
SPARQL with XQuery-based Filtering?

Takahiro Komamizu

Nagoya University, Japan
taka-coma@acm.org

Abstract. Linked Open Data (LOD) has been proliferated over various
domains, however, there are still lots of open data in various format other
than RDF. Document-centric XML data are such open data that are con-
nected with entities in LOD as supplemental documents for these entities.
To utilize document-centric XML data linked from entities in LOD, in
this paper, a SPARQL-based seamless access method on RDF and XML
data is proposed. In particular, an extension to SPARQL, XQueryFILTER,
which enables XQuery as a filter in SPARQL is proposed. For efficient
query processing of the combination of SPARQL and XQuery, a query
optimization is proposed. Experimental scenarios using real-world data
showcase the effectiveness of XQueryFILTER and optimization efficiency.

Keywords: SPARQL Extension · XQuery Filtering · Query Processing

1 Introduction

Linked Open Data (LOD) [4] started by Sir Tim Berners-Lee is a bunch of factual
records represented by RDF (Resource Description Framework). Although LOD
has been proliferated its population over various domains, there are still lots of
data which suffer from converting into LOD. In particular, documents such as
manuals and minute books are in this line. There are sophisticated techniques
converting document structure into RDF (e.g., information extraction [5]), how-
ever they still require human efforts on error-pruning.

In this paper, the way to utilize document open data which are linked from
entities in LOD is explored. To this end, in this paper, a SPARQL-based seamless
access method, namely a dedicated filtering expression, XQueryFILTER, is pro-
posed. This expression enables XQuery-based filtering by accessing underlying
XML data while processing a SPARQL query. To realize efficient XQueryFILTER
implementation, database theory-based query optimization is applied.

2 Related Work

There are few works on combining queries for XML (like XPath, XSLT and
XQuery) into SPARQL query except [6]. Droop et al. [6] have proposed a translation-
based XPath embedding for SPARQL in order to enable XPath processing in
? Copyright c©2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

2 T. Komamizu

SPARQL query processor. To this end, they have proposed translation model
from XML to RDF and from XPath to SPARQL. There are three major differ-
ences from their work to the proposed filtering in this paper. One is query type
for XML, namely, XQuery and XPath. In general, XQuery is more expressive
than XPath. Another difference is that, in the proposed approach, no prepro-
cessing is applied to XML data, while [6] requires translation into RDF. The
other difference is that, the proposed approach fully utilizes the dedicated query
processing technique in XML DB, but [6] translates an XPath instance into a
complicated SPARQL query and processes it on a SPARQL query processor.

The related context is to query XML and RDF which can be translated each
other. So-called data-centric XML data [8] are designed for representing objects
with hierarchical attributes, while document-centric (a.k.a. content-oriented)
XML data preserve document structures where they are still understandable
without XML tags. Therefore, data-centric XML data are easier to convert into
RDF, while document-centric XML data require large efforts on designing ontolo-
gies and mappings. The existing approaches assume data-centric XML data and
RDF data as their translation, which can be roughly classified into the following:
(1) to use XQuery to query on RDF data [7, 2], (2) to use SPARQL to query on
XML data [1], and (3) query translation between XQuery and SPARQL [3].

3 SPARQL with XQuery-based Filtering

In this section, the proposed extension of SPARQL, the basic architecture of
mixed databases, and the query optimization technique are introduced.
Query Definition: XQuery-based filtering aims to filter bindings of graph
pattern in SPARQL that XML documents in the bindings satisfy XQuery. To
this end, this XQuery is required to return boolean value. In the extended
query, XQueryFILTER expression is added to the SPARQL definition based on
the FILTER expression, which argument is an XQuery expression including vari-
ables in SPARQL. The following is an example of SPARQL with XQueryFILTER.

SELECT ?s
WHERE{ ?s a :Country; :safetyInfo ?doc; :populationTotal ?pop.

FILTER (?pop > 10,000,000) . }
XQueryFILTER (

LET $x := doc(?doc)//mail[leaveDate > xs:date(’2020-03-01’)]
RETURN contains($x, ’coronavirus’)

). }

This query is to search for countries with more that 10 million people and with
safety information about the coronavirus after March, 2020. Its XQueryFILTER
contains SPARQL variable ?doc which referred by ex:safetyInfo for a safety
information XML file. During query evaluation, the XQuery in the XQueryFILTER
can be performed by replacing ?doc variable with one of its bindings. If the
XQuery returns true, the binding remains in results, eliminated otherwise.
System Architecture: Fig. 1 represents a basic architecture for realizing
SPARQL with XQueryFILTER. A basic assumption is that RDF and XML data

