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Abstract. Recent research has shown a high correlation between the g
factor (or general intelligence factor) and overall performance in video
games. This relationship is held not only when playing brain games but
also other generalist commercial titles. Unfortunately, these off-the-shelf
games do not allow automatic extraction of in-game behavior data. As a
result, researchers are often forced to manually register the game sessions
metrics, reducing the gathered information and, as a consequence, the
results.
The aim of our work is to help to improve the data collection process used
in those studies by: (1) reimplementing a small subset consisting of three
of the games used in these former studies; (2) developing a telemetry
system to automate and enhance the recording of in-game user events
and variables; and (3) deploying a web platform to conduct an online
experiment to collect such data. With the obtained data, we attempt
to predict a player’s final score in a given game from truncated play
logs (up to a certain point in time) using neural networks and random
forest. This later analysis could potentially allow future studies to shorten
experiment times, thus increasing the viability of game-based intelligence
assessment.

Keywords: Serious games · Intelligence and video games · Computer-
ized assessment · Game Telemetry.

1 Introduction

Since the 1980s, research has been conducted on the use of video games to
measure intelligence [8,13]. [10] showed that intelligence could be measured using
brain training games and later [12] showed that intelligence could also be assessed
through commercial games of other genres.

This last study uses a preselected battery of commercial video games and
carries out measurement protocols where a human evaluator observes the subject
playing and monitors their performance, noting the results: mainly the level
reached by the subject in the game over a fixed amount of time.
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The aim of the work described here is to determine to what extent this
process of assessing intelligence through video games can be further improved if
we can instrumentalize the games to have a finer measure of the performance in
the game. In particular we are interested to see whether we are able to speed up
the measurement process through the use of machine learning techniques.

The rest of the article is structured as follows. Next Section summarizes
related work on the use of video games for intelligence measurement. Next, we
present the games used in our experiments. In Section 4 we describe the telemetry
system developed for the games and the data we have collected for each of the 3
games under consideration. In Section 5, we discuss the results of applying neural
networks and random forest to predict the outcome with truncated versions of
the game traces. Finally, Section 6 proposes future work and concludes the paper.

2 Intelligence and games

The notion of “intelligence” referred to in this paper is the one proposed by
Gottfredson in [7], defined as “a very general mental capability that, among
other things, involves the ability to reason, plan, solve problems, think abstractly,
comprehend complex ideas, learn quickly and learn from experience. It is not
merely book learning, a narrow academic skill, or test-taking smarts. Rather, it
reflects a broader and deeper capability for comprehending our surroundings —
‘catching on’, ‘making sense’ of things, or ‘figuring out’ what to do.”

According to [11], studies on intelligence in video games have been developed
and researched since 1986, using a variety of the existing titles that require
reasoning, planning, learning and performing logical tasks or challenges. All these
characteristics are included in the definition of intelligence mentioned above.

We take as our starting point a study already carried out by researchers
in Psychology [12], which systematically describes an investigation based on
correlations at a latent level between intelligence and video games. Its main
objective was to analyze whether performance in video games can be correlated
with the results obtained in conventional intelligence tests. To do this, data from
134 people who volunteered to complete 10 games of different genres within a
controlled environment were used.

According to [11], these games focus on the study of the following three
cognitive skills within the second stratum of the CHC model (a theory on the
structure of human cognitive abilities, we refer to [9] for more details):

– Gf (fluid reasoning): The use of deliberate and controlled procedures (of-
ten requiring focused attention) to solve novel, “on-the-spot” problems that
cannot be solved by using previously learned habits, schemas, and scripts.
We can observe this skill in games that require the player to come up with
techniques or recognize patterns in order to advance in the resolution of new
problems, for example, escape or puzzle games.

– Gv (visuospatial ability): The ability to make use of simulated mental
imagery to solve problems — perceiving, discriminating, manipulating, and
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recalling nonlinguistic images in the “mind’s eye”. Sokoban or most platform
games (both 2D and 3D) would be examples of video games where this skill
could be assessed.

