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Abstract: In practical applications, the use of computa-
tional modeling has been industry-wide adopted to speed
up product development as well as reduce physical test-
ing costs. Such models of complex or large systems are,
however, often computationally expensive, hence solution
times of hours or more are not uncommon. Addition-
ally, as these models are typically evaluated using black-
box solvers, the direct study of relations between design
parameters renders demanding in terms of computational
time and provides poor engineering insight and under-
standing.

To address this, a modular framework integrating com-
putation automation with the use of surrogate-based mod-
eling, optimization and visualization techniques is pre-
sented. The framework is built in the Python programming
language. Its use is illustrated on a study of the side impact
response of a car body using an artificial neural network as
a surrogate together with the NSGA-III genetic algorithm
for optimization.

1 Introduction

Nowadays, solving of many engineering problems, such
as the development of transport vehicles, involves the use
of computationally expensive simulations, such as compu-
tational fluid dynamics (CFD), the finite element method
(FEM), or others, as well as their combinations, e.g. the
fluid-structure interaction (FSI). These will be further ad-
dressed as simulations. In practice, typically, such sim-
ulations suffer from two major drawbacks. Firstly, even
thought the computational power available to an engineer
for running such simulations has been gradually increas-
ing over years, in practice the requirements on the model
accuracy had increased as well [48], and as such, there is
still a large quantity of simulations that take hours, days
and occasionally even more, just to evaluate a single de-
sign [43]. Secondly, they are often of a black-box nature,
meaning that given an input ~X , an output ~Y is returned
to the user without an accompanying explicit relation be-
tween the two [41].

Copyright c©2020 for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC BY
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Within a practically infinite space of design choices for
the system under study, the task of an engineer is to iden-
tify the most influential design parameters and understand
their degree of influence. Through the use of simulations,
often the next goal is to meet a set of threshold require-
ments on selected targets, while minimizing or maximiz-
ing a certain property of the overall system, such as cost,
weight, etc. Mathematically, this can be formulated as a
multi-objective optimization problem with the goal to:

minimize fm(~X) m = 1, ...,P (1)

subject to
g j(~X)≤ 0 j = 1, ...,Q (2)

hk(~X) = 0 k = 1, ...,R (3)

XL
i ≤ Xi ≤ XU

i i = 1, ...,nin (4)

where f are the objective functions, g and h are the in-
equality and equality constraints, respectively, and ~X is
the vector of design variables in the design search space
bounded by XL

i and XU
i from the lower and upper side,

respectively [47]. In case of multi-objective optimization
when m≥ 2, the notion of singular optimality needs to be
augmented as there is typically not a single solution ~X∗
minimizing all of the objectives of Equation 1 at the same
time. In such cases, the concept of so-called Pareto opti-
mality is considered [36], which can be loosely described
as: “for each solution that is contained in the Pareto set,
one can only improve one objective by accepting a trade-
off in at least one other objective” [39].

Due to said high computational costs and the black-box
nature of simulations, multi-objective parametric studies
and optimizations often become too lengthy and imprac-
tical for actual application [42, 41]. The lack of deriva-
tives required for derivative-based optimization methods,
such as in Liu and Reynolds [35] or Peitz and Dellnitz
[39], can be addressed by the use of derivative-free op-
timization (DFO) methods, such as genetic, evolutionary
or swarm algorithms [27]. However, these methods com-
pensate for the lack of gradients by evaluating on larger
sets of candidate solutions, which leaves the issue of high
computational cost unresolved. One way to resolve that
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is by using a model of lower fidelity requiring less com-
putational resources [33]. However, the accuracy of such
lower fidelity models can become unacceptably low. As
an alternative, a surrogate-based approach can be adopted
[20, 5, 12].

A surrogate model, also addressed as a metamodel, is
a mathematical model that upon training approximates the
response of the original model based on a sample set from
the design space [31]. Such computationally cheap surro-
gate can then be called during the optimization defined by
Equation 1-4 instead of the original, expensive simulation.
In addition, the use of a surrogate model opens up several
new opportunities, which include:

1. using the surrogate as a substructure of a larger model
[34]

2. cheap numerical evaluation of gradients using the
surrogate

3. repeating the optimization for various formulations of
the problem (within the bounds of validity of the sur-
rogate) - compare various formulations of the same
car side impact problem: Youn et al. [54], Guo,
Wang, and Wang [26], and Tanabe and Ishibuchi [46]

4. design exploration through sensitivity studies and vi-
sualization [49, 38]

On the other hand, a disadvantage is the added complex-
ity of the overall task due to introduction of extra tuning
parameters related to the surrogate model and its training.