SPARQL with XQuery-based Filtering 3

SPARQL
Processesor

XQuery
Processesor

SPARQL EP XML DB

Query Manager

User Interface

Parser Optimizer Executor

Catalog
Manager

Fig. 1: Basic Architecture

SPARQL

XQuery
Join

SPARQL XQuery Join

SPARQLXQuery Output

(a)

(b)

(c)

Output

Output

Fig. 2: Query Plans; (a) Parallel, (b) SPARQL
First, and (c) XQuery First

are separately stored in SPARQL EP (endpoint) and XML DB, respectively.
Dedicated query processors are associated to communicate with the databases,
namely, SPARQL processor and XQuery processor. Query manager handles user
query, decomposes it into SPARQL and XQuery, explores optimal query plans,
executes them and merges the results. User interface communicates with users
by receiving queries and returns their results.
Optimization: To realize efficient SPARQL with XQueryFILTER, the optimizer
in the query manager chooses one query plan with the least cost among three
possible plans to execute SPARQL with XQueryFILTER as shown in Fig. 2.

Parallel : Execute SPARQL and XQuery in parallel and join results afterward.
SPARQL First : Execute SPARQL first, push its bindings down into XQuery,

and evaluate the bindings with XQuery results.
XQuery First : Execute XQuery first and push its results down into SPARQL.

Execution costs of these query plans modeled on the basis of the following idea.
Let CSPARQL, CXQuery respectively denote the processing costs of SPARQL and
XQuery, and CJoin denotes the join cost. The costs of the parallel plan, C(p),
the SPARQL first plan, C(s), and the XQuery first plan is as follows.

C(p) = max(CSPARQL, CXQuery) + CJoin , (1)

C(s) = CSPARQL + ρSPARQL · CXQuery + CJoin , (2)

C(x) = CXQuery + ρXQuery · CSPARQL, (3)

where ρSPARQL and ρXQuery denote the selectivities of the preceding SPARQL
and XQuery, respectively.

4 Experimental Evaluation

Experimental evaluation for showing efficiency of the proposed SPARQL with
XQueryFILTER and query optimization was conducted. In this experiment, three
scenarios are prepared by collecting XML documents related with LOD datasets,
which have different settings of databases in terms of network latency and data
size. XML data are stored in a local XML database using eXist-db (v. 5.2.0)1,
and RDF data in this experiment are stored locally using Apache Jena Fuseki
1 http://exist-db.org/

4 T. Komamizu

Table 1: Expected DB Performance
Scenario SPARQL EP XML DB

C.S. low high
L.S. comparable comparable
D.S. high low

Table 2: Data Size for Scenarios
Scenario XML (#doc) LOD (#ent)

C.S. 207 207 + DBpedia
L.S. 8,435 106,341
D.S. 107,193 317,552

80 100 120 140 160
Selectivity of SPARQL

0

10

20

30

40

50

60

70

Ti
m

e
in

 S
ec

on
d

SPARQL First (207)
SPARQL First (114)
SPARQL First (9)

XQuery First (207)
XQuery First (114)
XQuery First (9)

Parallel (207)
Parallel (114)
Parallel (9)

(a) C.S. (Country Search)

250 500 750 1000 1250 1500 1750 2000
Selectivity of SPARQL

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ti
m

e
in

 S
ec

on
d

SPARQL First (2153)
SPARQL First (660)
SPARQL First (68)

XQuery First (2153)
XQuery First (660)
XQuery First (68)

Parallel (2153)
Parallel (660)
Parallel (68)

(b) L.S. (Law Search)

4000 6000 8000 10000 12000
Selectivity of SPARQL

0
10
20
30
40
50
60
70
80
90

Ti
m

e
in

 S
ec

on
d

SPARQL First (1538)
SPARQL First (868)
SPARQL First (409)

XQuery First (1538)
XQuery First (868)
XQuery First (409)

Parallel (1538)
Parallel (868)
Parallel (409)

(c) D.S. (Discussion Search)
Fig. 3: Execution Time in Scenarios (Number in Legend: XQuery Selectivity)

250 500 750 1000 1250 1500 1750 2000
Selectivity of SPARQL

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ti
m

e
in

 S
ec

on
d

SPARQL XQuery Join

(a) Parallel

250 500 750 1000 1250 1500 1750 2000
Selectivity of SPARQL

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ti
m

e
in

 S
ec

on
d

SPARQL XQuery Join

(b) SPARQL First

250 500 750 1000 1250 1500 1750 2000
Selectivity of SPARQL

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ti
m

e
in

 S
ec

on
d

SPARQL XQuery Join

(c) XQuery First
Fig. 4: Detail of Execution Time in L.S. Scenario with XQuery Selectivity of 660

