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Abstract. This work presents a continuous level of detail representation
of foliage of trees. Multiresolution modeling allows to adapt the number
of polygons to render to the relevance of the object in the scene. However,
foliage is represented by isolated polygons, so most of the multiresolution
modeling methods do not work properly with this part of the tree. This
paper presents a multiresolution model that allows to adapt the number
of leaves to the relevance of the foliage in the scene. The criterion to
select the appropriate leaves to render is based on a previously performed
view-driven simplification. To adapt this parameter in real time, data
structures and the necessary algorithms that allow us to extract the
appropriate number of polygons are presented. Some tests have been
developed to evaluate the proposed solution and results show the good
performance of the presented continuous level of detail.

Keywords: Multiresolution modeling · Foliage representation · Level of
detail.

1 Introduction

Vegetation is an essential part of the outdoor environments in applications where
realism is a must. However, the vast amount of polygons that are required to
represent them makes their inclusion in interactive applications a problem. Level
of detail modelling has been confirmed as a solution to adapt the number of
polygons of the objects in real-time rendering of scenes. This technique manages
object representation while maintaining an adequate frame rate in real-time
rendering applications. Nevertheless, foliage of the plants are represented by
isolated polygons, so most of the multiresolution models in the literature can
not properly manage their representation. This problem does not occur when
the solid part of the plants, the trunk and the branches, are considered because
they are represented by continuous meshes.

According to Ribelles et al. [16], multiresolution models can be classified in
discrete and continuous ones. The first group provides the application with a set
of individual representations with different levels of detail. This technique has
been widely used and it is included in some game engines, such as Unity [19] or
Unreal Engine [6]. The continuous multiresolution models allow the application
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to vary the number of polygons that represent the object in a smooth way [17].
They avoid popping effects because the change from one resolution to another
one is made in a continuous way. Both groups of multiresolution models are
based on simplification methods that have previously processed the geometry
of the object. This simplification process is performed off-line and results are
used to build the data structure that form the appropriate multiresolution mod-
els. Simplification methods differ in the metrics they are based on. Because of
the fact that foliage is not represented by continuous meshes, the simplification
methods have to be adapted to this kind of representation. Some works have
been presented that deal with this part of the plants. They use metrics based on
geometry [14, 4] or based on view-point driven metrics [7].

This paper proposes a continuous multiresolution model that allows rep-
resenting the foliage and adapting the number of polygons according to their
importance in the scene. The simplification method used to build this level of
detail structure is based on the image-based simplification presented by Gasch
et al. [7], that uses metrics based on information theory [18]. This method is
based on the leaf removal operation and, to avoid the pruning appearance, some
leaves that remain are resized. This last operation allows the visual look of the
foliage to be maintained as their level of detail is reduced.

The proposed multiresolution model, as well as its level of detail extraction
algorithm, has been developed to be easily included in current game engines
in order to facilitate its use. A plug-in to be included in Unity 3D has been
implemented, so the test and experiments to evaluate the method have been
performed using this game engine. Obtained results show the good performance
of the proposed level of detail model.

The paper is organized as follows. Section 2 considers the state of art related
to the existing techniques in the multiresolution modelling adapted to the fo-
liage. Section 3 briefly describes the model overview. Section 4 briefly reviews
the simplification method this multiresolution model is based on and then it
describes the data structure that stores the leaves of the whole representation.
Next, Section 5 analyzes the rendering algorithms that perform the extraction
of the appropriate number of leaves that form the foliage representation. Section
6 describes the test that have been performed and analyzes the results obtained,
and finally, section 7 presents some conclusions and observations related to the
future work.

2 Previous work

Some methods have appeared in the literature addressed to reduce the com-
plexity of the sparse component of the trees and plants. They can be classified
mainly in three groups, depending on the method they use to represent the
foliage: images, points or polygons.

The first group uses image-based representation to perform real time render-
ing of plants [10, 12]. They considerably reduce the amount of required geometry,
but they are usually used to represent distant plants due to their parallax effect.
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Methods based onpoint/line representation usually combine polygons to con-
struct hybrid models for trees. At close distances, the plant is represented by a
polygon. With increasing viewing distance, branch meshes will transform into
lines and leaves into points [3, 8].

The last group in the classification uses the polygons to represent the plants,
regardless of the distance of the object to the viewer. However, different com-
pression techniques are used to reduce the amount of data to visualize. They
usually use different metrics to compute the off-line simplification that allows to
build the level of detail structure. These simplification methods can be based on
stochastic, geometry or image metrics. They condition the performance of the
multiresolution model.