Due to the often black-box nature of simulations, it is
not possible to a-priori quantify the sample set size re-
quired for an accurate training of the surrogate [4]. There-
fore, for a purely optimization-focused approach, in gen-
eral it is not guaranteed that such surrogate-based ap-
proach is indeed computationally cheaper than optimiz-
ing directly using the original model. Nevertheless, it has
been established that for budget-limited tasks with expen-
sive simulations, it is indeed the case [44, 24, 38]. This is
the case especially for multi-objective optimization, when
the exploration of the full Pareto front is required. Con-
firming results of an empirical comparison can be found
e.g. in Voutchkov and Keane [50] on benchmark problems
and in Bessa and Pellegrino [3] on a practical problem of
the design of ultra-thin carbon fiber deployable shells.

Example uses of surrogate-based optimization (SBO)
from the area of structural optimization include the de-
sign of 3D weaving composite stiffened panels by Fu,
Ricci, and Bisagni [21], hypersonic vehicle’s metallic ther-
mal protection by Guo et al. [25] or a wellhead connec-
tor for a subsea Christmas tree by Zeng et al. [55]. The
SBO methodology has been already integrated into vari-
ous commercial software packages, such as OptiSLang1

1ANSYS OptiSLang, https://www.dynardo.de/en/
software/optislang/ansys-optislang.html [Accessed on
03/08/2020]

or HEEDS2. This can be often practical, but not always.
Firstly, the user must rely only on the available capabilities
of such software packages, which can sometimes be insuf-
ficient for the application at hand. Secondly, especially for
individuals or smaller businesses, the license price for such
packages can be too expensive, thus inaccessible. Last but
not least, for research purposes, commercial solutions of-
ten offer only a limited insight into the used methods and
source code, leading to limited customabilizity, a feature
often required for research.

In this paper, the core of a developed Python open-
source SBO framework is presented. In Section 2, the dif-
ferent elements of the proposed framework are presented.
Next, in Section 3, the use of the framework is demon-
strated on a benchmark problem. Finally, the capabilities
of the framework are summarized in Section 4 together
with an outline of suggested further developments.

2 Proposed method

This framework integrates elements of surrogate-based
modeling and automated model selection together with
derivative-free optimization. One of the driving ideas
behind it is modularity, such that it could be read-
ily customized for the user’s particular needs. Upon
completion of the master thesis project, the framework
will be made publicly available at github.com/apanzo/
optimization.

The top-level illustration of the framework is shown in
Figure 1. As a starting point, the simulation is prepared,
and the framework settings, such as the selection of a sur-
rogate model and optimization algorithm, are set. Both
the use of a surrogate and performing optimization are
optional. The surrogate loop contains sample selection,
model evaluation, results storage and retrieval, optimiza-
tion and training of the surrogate, and finally accessing its
convergence. The optimization loop consists of the ac-
tual optimization, and, in case that a surrogate model is
used, a verification of the obtained results against the orig-
inal model. In the following subsections, key parts of the
framework are discussed in the order from optimization
start to end as indicated in Figure 1.

2.1 Sampling strategy

Considering the expensiveness of the simulations ad-
dressed by this framework, one of the keys of success is
the smart selection of the sample points within the ex-
plored design space, such that the surrogate model obtains
a sufficiently representative sample to be trained on. For
this purpose, simpler sampling strategies such as the grid
search or random search are not suitable. The former is
expensive as it does not benefit from sampling in multiple
dimensions, as the sample projection on each of the input’s

2HEEDS MDO, https://www.redcedartech.com/index.
php/solutions/heeds-software [Accessed on 03/08/2020]
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Figure 1: Diagram of the proposed framework

axes is independent of the number of inputs dimensions,
and in the case of re-sampling with a finer sample, either
the new sample discards all of the previous samples, or the
re-sampling is to be done on an integer multiple of sam-
ples per input dimension of the current sample. The ran-
dom search does not suffer from those, but its weakness
lies in its poor space-filling property, thus a large amount
of samples is required to generate a sufficiently represen-
tative sample.