– Gs (processing speed): The ability to control attention to automatically,
quickly, and fluently perform relatively simple repetitive cognitive tasks. Pro-
cessing speed may also be described as attentional fluency or attentional
speediness. Some examples of videogames in which this skill plays a central
role could be Tetris or Flappy Bird.

The execution of the original study consisted in recording, for each of the
10 games involved, the variables that were thought could influence each of these
cognitive factors and to conduct measurements and calculations on them. After
completing the games, the participants had to undergo 6 different aptitude tests
(two for each of the aptitude or cognitive factors considered) and a video game
habit questionnaire to normalize the results based on prior game experience.

Performance in the games was correlated with standard measures of each
of these factors. The results revealed a correlation value of 0.79 between la-
tent factors representing general intelligence (g) and general video game perfor-
mance (gVG). This finding led to the conclusion that intelligence tests and video
games were both backed by shared cognitive processes, and that mind games are
not the only genre capable of producing performance measures comparable to
standardized intelligence tests.

3 The games

This paper partially replicates the aforementioned study [12] by partially re-
implementing three of the ten games previously used, and extending those three
games with a telemetry system. Through the telemetry system we can record
every action of the player in the game, and thus avoid the need for a human
evaluator to collect data. This eases the sampling and let us go forwards in the
video game possibilities to intelligence assessment. The selected games are:

– Blek [1], mobile version for the study of fluid reasoning (Gf).
– Edge [2], PC version for the analysis of visuospatial ability (Gv).
– Unpossible [3], mobile version for the assessment of processing speed (Gs).

For the three selected games, game mechanics and levels required to replicate
the original study were developed from scratch using Unity 3DTM .

3.1 Blek

Blek [1] is presented as a “canvas” where the player draws (with the mouse on
PC, or with the finger, on touch devices) a short line or stroke that “comes to
life”, repeating itself in a loop until it goes out of the screen or hits an obstacle.

In each level there is a set of circles or coloured balls that must be picked up
by the line as it moves through the screen. To complete a level, the line must
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(a) Level example with one obstacle and
three collectibles.

(b) Trace in motion picking up the second
collectible.

Fig. 1: Blek

collect all these items before finishing its path by leaving the screen from the top
or the bottom. If the player touches one of these target circles while creating the
stroke, it immediately comes to life and the user cannot continue drawing. The
main game mechanic becomes on the player defining a short line and anticipating
its movement. To add more variety, some special objects are introduced that act
as obstacles, always represented as black elements. When the line touches any
of them, its progress stops immediately. The line also stops if the user starts
drawing a new line while the previous one is still moving on the screen. A final
peculiarity is that the trace ”bounces” when it comes into contact with the left
and right sides of the level.

As the player advances through the levels, new types of elements appear, such
as balls with projectiles, which shoot a set of small colored balls when touched
by the stroke. These small balls have the ability to pick up exactly one other
colored ball from the level when they touch it, with both of them disappearing in
the process (noting here that these projectiles can freely pass through any black
obstacle). The game is clearly defined in a puzzle category, and is a particularly
attractive candidate for the evaluation of fluid reasoning (Gf).

3.2 Edge

The game Edge [2] consists of several levels in which the player controls a rolling
cube that can move in 4 possible directions. The world has an isometric perspec-
tive and is composed of discrete squares along which the cube advances. The
player’s objective is to reach the final square of the level in the shortest time
possible while collecting a set of prisms distributed all over the map. The strong
spatial component of this game makes it an appealing candidate when it comes
to evaluating a player’s visuospatial ability (Gv).

As for the controls and mechanics of the game, in the computer version, the
cube is moved using the arrows on the keyboard, or the WASD keys. The cube
can climb up steps, but only one at a time and only if there are no obstacles
above it. It can also be moved and pushed by moving obstacles or platforms, some
of which can be activated with triggers. Other game features include activators
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Fig. 2: Example of a game scene from Edge.

that push the cube a number of squares in a particular direction and brittle floor
blocks that collapse soon after they are stepped on.

At certain levels the player can shrink and become a mini-cube. This mini-
cube is controlled in the same way and has the added feature that it can climb
walls and access places that the normal sized cube could not. The player must
revert to the initial size at some point to be able to complete the level. The
player dies when it falls over the edge of the scene, after which it respawns at
the last checkpoint reached on the map.

