tree algo-
rithm to connect pairs of tokens with high attention. Gold
root information is used to find the direction of the edges.
Trees extracted in this way are generally worse than the
right-branching baseline (35.08 % UAS on PUD) and out-
perform it slightly in a few heads. The maximum UAS
is obtained when a dependency structure is induced from
one head of the 5th layer of English to Chinese encoder
- 38.87% UAS. Nevertheless, their approach assumes that
the whole syntactic tree may be induced from just one at-
tention head.

Recent articles focused on the analysis of features and
classification of Transformer’s self-attention heads. Vig
and Belinkov [34] apply multiple metrics to examine prop-
erties of attention matrices computed in a unidirectional
language model (GPT-2 [30]). They showed that in some
heads, the attentions concentrate on tokens representing
specific POS tags and the pairs of tokens are more often
attended one to another if an edge in the dependency tree



Research Transformer Model Type of tree Syntactic
evaluation

Evaluation data Percentage
of syntactic
heads

Raganato and
Tiedemann 2019 [31]

NMT Encoder
(6 layers 8 heads)

Dependency Tree induction PUD [27] 0% - 8%5

Vig and Belinkov 2019
[34]

LM (GPT-2) Dependency Dependency
Alignment

Wikipedia (automati-
cally annotated)

—

Clark et al. 2019 [7] LM (BERT) Dependency Dependency
Accuracy,
Tree induction

WSJ Penn Treebank
[20]

—

Voita et al. 2019 [35] NMT Encoder
(6 layers 8 heads)

Dependency Dependency
Accuracy

WMT, OpenSubtitles
[16] (both automati-
cally annotated)

15% - 19%

Limisiewicz et al. 2020
[15]

LMs
(BERT, mBERT)

Dependency Dependency
Accuracy,
Tree induction

PUD [27], EuroParl
[14] (automatically
annotated)

46%

Mareček and Rosa 2019
[21]

NMT Encoder
(6 layers 16 heads)

Constituency Tree induction EuroParl [14] (automat-
ically annotated)

19% - 33%

Kim et al. 2019 [13] LMs (BERT, GPT2,
RoBERTa, XLNet)

Constituency Tree induction WSJ Penn Treebank
[20], MNLI [37]

—

Table 1: Summary of syntactic properties observed in Transformer’s self-attention heads

connects them, i.e., dependency alignment is high. They
observe that the strongest dependency alignment occurs in
the middle layers of the model – 4th and 5th. They also
point that different dependency types (labels) are captured
in different places of the model. Attention in upper lay-
ers aligns more with subject relations whereas in the lower
layer with modifying relations, such as auxiliaries, deter-
miners, conjunctions, and expletives.

Voita et al. [35] also observed alignment with depen-
dency relations in the encoders of neural machine transla-
tion systems from English to Russian, German, or French.
They have evaluated dependency accuracy for four depen-
dency labels: noun subject, direct object, adjective mod-
ifier, and adverbial modifier. They separately address the
cases where a verb attends to a dependent subject, and sub-
ject attends to governor verb. The heads with more than
10% improvement over a positional baseline are identified
as syntactic 6. Such heads are found in all encoder lay-
ers except the first one. In further experiments, the authors
propose the algorithm to prune the heads from the model
with a minimal decrease in translation performance. Dur-
ing pruning, the share of syntactic heads rises from 17%
in the original model to 40% when 75% heads are cut out,
while a change in translation score is negligible. These
results support the claim that the model’s ability to cap-
ture syntax is essential to its performance in non-syntactic
tasks.

A similar evaluation of dependency accuracy for the
BERT language model was conducted by Clark et al. [7].

5A head is syntactic when the tree extracted from it surpasses the
right-branching chain in terms of UAS. It is a strong baseline for syntactic
trees in English. Thus only a few heads are recognized as syntactic.

6In the positional baseline, the most frequent offset is added to the in-
dex of relation’s dependent/governor to find its governor/dependent, e.g.,
for adjective to noun relations the most frequent offset is +1 in English

They identify syntactic heads that significantly outperform
positional baseline for the following labels: prepositional
object, determiner, direct object, possession modifier, aux-
iliary passive, clausal component, marker, phrasal verb
particle. The syntactic heads are found in the middle layers
(4th to 8th). However, there is no single head that would
capture the information for all the relations.

In another experiment, Clark et al. [7] induce a depen-
dency tree from attentions. Instead of extracting structure
from each head [31] they use probing to find the weighted
average of all heads. The maximum spanning tree algo-
rithm is used to induce the dependency structure from the
average. This approach produces trees with 61% UAS and
can be improved to 77% by making weights dependent on
the static word representation (fixed GloVe vectors). Both
the numbers are significantly higher than right branching
baseline 27%.

A related analysis for English (BERT) and the multilin-
gual variant (mBERT) was conducted by Limisiewicz et
al. [15]. We have observed that the information about one
dependency type is split across many self-attention heads
and in other cases, the opposite happens - many heads have
the same syntactic function. They extract labeled depen-
dency trees from the averaged heads and achieves 52%
UAS and show that in the multilingual model (mBERT)
specific relation (noun subject, determines) are found in
the same heads across typologically similar languages.