As a baseline within this framework, quasi-random
sampling strategies are implemented. In particular, the two
available sampling methods are the cell centered Latin hy-
percube sampling (LHS) [14, 18] and the original Halton
sequence sampling [13]. The principal logic behind the
LHS method is that it is a sparse grid method where the
projection of the sample on each of the input’s axes con-
tains only one sample per uniform interval. As such, the
sample size is significantly reduced compared to the full
grid. On the contrary, the disadvantage of the poor resam-
pling pertains. This is not the case for the Halton sequence,
which is a multi-dimensional version of the van Der Cor-

put sequence. It is defined as

P = {φq1(Z), ...,φqn(Z)}

with bases q1, ...,qn that are mutually coprime and in prac-
tice taken as the first s primes [13, 22]. φq(Z), the inverse
radix number, is obtained from an integer

Z =
r

∑
i=0

aiqi

where q is the basis and the largest exponent is r =

int
(

lnZ
lnq

)
, and 0≤ ai < q are the coefficients [13, 11], as

φq(Z) =
r

∑
i=0

aiq−(i−1)

The advantage is that each point of the sequence is gen-
erated independently of the previous point. An example
is shown in Figure 2. It is noted however that the origi-
nal method is suitable only up to 8 input dimensions, as in
higher dimensions, spurious correlations between the in-
puts occur, considerably deteriorating the sample’s quality
[13]. This can be leveraged by using its modified versions
that address this issue [19, 37].

Figure 2: Example of a Halton sample on the unit range

To take it one step further, considering that these, so
called static sampling methods, only take into account the
space-filling criteria, that is the input’s quality, and not the
nature of the response, that is the output’s quality, an adap-
tive sampling method that does so is implemented as well.
As an example, if S is the full design space and the re-
sponse of a model is flat everywhere apart from the region
D ∈ S, where there is a valley in the response, only a few
samples are required outside D, while in D more samples
are required to train the surrogate. The selected method
is from Eason and Cremaschi [17], which determines the
new samples based on a balance of the variance in pre-
dictions of the K models from cross-validation, explained
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further in subsection 2.4, for exploitation and the distance
to the nearest sample for exploration, each normalized by
its maximum. The new sample is chosen where the sum of
the two criteria is the largest.

2.2 External evaluator

For the practical use of the framework, it has to be able to
interact with external solvers that evaluate the simulations.
This independence is one of the main strong points of the
framework, as it allows to integrate results from different
solvers. As an example, for a FSI study, different FEM
and CFD solvers can be used and their results integrated
within this framework.

The implementation of different evaluators is applica-
tion dependent, therefore the interaction with each new
solver has to be customized according to its specific in-
terface. In the course of development of this framework,
a custom ANSYS evaluator has been integrated. For its
use, the procedure is to firstly build a parametric model
inside the ANSYS Workbench environment3, with the in-
put and output parameters defined. These parameters are
passed over by name to the framework together with the
path to the prepared model. The rest of the interaction is
automated. After determining the sample points, firstly the
framework checks that there are available free licenses for
carrying out the computations. If there are available li-
censes, a request is sent to ANSYS Workbench to evaluate
the selected sample points. Once all the samples have been
evaluated, the framework retrieves the defined output pa-
rameters and integrates them within its internal database.

2.3 Surrogate model

Among others, the most commonly used surrogate-
modeling techniques are kriging, radial basis functions
(RBF), artificial neural networks (ANN) or support vector
machines (SVM) [17, 12]. The former two are integrated
within the framework using the Surrogate Modeling Tool-
box (SMT) library [10] natively, while the ANN is inte-
grated as a custom class into SMT using the TensorFlow
library [1]. In the course of the reported research, the ANN
has been used due to previous experience in the research
group, therefore it is elaborated upon closer in this section.