3.3 Unpossible

Unlike the other two games, the mechanics of Unpossible are much simpler: the
player rides on the outside of a curved tube in space and tries to hold on as long
as possible by dodging all the obstacles they encounter. The forward movement
is not controlled by the player, and all they can do is turn left or right on the
tube. Every time players hit an obstacle, they die and are “respawned” at the
beginning of the corresponding level.

As the game progresses, the sequence of obstacles becomes more complex
and demanding, requiring the player to react increasingly faster and concentrate
constantly on controlling their movements. Therefore, it is a very promising
candidate to measure the processing speed (Gs), and probably also a certain
amount of visuospatial capacity (Gv).

4 Telemetry System

In order to record the traces of player interaction with our games, a telemetry
system was developed in accordance with the following design decisions and
fundamental requirements:

– The telemetry system must be event-driven in order to: (1) be as general
as possible in terms of the kinds of games it is capable of supporting, and
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Fig. 3: A scene from Unpossible

(2) be versatile enough to allow the inference of different types of metrics
in further processing, even those that were not initially considered. We note
that condition (1) refers to a design consideration in the infrastructure of the
system itself, while (2) is intended to act as a general guideline in selecting
which events to send from games via that system.

– The events, given the nature of the experiments to be conducted, must have
as mandatory fields, at least, identifiers for the game in which they occurred
and the user who produced them, a timestamp marking the instant (follow-
ing the UNIX format) in which they happened, a representative name that
differentiates it from other events in the game, and a dictionary or list of
possible additional parameters that may be necessary for the handling and
contextualization of these events.

– Sending events should be as simple a task as possible from the perspective
of the programmer of each game, ideally resembling the way it is used in
the case of Unity Analytics. This means that the instrumentalization in the
code must be clear and intuitive to use. Furthermore, the corresponding code
must be reusable from any additional game implemented in the same engine
without additional adaptations.

Different available telemetry systems were analysed (Unity, Firebase and
Google Analytics) but they were finally rejected because although they provide
dashboards to analyse aggregated data, they do not allow to get the raw events
for further analysis. So, following the above guidelines, two systems for sending
events to the server were developed, one for use from mobile devices/desktop
applications, and the other adapted to WebGL. The latter was finally used for
experimental data collection.

The events recorded for each game were selected so that the traces produced
during a player’s session would give a sufficiently accurate picture of their be-
havior and performance during the game. In this way, we chose to record the
following significant events:
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– General events: These are common to most games and serve to represent
the player’s progression and the course of the session (tutorial start,
level end, and so on), as well as various frequent events in generalized
games, such as the death of a player (player death).

– Exclusive events: they were specific for each game:

• Blek : the player touches the screen for the first time after a static period
(first touch), start of a drawing of a stroke (begin drawing), start of
the repetition phase of the stroke (begin looping) and collision with an
obstacle in the game (black touched).

• Edge: collectible prism obtained (got item), new progress mark reached
(got checkpoint), and an additional parameter (num moves) at the end-
of-level events to provide a total of movements made in the level.

• Unpossible: no additional events were considered, but new parameters
were added to the player death events with information about the turns
and keystrokes made by the user in each direction. Similarly, new param-
eters were added to determine the point on the curve where the player
died in the corresponding attempt.

5 Predicting performance

The question arises as to whether it would be possible to estimate the intelligence
of a player through shorter experiments, now that more information is available
than in the original study. What we propose is to predict, by means of machine
learning algorithms, the final results of a player in each game. We look only at
the data corresponding to the first minutes of each session. Indeed, if considering
a “truncated” experiment we are able to obtain a robust estimate of a player’s
final progress, it would be reasonable to assume that it is possible to reduce the
duration of the sessions in the experiment without incurring a serious loss of
information.

Following this pattern, in each game, we prepare new data from the “raw”
events in the database, recording selected variables at certain time intervals.
That is, we produce a “timed sequence” comprised of different metrics inferred
from a given player’s event trace. Since these parameters are game dependent
and we tested different models, we will elaborate on each specific case:

– Blek: Blek’s experiment lasts 10 minutes. We process the data from the first
5 minutes, at 3-second intervals. For each timestamp, we record: the current
level, a Boolean variable that indicates whether the player is thinking or not
(by “thinking”, we refer to any moment/time when the player is not drawing
a trace), and the number of curves attempted so far on the current level.