Traditionally, works in the literature perform a level of detail modelling by
means of multiresolution models built from simplification methods based on
geometric metrics [15, 13, 4]. However, due to the sparse distribution of the leaves
in the foliage, the metrics have to be adapted to this kind of meshes to ensure
good performance of the process. Remolar et al. [14] present a simplification
method by collapsing points based on the Hausdorff distance, comparing two
sets of points, using the shortest distance between a point and the set of points.
Deng et al. [4] expand this method to simplify thin or broad leaves, integrating
both computations in an only simplification framework.

Other works have appeared that apply stochastic simplification [2, 9] to in-
visible parts of the foliage for performing the real time rendering. Dong et al. [5]
propose a hybrid representation (HR) of a simplified tree model, which allows
to adaptively select simplified models according to the resolution of different
devices. Zhang et al [20] present a method that deals with forest visualization.
They represent trees by means of polygon meshes plus semi-transparent lines.
Line models with different transparencies are instanced on the GPU by merging
multiple tree samples into a single model.

Image based simplification has been widely analyzed in literature. However,
most of the works deal with general meshes [11]. Gasch et al. [7] present in
their last work a simplification method based on a viewpoint-driven metric that
uses the mutual information in order to choose the leaf to prune. Moreover, this
method avoids the pruned appearance of the tree because the error introduced
every time a leaf is pruned is compensated: the size of the nearest leaf is altered
to preserve the leafy appearance of the foliage. This simplification method has
been the one used to develop the presented work. Results obtained from gasch
et al. [7] allows the user to obtain different approximations of the foliage of the
tree, obtaining a discrete multiresolution model. This work is addressed to obtain
continuous level of detail from the leaf simplification sequence obtained by the
application of the method presented in [7].

3 Model overview

The presented continuous multiresolution model allows to adapt the number of
polygons that form the foliage in real time, according to its importance in the
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scene. It is based on the Viewpoint-Driven Simplification (VDS) of Plant and
Tree Foliage [7]. The model stores the data obtained from the VDS method
in a data structure. As the viewer moves across the scene, vegetation elements
update their detail based on the distance to the viewer and the size of the area
they occupy on the final image. To do this, some algorithms have been developed
that access to that data structure and adapt in real time the number of polygons
rendered to the appropriate view conditions. Algorithms add or remove leaves
from the current foliage representation and scale the rest that remain in the
foliage, reducing the rendering time required to ensure the realism of the scene.

4 Data Structure of the continuous multiresolution model

The data structure of the continuous multiresolution model has been conditioned
by the results obtained from the VDS simplifications model. So, a brief overview
of this method is exposed next.

4.1 Review of the simplification algorithm

The VDS simplification method allows simplifying the sparse part of the trees
and plants. To do this, it uses a metric based on a theoretical measurement of
information called viewpoint mutual information (VMI) [18]. This metric mea-
sures the degree of correlation between a set of points of view and the object to
be simplified. Using this metric, the method can get the error that occurs when
it is performed a modification to the object by comparing the result given by
the sum of all the points of view in the original object, with the modified one.

The quality of the results when obtaining this error depends on the number
of points of view. To do this, the method uses a distribution of cameras placed
at the vertices of a dodecahedron.

The simplification process is based on a pruning operation. To do this, in each
iteration, the method searches for the leaf that produces the least error when it
is eliminated. Once it is found, this leaf is removed and the process is repeated
until the desired level of simplification is reached. After determining the leaf to
be removed in each iteration, the closest leaf is searched for and scaled based on
the error introduced when it is eliminated and on the size of the removed leaf, as
shown in Figure 1. In this way the leafy appearance of the foliage is maintained.

Fig. 1: Example of resizing a leaf that covers the pruned one in VDS
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The results obtained by this method show that the use of the VMI metric
generates a pruning leaf order that prioritizes those leaves that are hidden from
any of the view-points used. Resulting from the simplification, foliage is emptied
from the inside out and the possible gaps that may appear are filled by scaling
the nearby leaves of the eliminated one.

4.2 Data structure

Analyzing the VDS simplification method, a data structure has been designed
that stores all the data necessary to draw every one of the required level of detail.
This structure is shown below.

St ruct Leaf {
Vertex v e r t i c e s [ 4 ] ;
i n t l e a f T o S p l i t ;
i n t l ea fToCo l l apse ;
f l o a t s c a l e ;

}

vector<l e a f > l e a v e s ;

The vector leaves stores the list of all the leaves that form the foliage. The
order of storing the leaves is conditioned by the results obtained from the VDS
algorithm, so it represents the drawing sequence.

All the data required to render a leaf is stored in the struct Leaf. It stores the
data required both to render the original size and to render when some resizing
is required. It is composed by:

– vertices: It stores the vertices that form the leaf.
– leafToSplit : The leaf that has to be modified by scaling its size when this

leaf is added from the current representation.
– leafToCollapse: The leaf that has to be modified by scaling its size when this

leaf is removed from the current representation.
– scale: The amount that must vary the size of the leaf to be modified.