(v. 3.14.0)2) or stored in external SPARQL endpoints (i.e., DBpedia SPARQL
endpoint). Here, query processing efficiency is measured by query execution time.
Scenarios: In this experiment, three scenarios are prepared in order to observe
query performances over different performances of underlying databases as sum-
marized in Table 1. The first scenario (C.S. scenario) is to search countries with
governmental safety information messages. This scenario is that cost of querying
to SPARQL endpoint is high due a federated query using the SERVICE clause and
that of querying to XML DB is low due to the small number of XML documents.
The second scenario (L.S. scenario) is to search acts with their body texts. This
scenario is that costs of querying SPARQL and XQuery are comparable due to
using the local SPARQL endpoint and the moderate number of XML documents.
The third scenario (D.S. scenario) is to search discussions in minute books about
law enactment. This scenario is that cost of querying SPARQL is low and that
of querying XQuery is high due to using the local SPARQL endpoint and the
large number of XML documents. Queries are generated by using templates to
control the selectivities of SPARQL and XQuery.
Results: Fig. 3 shows selected results for each scenario in terms of selectivi-
ties of SPARQL and XQuery. The common observation is as follows. First, the

2 https://jena.apache.org/documentation/fuseki2/index.html

SPARQL with XQuery-based Filtering 5

SPARQL first plan (resp. XQuery first plan) is linearly performed w.r.t. selec-
tivity of SPARQL (resp. XQuery) query and it is scarcely affected by selectivity
of XQuery (resp. SPARQL) query. Second, the parallel plan is nearly constant
w.r.t.both selectivities of SPARQL and XQuery when their execution perfor-
mances have a large gap like C.S. and D.S. scenarios. When these performances
are comparable (as the L.S. scenario), this plan depends on both selectivities.

In Fig. 3(b), the optimal plan for XQuery selectivity of 660 is switched from
the SPARQL first plan to the parallel plan around SPARQL selectivity of 1,000.
Fig. 4 indicate a reason for this switching. This figure shows a breakdown of
execution time in query plans in the form of a stacked bar graph of execution
times of SPARQL, XQuery and Join (blue, orange and green colors, respectively).
Basically, in this SPARQL with XQueryFILTER, SPARQL is executable relatively
faster than XQuery (Fig. 4(b) and Fig. 4(c)). Therefore, SPARQL first plan is
better plan as far as the number of XML documents being queried afterward is
small. In this scenario, the number of queried XML documents more than 1,000
is a turning point that the parallel plan overcomes the SPARQL first plan.

This experiment indicates that the three query plans reflect the pros and
cons of underlying databases. The proposed optimization technique captures
these characteristics of plans by the cost equations in Equation 1, 2 and 3 and
can successfully discover the best plan if statistics of database performances and
selectivity estimations of SPARQL and XQuery are accurate.

Acknowledgements
This work was partly supported by JSPS KAKENHI Grant Number JP18K18056
and the Artificial Intelligence Research Promotion Foundation.

References

1. Akhtar, W., Kopecký, J., Krennwallner, T., Polleres, A.: XSPARQL: Traveling be-
tween the XML and RDF Worlds - and Avoiding the XSLT Pilgrimage. In: ESWC
2008. pp. 432–447 (2008)

2. Almendros-Jiménez, J.M., Becerra-Terón, A., Torres, M.: Integrating and Querying
OpenStreetMap and Linked Geo Open Data. Comput. J. 62(3), 321–345 (2019)

3. Bikakis, N., Tsinaraki, C., Stavrakantonakis, I., Gioldasis, N., Christodoulakis, S.:
The SPARQL2XQuery interoperability framework - Utilizing Schema Mapping,
Schema Transformation and Query Translation to Integrate XML and the Semantic
Web. World Wide Web 18(2), 403–490 (2015)

4. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. Int. J.
Semantic Web Inf. Syst. 5(3), 1–22 (2009)

5. Cowie, J.R., Lehnert, W.G.: Information Extraction. Commun. ACM 39(1), 80–91
(1996)

6. Droop, M., Flarer, M., Groppe, J., Groppe, S., Linnemann, V., Pinggera, J., Santner,
F., Schier, M., Schöpf, F., Staffler, H., Zugal, S.: Embedding Xpath Queries into
SPARQL Queries. In: ICEIS 2008. pp. 5–14 (2008)

7. Groppe, S., Groppe, J., Linnemann, V., Kukulenz, D., Hoeller, N., Reinke, C.: Em-
bedding SPARQL into XQuery/XSLT. In: SAC 2008. pp. 2271–2278 (2008)

8. Sherkhonov, E.: Data Exchange for Document-Centric XML. In: Proc. PhD Sym-
posium@SIGMOD 2014. pp. 26–30 (2014)

