
Comparing Schema Advancements for
Distributed RDF Querying Using SparkSQL

Mohamed Ragab, Riccardo Tommasini, and Sherif Sakr?

Institute of Computer Science, Tartu University, Tartu, Estonia
firstName.lastName@ut.ee

Abstract. Linked Data reveals the need for big semantic data process-
ing. The underlying literature already discusses numerous attempts at
leveraging the relational engines of Big Data frameworks like Apache
Spark to run SPARQL queries at scale. However, the choice of a rela-
tional schema to store RDF data may significantly impact the query
performance and hence various alternatives exist. In this paper, we in-
vestigate the improvement of two recent proposals, i.e., Extended Ver-
tically Partitioned Tables and Wide Property Tables, w.r.t. the baseline
approaches Vertically Partitioned Tables and Property Tables. To gen-
eralize our results, we observe how the two schemas behave together
with different RDF partitioning techniques and HDFS storage data for-
mats. We run our experiments using SparkSQL over a 100-million triples
dataset generated using SP2Bench.

Keywords: RDF Relational Schemata · Spark-SQL · SPARQL.

1 Introduction

1The Semantic Web community is investigating how to leverage frameworks like
Apache Spark to run SPARQL queries at scale. Since Big Data frameworks excel
in relational data analysis, several solutions have been proposed to utilize their
query engines for processing large RDF graphs [1]. Intuitively, the choice of a
relational schema significantly impacts the performance of query processing. For
instance, the Single Statement Table Schema (ST), which prescribes to
store triples using a ternary relation (subject, predicate, object), often requires
many self-joins. Many alternatives to ST exist, i.e., The (i) Vertically Parti-
tioned Tables Schema (VP) proposes to use binary relations (subject, ob-
ject) for each unique predicate in the dataset. The (ii) Property Table Schema
(PT) suggests n-ary relations to represent RDF triples, grouping those with the
same subject.

In this paper, we aim at validating two further improvements proposed for
Apache Spark, i.e., the Extended Vertically-Partitioned Table (ExtVP), which
extends VP with precomputed semi-join tables [4] to reduce data shuffling, and
the Wide Property Table (WPT) schema, which extends PT considering the

? In memoriam, (1979-2020)
1 Copyright c©2020 for this paper by its authors. Use permitted under Creative Com-

mon Licence Attribution 4.0 International (CC ByY 4.0).



2 Mohamed Ragab et al.

whole dataset in a single table [3], and minimizes the number of joins. We per-
formed an extensive comparative evaluation of ExtVP and WPT vs VP and PT
respectively using SparkSQL. To generalize the study, we check the approaches
under varying experimental conditions2: we tested how ExtVP and WPT per-
form combined with RDF-based partitioning techniques and storage formats.
Partitioning techniques impact the query execution as they change data locality.
On the other hand, data formats are considered by the Spark optimizer and, thus,
impact the query plan. In particular, we used the following partitioning tech-
niques (i) Horizontal (HO) partitioning, which divides data evenly over n equiva-
lent chunks where n is number of machines in the cluster; (ii) Subject-based (SB)
and (iii) Predicate-based (PB) partitioning, which distribute triples across the
various partitions according to the hash value computed for the subjects or pred-
icate, respectively. Moreover, we use two row-oriented data formats, i.e., CSV,
Avro, and two column-oriented ones, i.e., ORC, and Parquet. As a baseline con-
figuration, we chose the one of the original papers: we store data in HDFS using
Parquet without any specific partitioning technique, i.e. No Partitioning(NP).

2 Experiments

In our evaluation, we used data and queries from SP2Bench (SPARQL Perfor-
mance Benchmark) . We prepared the SQL versions of the SP2Bench queries3 for
ExtVP and WPT4. We generated a synthetic RDF dataset with 100M triples
size in Notation3 format, which was sufficient for unveiling differences in the
query execution under different experimental conditions. We run the experiments
five times and computed an average5 on a four-nodes bare-metal cluster (master
node and 3 worker machines). Each node runs has 32 cores, 128GB of RAM per
node, and 2-TB SSD drive.

2.1 WPT VS. PT

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q10 Q11
PT 2 9 2 8 7 6 9 5 2
WPT 0 0 0 3 3 3 10 3 0

Table 1: Number of SQL joins in PT vs WPT.

According to [3, 2], we expect
that WPT outperforms PT es-
pecially with the ”Star-Shaped”
queries, which can be answered
without any join operations
when using WPT schema. Table 1 compares the required number of joins for
the alternative SQL translations of SP2Bench queries when translated. Except
for Q8 that has many self-joins of the WPT table, WPT always requires fewer
joins than PT. Moreover, we expect that Spark handles efficiently the sparsity
caused by the WPT schema when using Parquet data format, since it ignores
Null values.

Table 2 shows the overall benchmark results of the performance of WPT over
PT across all file formats (Horizontally), and across the different partitioning

2 https://www.nist.gov/pml/nist-technical-note-1297/nist-tn-1297-appendix-d1-
terminology

3 http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B/queries.php
4 https://github.com/DataSystemsGroupUT/SPARKSQLRDFBenchmarking
5 We excluded the first run to avoid warm-up bias



Comparing Schema Advancements for RDF Querying Using SparkSQL 3

techniques (Vertically). Values in this table specify the number of queries in
which the WPT schema gives performance better than the baseline PT schema6.

Avro CSV ORC Parquet
NP 2/9 2/9 8/9 9/9
Ho 2/9 3/9 6/9 6/9
SP 2/9 2/9 6/9 6/9

Table 2: Number of queries for
which WPT outperforms PT.

The experiments confirm that WPT outper-
forms the baseline PT schema in all the
queries (i.e 9 queries out of 9 in the bench-
mark) using the baseline configuration, i.e.,
Parquet file format and No partitioning tech-
nique (NP). These results confirm the state-
of-the-art findings [3].