In the general sense, ANNs are one of the subclasses
of the broader field of machine learning (ML), which in
turn is a subclass of artificial intelligence (AI). Most com-
monly, the ANNs are trained using a form of supervised
learning, that is by providing both the input and output
data during the training process. They can be used both
for classification, that is categorization of the input content
into different sub-classes with common features, as well as
regression. For the purpose of optimization, regression is

3ANSYS Workbench Platform, https://www.ansys.com/
-/media/Ansys/corporate/resourcelibrary/brochure/
workbench-platform-121.pdf [Accessed on 05/08/2020]

typically used and the task of learning is to obtain the un-
known relation between input and output data.

The core concept of an ANN is a single neuron. Inspired
by the function of a real neuron inside the living brain, the
mathematical model from input x to output y consists of
performing a weighted summation of all the inputs

z =
nin

∑
i=1

wixi (5)

and applying a non-linear transformation

y = g(z)

with g the so-called activation function. Common activa-
tion functions are the logistic sigmoid

g(z) =
1

1+ e−(z)
,

rectified linear unit (ReLU)

g(z) = max(0,z)

[23], or Swish

g(z) = z
1

1+ e−(z)

[40] functions.
To provide a flexible range of outputs based on the

neuron’s activations, the neurons are organized into lay-
ers. The typical neural network architecture for regres-
sion is the multi-layer perceptron (MLP), consisting of
the first and last layers containing the amount of neurons
equal to the number of input and output dimensions, re-
spectively, and a selected number of intermediate, hid-
den layers, which can each contain an arbitrary amount of
neurons. Building upon the Kolmogorov’s theorem [32],
Hecht-Nielsen, Ne, and Corporation [28] proved that using
specific activation functions, even an ANN with a single
hidden layer of neurons can approximate any continuous
function. However, it is not guaranteed that such ANN
can actually learn such representation [6], and in practice,
using multiple hidden layers of neurons can simplify the
learning process [29].

The training of the network is equivalent to the determi-
nation of appropriate weights w from Equation 5 for each
neuron, such that the desired mapping x→ y from the input
data to the output data is obtained. The common training
method is the backpropagation method, where the predic-
tion error E after the forward pass is propagated back to
the contribution to that error from each neuron, and their
weights are updated in each training iteration. This is
schematically illustrated in Figure 3.

Independent of the selected surrogate model, to obtain
an accurate model, a step of crucial importance is the
selection of the model’s hyperparameters, that is the pa-
rameters that are not directly learned through the training
process. This is specific for each of the surrogate mod-
els. As an example, in the case of the ANN, these are
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Figure 3: Illustration of backpropragation

the amount of hidden layers and neurons in each of them,
the learning rate parameter, regularization parameters or
the activation function choice. For this purpose, model-
specific methods, such as the neuron pruning [56], where
the neurons of low significance are removed, as well as
model-independent, such as a random search, Bayesian
optimization or meta-heuristic optimization approaches,
can be used.

At this stage, a random search and Bayesian optimiza-
tion (BO) [45] are included for the ANN using Keras
Tuner4. A hypermodel is defined with default hyperpa-
rameters stored in a configuration file. Within, these hy-
perparameters can be either changed manually, or speci-
fied to be subject of automatic tuning. For ANNs, the tun-
able hyperparameters are: number of hidden layers, num-
ber of neurons in each layer, initial learning rate, activation
function and the regularization parameter. The current im-
plementation of the BO allows only setting a fixed opti-
mization budget, therefore the selected option is to start
with an initial random sample of 3x times the number
of optimized hyperparameters, and stop at 10x times the
number. The acquisition function is the upper-confidence
bound [45]. The frequency of hyperparameter optimiza-
tion is set as at the first iteration, and then every time the
sample set size increases by 50%.

2.4 Surrogate’s convergence

A metric of the surrogate’s accuracy of choice is to be
tracked to determine the convergence of the sample set
size. In our approach, the tracked metric is the mean abso-
lute error (MAE)

EMAE =
∑

N
i=1 |ypred− ytrain|

N

where ypred is the prediction of the surrogate, ytrain is the
training value and N is the total number of samples. Since
the amount of data is relatively low, to perform validation
of the trained surrogate model, the K-fold cross-validation
approach is adopted [9]. In each iteration, the data is split
into a set of K-folds, and K surrogates are trained each
time leaving out a different fold of the data. This hold-
out set is used to calculate the generalization error of the
model on previously unseen data. With increasing size of
the data set, leaving out the holdout set will affect the sur-
rogate’s prediction less and less, so the average EMAE over
the K surrogates will decrease. The resampling loop is
terminated when a satisfactory level of EMAE is attained.