– Edge: In the case of Edge, the trial takes up to 12 minutes. We record
the first 6 minutes of data, at 5-second intervals, due to the slower pace at
which events take place in this game (checkpoints and collectable prisms are
more separated than the distance that could be traveled in 5 seconds). The
variables recorded at each timestamp are: the current level, the percentage
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of checkpoints reached so far in the current level, the percentage of prisms
collected so far in the current level, and the cumulative number of deaths so
far in the current level.

– Unpossible: Of the 5 minutes duration of an experiment session, we collect
data from the first 2.5 minutes, at intervals of 2 seconds. At each timestamp,
we recorded the following 5 indicators: the number of deaths accumulated so
far, the number of times the player has pressed the left/right arrow from the
last death to the moment, and the amount of rotation in each direction from
the last death to the present. A special aspect of this game that should be
mentioned is that these last variables are only reported to the server when
the player dies or the experiment is over, so we don’t have their real values
in each timestamp. To estimate them, we assume that they have a linear
behavior, and we calculate the corresponding proportion at each moment.

The dimensions of the processed data are summarized in Table 1, where the
first column describes the number of individuals that completed the required
play time, the second the resulting number of records generated for every in-
dividual, computed from the sampling frequency and sampling time (Blek: 5
minutes, timestamp each 3 seconds; Edge: 6 minutes, timestamp each 5 seconds;
Unpossible: 2.5 minutes, timestamp each 2 seconds), and the third column the
number of values for every record.

individuals timestamps variables

Blek 68 100 3
Edge 63 72 4

Unpossible 60 75 5

Table 1: Dimensions of the processed data

Table 2 summarizes the variables we are predicting in each game and the
range of values they can take. In each case, we consider two baseline models: one
based on linear regression and a second model that merely predicts the outcome
as an average of the training dataset values. The metric used in this case is the
Mean Absolute Error (MAE).

We first explored the use of neural network-based techniques [5, 6]. For each
game, we train different models of both recurring and feed-forward networks.
It should be noted that for the feed-forward models, the input should be pre-
flattened so as to match the accepted data format. We split the data as follows:
75% for the training set and 25% for the test set. A K-fold cross-validation is
used to select the optimal configuration. The hyperparameters we tuned include
the learning parameters of the networks, from one single layer to three layers
and from 8 neurons to 64 neurons per layer, considering the dataset’s size; a L2
regularization with coefficients in {10i| − 3 ≤ i ≤ 2}; a dropout between 0.2 and
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Variable Range MAE MAE
to predict linear regression mean prediction

Blek no. levels [1,26] 4.588 5.433
Edge no. levels [1,8] 0.605 1.084
Unpossible no. deaths [3,25] 5.043 3.627

Table 2: Baseline models

0.5; and a learning rate in {10i|−5 ≤ i ≤ −1}. The activation function employed
is always ReLu and the optimizer rmsprop.

We include the results from the best performing models for each game in
Tables 3 and 4 . Figures 4 and 5 show the learning curves corresponding to each
model.

(a) Blek: 2 dense lay-
ers of 64 units per layer,
with l2(0.001) regulariza-
tion, without dropout

(b) Edge: 2 dense layers of
64 units per layer, without
regularization or dropout

(c) Unpossible: 2 dense
layers of 64 and 32 units
per layer, with l2(0.0001)
regularization, without
dropout

Fig. 4: Learning curves of the best performing feed-forward models

Best performing feed-forward model Epochs MAE val MAE test

Blek 2 layers, 64 units/layer, reg l2(0.001) 17 1.47 2.99 - 4.86
Edge 2 layers, 64 units/layer, no reg, no dropout 12 0.38 0.66 - 1.14
Unpossible 2 layers, 64,32 units, reg l2(0.0001) 32 0.76 1.53 - 2.17