To investigate the relations between WPT
and PT, we introduce different file formats and partitioning techniques. Table 3
shows the effect of data partitioning (left) and storage formats (right) considering
the other new factors across all the experiments. To this extent, we calculate the
percentages by grouping the experiment by partitioning technique and count-
ing how many times WPT is better than PT across all the experiments. We
calculated the storage effect in a similar way but grouping by file format.

Partitioning effect Storage Formats effect
NP 58.33% Parquet 77.78%
Ho 47.22% ORC 74.07%
SP 44.44% CSV 25.93%
PB NA AVRO 22.22%

Table 3: Effects of partitioning techniques and
storage formats on the WPT/PT comparison.

Table 3 shows that WPT
outperforms PT schema for
58% of the experiments when
No partitioning technique is
used. Moreover, only in 78%
of the experiments, using Par-
quet as file format as an
improvement. This unveils a
trade-off between file formats,
partitioning techniques, and
the relational schemata. ORC, which is an alternative column-based file format,
gives results that are similar to Parquet(74%). Although Parquet is even better
because it efficiently handles the sparsity of the WPT schema, we can generalize
the benefits of column-based file formats. Indeed, SP2Bench queries only have
one query with more than 2-column projections, which justifies why columnar
formats give better results for the WPT than the row-based ones. Row-oriented
formats have a negative impact on the WPT results. WPT outperforms PT only
for 22% and 25% experiments when Avro and CSV are used, respectively. In
conclusion, the state-of-the-art results for WPT cannot be reproduced in the
presence of different formats and partitioning techniques.

2.2 ExtVP VS. VP

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11
Red 58% 77% 59% 96% 60% 31% 5% 0% 0% 0%

Table 4: [Red]uctions percentage using ExtVP.

In this section, we discuss
the comparison of the ExtVP
schema to VP schema. For the
comparison, we used the same
approach followed in the previous section. According to [4], we expect that
ExtVP provides better or at least similar execution times of VP. The enhance-
ment depends on the percentage of semi-join reductions of table input sizes that

6 Green: improvement always outperforms the baseline; Yellow : improvement outper-
forms the baseline in at least 50% of the cases, and Red means less than 50%.



4 Mohamed Ragab et al.

the ExtVP introduces, which reduce the required data shuffling. Table 4 shows
the percentage of ExtVP reductions in the processed rows for each query over
the original input table processed rows. We expect queries Q9,Q10,and Q11 giv-
ing similar results to the VP schema as they do not present any input table
reductions.

Avro CSV ORC Parquet
NP 6/10 6/10 5/10 7/10
Ho 3/10 3/10 3/10 3/10
PB 2/10 3/10 6/10 6/10

Table 5: Number of queries for
which ExtVP outperforms VP.

Table 5 shows the comparison between
ExtVP and the baseline VP schema perfor-
mance in all the SP2Bench queries, for dif-
ferent formats (horizontally) and partition-
ing techniques (vertically)5. We observe that
for queries Q9,Q10,Q11, which did not bene-
fit from any join reductions, ExtVP does not
beat VP even for the baseline configuration
(NP and Parquet).

Table 6 also shows how far the data partitioning (left) and data formats
(right) impact the results of ExtVP in comparison to VP schema performance.
Percentages are calculated in the same as in Table 3, pivoting on the dimension
of choice, i.e., file format X or partitioning technique Y .

Partitioning effect Storage Formats effect
NP 67.5% Parquet 55%
Ho 35% ORC 45%
PB 55% AVRO 42.5%
SP 30% CSV 42.5%

Table 6: Effects of partitioning tech-
niques and storage formats on the
ExtVP vs VP comparison.

The results confirm that partition-
ing significantly degrades the perfor-
mance of ExtVP, which outperforms
VP schema in 67% of the experi-
ments for the NP configuration. How-
ever, adopting predicate-based par-
titioning has a less negative impact
(55%), then horizontal partitioning
(35%), followed by the subject-based
partitioning; the worst with only 30%.
The small number of projections in SP2Bench queries suggests that columnar
file formats can fit such query workloads better than the row-oriented ones. In
55% of the cases where Parquet is used ExtVP outperforms VP, while only 45%
with ORC. Nevertheless, ExtVP beats VP in only 42.5% of the experiments that
adopt either Avro or CSV. In conclusion, we cannot reproduce completely the
state-of-the-art results for ExtVP when different partitioning techniques or file
formats are used.

3 Conclusion

In this paper we investigated the reproducibility of RDF relational optimizations
within distributed Spark-SQL while introducing complex experimental solution
space. The optimized relational schemata can be affected with new experimental
factors such as the data partitioning or the storage data formats.

References

1. Abdelaziz, I., Harbi, R., Khayyat, Z., Kalnis, P.: A survey and experimental com-
parison of distributed sparql engines for very large rdf data. Proceedings of the
VLDB Endowment (2017)



Comparing Schema Advancements for RDF Querying Using SparkSQL 5

2. Arrascue Ayala, V.A., Koleva, P., Alzogbi, A., Cossu, M., Färber, M., Philipp, P.,
Schievelbein, G., Taxidou, I., Lausen, G.: Relational schemata for distributed sparql
query processing. In: International Workshop on Semantic Big Data (2019)

3. Schätzle, A., Przyjaciel-Zablocki, M., Neu, A., Lausen, G.: Sempala: Interactive
sparql query processing on hadoop. In: ISWC (2014)

4. Schätzle, A., Przyjaciel-Zablocki, M., Skilevic, S., Lausen, G.: S2rdf: Rdf querying
with sparql on spark. Proceedings of the VLDB Endowment (2016)