5 Rendering algorithm

Once all the required data are stored in the multiresolution model, the algorithms
that extract the appropriate level of detail have to be designed. They take into
consideration the distance of the plant to the point of view as well as the size of
that plant in the final rendered frame. The target of the criterion is to improve
the quality of the render, so the closer the viewer is, the higher the realism has
to be. As the camera moves far from the plant, fewer polygons are required to
represent the foliage. The same case happens with the number of pixels used
to render the final representation of the foliage: the importance of the plant in
the frame conditions the number of leaves that is required to ensure the good
quality of the final rendering.



6 C. Gasch et al.

These both criteria have been considered and codified in the formula shown
in Equation 1, that obtained the value LOD. It combines the value distance-
ToViewer, obtained from the normalized distance (with a value between 0 and
1) between the center of the foliage and the camera position, and projectedArea,
that stores the size of the projected area of the foliage in the current frame.
Some constants (a, b) have been added to the equation to allow customizing the
relevance of every one of the criteria in the equation. In the test, they have been
set to 0.8 and 0.2 respectively, so the distance to the viewer has been considered
more relevant.

LOD = distanceToV iewer ∗ a + projectedArea ∗ b (1)

This LOD value is normalized and allows to obtain the number of leaves to
be finally rendered. Then, this number is compared with the one that is currently
being rendered, performing different actions in the case the number of leaves to
render is the same, fewer or higher than the currently number of leaves rendered.
The actions to be performed are conditioned by this comparison, so:

– Same number of leaves: The level of detail to render is the same that is being
currently rendered, so no actions are required to be performed.

– Fewer leaves to render : Some leaves have to be removed from the list to be
rendered and some of the ones that remain have to be resized.

– Higher number of leaves: Some leaves have to be added to the final repre-
sentation and some of the ones that are being rendered have to reduce their
size in order to undo the scaling.

Algorithm 1 analyzes the process to follow in these cases. Every time the
process starts, the algorithm has to evaluate the relevance of the foliage in the
scene (LOD). This value is used to extract the number of leaves to render in
this case newLeaf. Once this number has been obtained, it is determined if some
leaves have to be added to the current approximation or some leaves have to be
removed (collapse).

The scaling process is already calculated by the simplification method and
saved in the structure used by this model to speed up the process and not
have to recalculate the scaling on each leaf. Each leaf, when removed or added,
only modifies another leaf (leafToModify), therefore, this model uses the leaves
themselves to save the scale values that affect the other leaf, exchanging them
when necessary. First, the model differentiates whether it is a leafCollapse or a
leafSplit. In the first case, the scale value of the leaf to be modified is contained
in the leaf to be collapsed. Therefore, both leaves exchange their scales as shown
in Figure 2(a).

In the second case, as seen in the figure 2(b), the added leaf retrieves its
original scale value from the nearby leaf. Which, in addition, also recovers its
scale. When this process has been performed, the algorithm render the list of
the leaves that form the current level of detail (Draw(LOD)).
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Algorithm 1 Process to extract the Level of Detail

Function Extract(LOD) do
newLeaf = totalLeaves ∗ LOD;
if newLeaf > currentLeaf then

for i = 0; i < newLeaf − currentLeaf ; i + + do
leafSplit(currentLeaf);
currentLeaf + +;

end for
else

for i = 0; i < currentLeaf − newLeaf ; i + + do
leafCollapse(currentLeaf);
currentLeaf −−;

end for
end if

end function

Function leafSplit(currentLeaf)
leafToSplit = leaves[currentLeaf ].leafToSplit;
aux = leaves[currentLeaf ].scale;
leaves[currentLeaf ].scale = leaves[leafToModifiy].scale;
leaves[leafToModifiy].scale = aux;

end function

Function leafCollapse(currentLeaf) do
leafToCollapse = leaves[leaf ].leafToCollapse;
aux = leaves[currentLeaf ].scale;
leaves[currentLeaf ].scale = leaves[leafToCollapse].scale;
leaves[leafToCollapse].scale = aux;

end function

Algorithm 2 Process to render the Level of Detail

Function Draw(LOD) do
lastLeave = totalLeaves ∗ LOD;
for i = 0; i < lastLeave; i + + do
drawLeave(i);

end for
end function
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(a)

(b)

Fig. 2: (a) Collapse operation, removing Leaf L i. (b) Split operation, adding
Leaf L i.

6 Results

The experiments have been performed using a computer with an Intel Core i7-
3517U 2.40GHz processor with 8 GB RAM and AMD Radeon HD 8500M/8700M
graphics card. All the geometric models of plants that have been used in the
tests have been modeled using the commercial modeling tool Xfrog [35]. Unity
3D version 2018.2.7 was used to implement the model multiresolution and to
view the result.