Table 3: Best performing feed-forward neural network models

In a general overview, neural networks have greatly improved the reference
models we considered, especially in Blek and Unpossible. In Edge the error re-
duction is not appreciated to a great extent, for the simple reason of it being
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(a) Blek: 2 GRU layers of
64 units per layer, without
regularization or dropout

(b) Edge: 2 GRU layers
of 64, 32 units per layer,
without regularization or
dropout

(c) Unpossible: 2 GRU
layers of 64 units per layer,
without regularization
or dropout, with 0.0001
learning rate

Fig. 5: Learning curves of the best performing recurrent models

Best performing recurrent model Epochs MAE val MAE test

Blek 2 GRU, 64 units/layer, no reg, no dropout 42 1.18 2.61 - 4.60
Edge 2 GRU, 64,32 units, no reg, no dropout 5 0.44 0.90 - 1.06
Unpossible 2 GRU, 64 units/layer, learning rate(0.0001) 48 0.88 1.59 - 1.92

Table 4: Best performing recurrent neural network models

already in a relatively small scale with a lower range. In fact, in the test suite a
worse prediction is attained than with the linear regression model. By observing
the graphs, all the models found show a fairly similar behavior: the learning
curve of the training set decreases rapidly, while the validation remains stable
after a few epochs, exhibiting a slight overfit. Generally, when the overfit is small
and the error in the validation stalls, it is a sign that the model does not have
sufficient expressive capacity. However, testing networks with more layers and/or
neurons per layer has not resulted in a significant improvement.

Comparing feed-forward network models and recurrent network models, we
spot no clear advantage in the use of the latter, which are theoretically better
suited for serial data. Only a slight improvement is shown in the case of Blek.
However, due to the high variance obtained on the test set, we cannot confi-
dently state the dominance of recurrent networks. As a matter of fact, this large
variance may indicate that we are dealing with a much more complicated and
heterogeneous dataset than that of the other cases, or that the variables we
included in the analysis do not facilitate the prediction.

Another general phenomenon is that all models perform worse on test data,
having achieved quite promising results on the validation set. This difference is
notably greater in Blek, whose error of around 1 on the validation data in the
best models can reach a value of almost 5 on the test set. This problem may
be due to the limited number of observations we have. In this case, the random
division of the data into three subsets can greatly affect the results obtained.
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For example, in a sufficiently large dataset, the divisions follow roughly the
same distribution, presenting similar characteristics. Conversely, splits in a small
data set may contain very different patterns that models are not able to learn
just by looking at the training data. Therefore, instead of delving further into
different neural network configurations, we turn to traditional machine learning
techniques, which are known to perform better on a small dataset. The option
we chose is the random forest [4].

We follow the same train-test split percentage and employ K-fold cross-
validation. In the same way as the previous case, we tuned a subset of hyperpa-
rameters, including: the number of samples drawn to train each base estimator
(tree) in the bagging method; the number of variables to consider in each split;
the maximum depth of the trees; and the number of trees in the forest. The
obtained results are presented in Table 5.

validation MAE test MAE

Blek 3.24 ± 0.37 2.86 - 3.15
Edge 0.91 ± 0.20 0.88 - 0.95
Unpossible 1.67 ± 0.39 1.42 - 1.74

Table 5: Best performing models of Random Forest

We observe that random forest models behave similarly or even better than
neural network models. We can conclude that, with a dataset as small as this
one, it is not necessary to resort to such complex deep learning techniques.

6 Conclusions and future work

In this paper we have presented preliminary results on the application of teleme-
try in video games to speed-up the measure of intelligence which has been pre-
viously demonstrated to correlate with performance in those games. Despite the
dataset modest size, we were able to predict a player’s final score in a given game
from truncated play logs using neural networks and random forests. By avoiding
the need for a human evaluator to collect data in such experiments we could
potentially allow future studies to shorten experiment times, thus increasing the
viability of game-based intelligence assessment. In the future, we plan to carry
out further experiments in order to further validate this automatic approach.

In addition to the application of this approach to intelligence assessment,
we envision the use of similar techniques for the dynamic adjustment of game
difficulty. Since we are able to predict game performance, we can adjust the game
based on the predicted performance of a particular player.
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