4keras-tuner, https://github.com/keras-team/
keras-tuner [Accessed on 06/08/2020]

2.5 Optimization algorithm

Once the surrogate model has been trained to a desired
level of accuracy, the optimization run can be started.
Within this framework, various population-based opti-
mization algorithms are provided by the Pymoo library
[7]. Pymoo provides implementations of a series of
population-based algorithms, including:

• Differential Evolution

• Genetic Algorithm

• BRKGA

• Nelder Mead

• Pattern Search

• CMAES

• NSGA-II and NSGA-III

• RNSGA-II and RNSGA-III

• UNSGA-III

• MOEA/D.

Among those, the most commonly used in the industry is
the NSGA-II method [15] and its updated NSGA-III ver-
sion [16] adapted for the many-objective cases of m > 2,
where an even exploration of the Pareto-front is accom-
plished by the use of reference directions. A generic
scheme of a genetic algorithm is shown in Figure 4. The
idea behind is similar to Darwinian evolution, that is
that once the initial population of solutions is generated
(Step 1), the fitness of the individuals is evaluated (Step
2) and only the fittest survive in each generation (Step
3). From those, a selection parent selection takes places
(Step 4), from which new offsprings are generated through
crossover (Step 5). Additionally, a random mutation is ap-
plied to their genome (Step 6) to maintain diversity within
the population and explore the design space better. At the
end of each iteration, the convergence criterion is evalu-
ated, and either the optimization stops, or continues with a
new generation [52].

The available termination criteria are the maximum:

• number of evaluations

• number of generations

• time

• design space tolerance

• objective space tolerance.

Due to the computational cheapness of the surrogate, the
optimization process is not limited by the computational
cost of evaluating the simulation, such as the maximal
number of its evaluations. Therefore, the selection of the
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Figure 4: A generic flowchart of a genetic algorithm

termination criterion can focus purely on the convergence
of the optimization. In this case the last two criteria are
of main importance. A threshold tolerance on the metrics
tracking the evolution of solutions in the design or objec-
tive space is defined, and if the solutions in the specified
amount of last iterations do not improve over this thresh-
old, the optimization is terminated. For robustness pur-
poses, also the maximal amount of evaluations or gener-
ations can be specified, e.g. for cases when the optimal
solutions oscillate around some value, and thus in the de-
fined window would otherwise never have converged.

It is also possible to enter the optimization directly using
the original model without constructing the surrogate. In
this case however, for an expensive simulation, the choices
on the optimization algorithm and its components, espe-
cially the population size and number of generated off-
springs in each generation, have to be more carefully se-
lected with respect to the number of required simulations.

2.6 Result verification

Once an optimum (set) has been found, given that this op-
timum has been found based on the surrogate, it is impor-
tant to verify it’s accuracy. In particular, it could be that the
algorithm has found an optimum that lies in a spurious ex-
tremum caused by the surrogate’s inaccuracy which does
not pertain to the original model. Therefore, by submitting
a sample from the Pareto optimal set back to an evaluation
using the original model, it can be verified whether the ob-
tained solutions indeed pertain to the original model. If
the mean or maximal error within this verification exceeds
a pre-defined tolerance, the surrogate is retrained on an en-
larged sample, and the optimization occurs again, as seen
in Figure 1.

2.7 Implementation notes

As an important implementation note, the data is normal-
ized within the internal data flow. This is done such that
common settings can be used across different problems,
as well as for a single problem to treat inputs and out-
puts of different magnitudes comparably. Not doing so
would mean that for example when the prediction error is
summed, the weight in kilograms would completely dom-
inate deformation in millimeters, which is undesirable.
Therefore, all the inputs and outputs are normalized by
dividing each quantity with its absolute maximal value. In
such a way, all the data is guaranteed to lie within the [-
1,1] range, while maintaining its sign, conforming to the
constraint violation formulation in Equation 2.

3 Illustrative example

As an illustrative example of a practical problem, the re-
sults on a parametrized nonlinear FEM simulation of a car
side impact problem [30] ran using the proposed frame-
work are presented in this section.