Three different vegetation species have been considered in the experiments:
English oak with 20,146 leaves, Carya illinoinensis with 8,059 leaves and Betula
populifolia with 12,140 leaves. The trunks and branches used have been simplified
by the method presented by [1], but they do not change during the execution of
the simplification process presented in this work.

In order to validate the multiresolution model, tests have been carried out
with the three plant species separately and with forests formed by these species.

6.1 Tree Rendering

The performed test has analyzed each vegetable species individually. Every one
of them has been represented and then the camera has been moved away from
the model, adapting the level of detail of its representation according the formula
previously presented. Then, the temporal cost of performing the visualization of
the approximation have been calculated. This has been measured by obtaining
the frames per second (FPS) while the camera moves around a circular path that
surrounds the model. This circular path has increased the radius for performing
the experiments. The results obtained can be seen in Figure 3. As it can be
observed in the chart, initially there is a great difference between the three
vegetable species due to the different number of leaves. However, as the camera
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zooms out, and therefore the level of simplification increases, this difference
decreases, further increasing the frames per second.

Fig. 3: Comparison of the FPS obtained with the three vegetable species at
different distances.

*/
Regarding the time used to extract the appropriate level of detail, it has been

measured in milliseconds per every distance. The obtained results can be seen in
Figure 4. At the initial point, since the camera is close to the model and therefore
there is no simplification, the cost is reduced to the render time itself. Then, as
the method starts to reduce the detail of the foliage, the difference between the
extraction of required approximation of the three vegetable species is greater.
However, as the camera zooms out and the representations considerable reduce
their number of leaves, the extraction cost decreases and the three species reduce
the difference between them.

6.2 Forest Rendering

In order to better analyze the presented model, some tests have been carried
out with groups of trees to represent forests. Figure 5 shows the results obtained
when analyzing the spacial cost of visualizing them while the number of trees
is increased. This cost has been measured by obtaining the frames per second
(FPS) while the camera moves around a circular path that point the forest center.
Each forest is made up of only one vegetable species that adapt their resolution
according to the distance to the camera. However, in order to evaluate the good
quality of the results, the forest represented with the vegetable species English
oak has been tested twice: one test with all the geometry, without performing
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Fig. 4: Analysis of the time required to extract the different levels of detail for
the three vegetable species at different distances.

Fig. 5: Chart showing the FPS obtained while the amount of trees rendered
increases.
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reduction English oak geometry, and other one adapting the detail to the criteria
English oak.

As it can be seen in the chart, the FPS considerably increases as the detail
of the foliage of the rendered plants are adapted to the established criteria.
Moreover, it can also be seen that the cost of extracting the appropriate leaves
for every frame is not relevant in front of the wide reduction in the visualization
time.

6.3 Visual results

In order to show how the presented multiresolution model allows simplifying
the vegetation elements without reducing their visual quality, Figure 6 shows
the simplification carried out at three different distances. For this, a tree with
20,000 leaves has been used, shown in 80% of its leaves, 30% and 15%.

Fig. 6: Comparison between three different distances. With a reduction of 20%,
70% and 85% respectively.

In addition, a view of a small forest is shown in Figure 7. This forest con-
tains nine trees with 20,000 leaves each one. After applying the simplification
model, the number of total leaves drawn is 49,680 . However, the visual difference
between the close and distant trees is barely appreciated.

7 Conclusions and future work

In this work, a multiresolution model for the foliage of plant elements has been
presented, based on the Viewpoint-Driven Simplification method. This simpli-
fication method establishes a leaf removing order from the most hidden leaves
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Fig. 7: Forest with nine trees with simplification applied

to the outside of the foliage. Also, the method avoids the pruning appearance
of the less detailed representation by filling the possible gaps in the foliage by
scaling the leaves close to the pruned ones. In this way, the foliage can be highly
simplified without being barely noticeable by the viewer when the camera is
far from the plant. Data structure and the algorithms that allow to extract the
appropriate approximation have been presented in the paper.

Also, the multiresolution model have been designed to be easily implemented
in game engines. The extraction time of the appropriate level of detail is very
low being, as results demonstrate, less than 1 millisecond in models with more
than 40,000 polygons. The results obtained demonstrate that the model allows
to adapt in a continuous way the detail of the foliage in a scene. Regarding forest
visualization, also results support that the rendering cost is significantly reduced
while maintain the visual quality.

As future work, some animation is going to be applied to the leaves in order
to simulate the effects of wind on them. In this future line of work, also trunk
and branches are going to be animated adding some skeleton to the vegetable
species.
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