5.2 Constituency trees

There are fewer papers devoted to deriving constituency
syntax tree structures.

Mareček and Rosa [21] examined the encoder of the
machine translation system for translation between En-
glish, French, and German. We observed that in some
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Figure 6: Self-attentions in particular heads of a language
model (BERT) aligns with dependency relation adjective
modifiers and objects. The gold relations are marked with
Xs.

heads, stretches of words attend to the same token form-
ing shapes similar to balustrades (Figure 7). Furthermore,
those stretches usually overlap with syntactic phrases. This
notion is employed in the new method for constituency tree
induction. In their algorithm, the weights for each stretch
of tokens are computed by summing the attention focused
on the balustrades and then inducing a constituency tree
with CKY algorithm [26]. As a result, we produce trees
that achieve up to 32.8% F1 score for English sentences,
43.6% for German and 44.2% for French. 7 The results can
be improved by selecting syntactic heads and using only
them in the algorithm. This approach requires a sample of
100 annotated sentences for head selection and raises F1

7The evaluation was done on 1000 sentences for each language
parsed with supervised Stanford Parsed
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Figure 7: Balustrades observed in NMT’s encoder tend to
overlap with syntactic phrases.

by up to 8.10 percent points in English.
The extraction of constituency trees from language

models was described by Kim et al. [13]. They present
a comprehensive study that covers nine types of pre-
trained networks: BERT (base, large), GPT-2 [30] (orig-
inal, medium), RoBERTa [19] (base, large), XLNet [38]
(base, large). Their approach is based on computing dis-
tance between each pair of subsequent words. In each step,
they are branching the tree in the place where the distance
is the highest. The authors try three distance measures on
the vector outputs of the encoder layer (cosine, L1, and L2
distances for pairs of vectors) and two distance measures
on the distributions of token’s attention (Jason-Shannon
and Hellinger distances for pairs of distribution). In the
former case, distances are computed only per layer and in
the latter case for each head and average of heads in one
layer. The best setting achieves 40.1% F1 score on WSJ
Penn Treebank. It uses XLNet-base and Helinger distance
on averaged attentions in the 7th layer. Generally, attention
distribution distances perform better than vector ones. Au-
thors also observe that models trained on regular language
modeling objective (i.e., next word prediction in GPT, XL-
Net) captured syntax better than masked language models
(BERT, RoBERTa). In line with the previous research, the
middle layers tend to be more syntactic.

5.3 Syntactic information across layers

Figure 8 summarizes the evaluation of syntactic informa-
tion across layers for different approaches. In Transformer-
based language models: BERT, mBERT, and GPT-2, the
middle layers are the most syntactic. In neural machine
translation models, the top layers of the encoder are the
most syntactic. However, it is important to note that the
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Figure 8: Relative syntactic information across attention models and layers. The values are normalized so that the best
layer for each method has 1.0. The methods A), B), C), and G) show undirected UAS trees extracted by probing the n-th
layer [12, 6]. The method D) shows the dependency alignment averaged across all heads in each layer [34]. The methods
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NMT Transformer encoder is only the first half of the
whole translation architecture, and therefore the most syn-
tactic layers are, in fact, in the middle of the process. In
RNN language model (ELMo) the first layer is more syn-
tactic than the second one.

We conjecture that the initial Transformer’s layers cap-
ture simple relations (e.g., attending to next or previous
tokens) and the last layers mostly capture task-specific in-
formation. Therefore, they are less syntactic.

We also observe that in supervised probing [12, 6], bet-
ter results are obtained from initial and top layers than in
unsupervised structure induction [31, 15], i.e., the distri-
bution across layers is smoother.

6 Conclusion

In this overview, we survey that syntactic structures are
latently learned by the neural models for natural language
processing tasks. We have compared multiple approaches
of others and described the features that affect the ability to
capture the syntax. The following aspects tend to improve
the performance on syntactic tasks such as POS tagging:

1. Using contextual embeddings from RNNs or
Transformer outperforms static word embeddings
(Word2Vec, GloVe).

2. Pretraining on tasks with masked input (language
modeling or machine translation) produces better
syntactic representation than auto encoding.

3. The advantage of language modeling over machine
translation is the fact that larger corpora are available
for pretraining.

Our meta-analysis of latent states showed that the most
syntactic representation could be found in the middle lay-
ers of the model. They tend to capture more complex re-
lations than initial layers, and the representations are less
dependent on the pretraining objectives than in the top lay-
ers.

We have shown to what extent systems trained for a non-
syntactic task can learn grammatical structures. The ques-
tion we leave for further research is whether providing ex-
plicit syntactic information to the model can improve its
performance on other NLP tasks.
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Mititelu, Yusuke Miyao, Simonetta Montemagni,
Amir More, Laura Moreno Romero, Shunsuke
Mori, Bohdan Moskalevskyi, Kadri Muischnek,
Nina Mustafina, Kaili Müürisep, Pinkey Nainwani,
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