3.1 Model description

The design space is defined by 7 input parameters

0.5≤ x1 ≤ 1.5
0.45≤ x2 ≤ 1.35

0.5≤ x3 ≤ 1.5
0.5≤ x4 ≤ 1.5

0.875≤ x5 ≤ 2.625
0.4≤ x6 ≤ 1.2
0.4≤ x7 ≤ 1.2

that represent the thicknesses of structural members such
as B-pillars, beams or the floor. A single solution was,
at the time of the problem’s publication, reported to take
about 20h [54]. Even thought this time has likely reduced
with today’s hardware, it is still a good illustrative example
of surrogate-based modeling.

For the purpose of benchmarking, the response has been
parametrized by analytical expressions, which are pre-
sented hereafter [30]. The 3 objectives of the design study
are to minimize the structural weight, impact force on the
passenger and average velocity of the side members that
absorbs the impact load, represented as

f1(~x)≡W = 1.98+4.9x1 +6.67x2 +6.98x3 +4.01x4

+1.78x5 +0.00001x6 +2.73x7

f2(~x) = F

f3(~x) = 0.5(VMBP +VFD)

6



respectively. In addition, there are 10 constraints that take
into account criteria such as the abdomen load

g1(~x) = 1.16−0.3717x2x4−0.0092928x3 ≤ 1

viscous criteria

g2(~x) = 0.261−0.0159x1x2−0.06486x1−0.019x2x7

+0.0144x3x5 +0.0154464x6 ≤ 0.32

g3(~x) = 0.214+0.00817x5−0.045195x1−0.0135168x1

+0.03099x2x6−0.018x2x7 +0.007176x3

+0.023232x3−0.00364x5x6−0.018x22≤ 0.32

g4(~x) = 0.74−0.61x2−0.031296x3−0.031872x7

+0.227x2
2 ≤ 0.32

rib deflections

g5(~x) = 28.98+3.818x3−4.2x1x2 +1.27296x6

−2.68065x7 ≤ 32

g6(~x) = 33.86+2.95x3−5.057x1x2−3.795x2

−3.4431x7 +1.45728≤ 32

g7(~x) = 46.36−9.9x2−4.4505x1 ≤ 32

pubic symphysis force

g8(~x)≡ F = 4.72−0.5x4−0.19x2x3 ≤ 4

and velocities of structural members at impact

g9(~x)≡VMBP = 10.58−0.674x1x2−0.67275x2 ≤ 9.9

g10(~x)≡VFD = 16.45−0.489x3x7−0.843x5x6 ≤ 15.7

[54].

3.2 Setup and user interaction

The format of the user input using the JSON formatting5

is shown below:

1 {
2 "data": {
3 "problem ": "carside",
4 "evaluator ": "benchmark",
5 "sampling ": "halton",
6 "default_sample_coef ": 10,
7 "resampling ": "geometric",
8 "resampling_param ": 1.2,
9 "adaptive ": null ,

10 "convergence ": "mae",
11 "convergence_relative ": false ,
12 "convergence_limit ": 0.03
13 },
14 "surrogate ": {
15 "surrogate ": "ann",

5JSON, https://www.json.org/ [Accessed on 07/08/2020]

16 "reoptimization_ratio ": 1.5,
17 "validation ": "kfold",
18 "validation_param ": 5,
19 "append_verification ": false
20 },
21 "optimization ": {
22 "algorithm ": "nsga3",
23 "termination ": "f_tol",
24 "termination_val ": [0.001,5,5 ,150,

null],
25 "constrained ": true ,
26 "error_limit ": 5,
27 "error": "mean"
28 }
29 }

To translate it, the carside problem is evaluated from the
benchmark problems set. The initial sample is 10x the
number of input dimensions, thus 70, and in every ad-
ditional iteration, the sample set is increased by 20%.
The convergence metric for the model is the MAE met-
ric, with a maximal value of 0.03. The ANN is the used
surrogate model and its performance metric is calculated
using 5-fold cross validation. The hyperparameters are
re-optimized when the amount of samples increases by
50%. The optimization uses the NSGA-III algorithm and
its termination is based upon the objective space toler-
ance, which terminates, if there is no change by more
than 0.001 in the tracked metrics: changes of the objective
functions, inverted generational distance (IGD) [2] and the
nadir point, over the last 5 generations. This convergence
check is performed every 5 generations. Additionally, a
maximum of 150 generations is allowed during a single
optimization run. The verification mean error limit is set
as 5%.

Table 1: ANN hyperparameters specification6

Optimizer adam
Activation function relu
Learning rate 0.01
Regularization None
Weight initialization he_normal
Bias initialization zeros
Max epochs 1000
Loss mse
Early stopping delta 0.0001
Early stopping patience 50

Additionally, not present in the input file, the ANN’s
hyperparameters are defined as in Table 1. The output
layer function is linear. The number of hidden layers
and neurons per hidden layer are optimized using BO be-
tween [2,10] and [6,200], respectively. For optimization,

6Module: tf.keras | TensorFlow Core v2.2.0-rc1, https://www.
tensorflow.org/versions/r2.2/api_docs/python/tf/keras
[Accessed on 07/08/2020]

7

https://www.json.org/
https://www.tensorflow.org/versions/r2.2/api_docs/python/tf/keras
https://www.tensorflow.org/versions/r2.2/api_docs/python/tf/keras


the algorithm is initiated with default settings7. The refer-
ence directions are obtained using an energy method from
Blank et al. [8] and their number, which also defines the
population size, is set at 30x the number of objectives, that
is 90 in this case. The amount of generated offsprings is
equal to the population size.

3.3 Results

In Figure 5, the comparison of training data with the pre-
diction of the final trained ANN is shown.

Figure 5: Comparison of the ANN’s trained prediction
against the training output data

The sample set converged after 3 surrogate training iter-
ations, that is with 101 samples evaluated. This is just over
the defined population size in one generation of the ge-
netic algorithm. The optimization took 70 generations to
converge, which amount to 9000 evaluations of the model.
That as a factor of 90x more than the required surrogate
training sample size, confirming the advantage of using the
surrogate. It is noted however, that thus far the selected
optimization parameters are determined empirically on a
trial-and-error basis.

As a validation of the result, the numerical values of the
Pareto optimal solutions are unfortunately not presented in
Jain and Deb [30] nor other paper, however, the qualitative
comparison with their solutions in the objective space as
shown in Figure 6 indicates that the ranges of all 3 objec-
tives fall within nearly identical ranges. The final mean
verification error between the Pareto optimal set and the
original model, as discussed in subsection 2.6, was 2.10%.

4 Conclusion

In this paper, a working core example of a modular
surrogate-based optimization framework was presented.
A more detailed elaboration on the ANN surrogate was

7pymoo - NSGA-III, http://pymoo.org/algorithms/nsga3.
html [Accessed on 07/08/2020]

Figure 6: Scatter plot of the Pareto optimal set

drawn, together with a top-level description of each of
the key submodules. An illustrative working example was
shown, that demonstrated the interaction and use of the
framework together with the efficiency of the surrogate
based approach. Compared to commercial solutions, the
modularity makes it suitable for research purposes, while
the open-source nature is beneficiary for small companies
or users with advanced customization needs.

On top of the correct implementation of the methods,
the main challenges related to its use include the selec-
tion of a particular surrogate and optimization algorithm
or the termination, model selection and convergence cri-
teria. On a fully general scale, the no free lunch (NFL)
theorems [51] prove that an universal optimal choice is im-
possible. However, if the set of problems is limited to an
expected class of practical engineering problems, at least
a good baseline starting point is possible [53]. Thus, the
main aim of the follow-up work is to perform testing on a
wide range of problems with a range of framework setups
to thoroughly establish the influence of the tunable param-
eters of the surrogate model as well as of the optimization
algorithm.

Further suggestions include a quantitative comparative
study of the performance of different proposed adaptive
sampling methods, which show the largest potential on the
overall SBO performance, as the expensive simulations
remains main bottleneck overall. Beyond that, software-
wise, additional suggested features include a graphical
user interface (GUI), inclusion of more surrogate models
from SMT, such as the RBF, extending the amount of sup-
ported evaluators e.g. for Abaqus, and others. Finally, for
practice oriented research, a composite layup optimization
study in terms of the number of plies and their ply angles
is an interesting area of possible application of this frame-
work within the field of advanced structures.
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