
A General-Purpose Visual Query Language for
Knowledge Graphs with Bidirectional

Transformations

Qiang Fu1, Xin Wang1, and Yuan-Fang Li2

1 College of Intelligence and Computing, Tianjin University, Tianjin, China
{tomqcust,wangx}@tju.edu.cn

2 Monash University, Melbourne, Australia
yuanfang.li@monash.edu.

Abstract. In this paper, we present a general-purpose interactive visual
query language, GPVQL, to improve the efficiency of end-users’ under-
standing and querying of knowledge graphs. Furthermore, GPVQL real-
izes the novel capability of flexible bidirectional transformations between
query patterns and graph results, therefore significantly assists end-users
in formulating queries over large and unfamiliar knowledge graphs in an
incremental way. We present the syntax and semantics of GPVQL, dis-
cuss our design rationale behind this interactive visual query language,
and evaluate the effectiveness of a visual query system based on GPVQL
against a number of textual and visual query environments over a large
knowledge graph, DBpedia. Our evaluation demonstrates the GPVQL’s
superiority in effectiveness and accurateness.

Keywords: Knowledge graphs · Visual query language · Interactive ·
Bidirectional transformation.

1 Introduction

Artificial intelligence has become a powerful tool to meet practical requirements
in various domains. Knowledge graphs have been identified as a critical com-
ponent in diverse AI-based applications. Thus, designing query languages to
support the effective and efficient exploration and query answering over knowl-
edge graphs has become a key research problem under insentive investigation.
However, a number of key challenges still remain on the generalizability and ease
of use of these query languages.

An illustrating example of the process from a question to the corresponding
query results is shown in Fig. 1. As can be seen from the textual query (in
SPARQL) at the top middle in Fig. 1, it may be difficult for an end-users to
quickly learn and use such a query language, or to be familiar with a knowledge
graph. Visual query languages can help make it easier for users to construct query

Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).



Question
Find philosophers who
were influenced by people
that influenced Bob Black.

Textual language
SELECT * WHERE {
Bob Black influencedBy ?x.

?y influencedBy ?x.}

Visual language

Bob Black

?y

?x

?m

?n

?z
influencedBy

influenced

influencedBy

birthYear

deathYear

influencedBy

Edit

Draw

Tabular result

Graphical result

?y

?x

?x

?m ?n

?z ?z

Unidirectional
query

Bidirectional
transformation

Fig. 1. The process from question to result.

patterns, as shown in the bottom middle of Fig. 1. However, end-users may not
understand the correspondence between a query pattern and its results (such as
those nodes labeled by the same variable name at the bottom middle/right of
Fig. 1) when they are exploring a knowledge graph. Such correspondences allow a
user to easily modify and expand the current query to build more complex ones
and are supported by the bidirectional transformation functionality provided
by our GPVQL visual language. In this paper, we introduce the visual syntax
and semantics of GPVQL, discuss our design rationale, and demonstrate its
accurateness and effectiveness in a user study.

2 Our Approach

In GPVQL, (1) single circles with dotted and solid lines indicate variables and
constants, respectively; (2) two single circles connected by a directed edge denote
a basic triple pattern; and (3) double circles and rectangles represent operators
and parameters in a query pattern, respectively. We illustrate the syntax and
semantics of GPVQL with five examples in Table 1 and the corresponding queries
in three textual query languages: SPARQL, Cypher and Gremlin. In GPVQL,
end-users do not need to learn a specific textual query language to write queries.
What end-users need to learn are just query examples that can then be used in
an interactive query-by-example (QBE [2]) way.

Based on our proposed GPVQL language, we have developed a visual inter-
face that addresses these challenges to achieve our goal of enabling end-users to
query and explore knowledge graphs. The interface 3 of GPVQL is composed of
six main components that are displayed in four panes in Fig. 2. Fig. 2 shows
three components: an interactive visual query editor (left pane), keyword and
type search panel (right top pane), and query code display panel (right bottom
pane). In the top left are buttons for additional functionality: adding new nodes,
showing user manual, user study documents, using force-directed layout, etc. In
GPVQL, the construction of a query pattern is mainly done in a drag-and-drop
manner. The operations (i.e., Expand, Collapse, Filter, Lock, Optional, and U-



Table 1. The examples of visual syntax and semantics in GPVQL.

ID Query pattern of GPVQL SPARQL Cypher Gremlin

P1
?city Texas

located in
SELECT ?city WHERE {
?city locatedIn Texas.}

MATCH

(x:City)-[:locatedIn]->(y:State)

WHERE y.name = "Texas"

RETURN x

g.V(‘Texas’)

.in(‘locatedIn’)

P2
?city ?metrometro population SELECT ?city WHERE {

?city metro ?metro.}
MATCH

(x:City)-[:metro]->(y:Population)

RETURN x, y

g.V()

.in(‘metro’)

P1
AND
P2

?city

?metro

Texas

metro population

located in

AND

SELECT ?city WHERE {
?city locatedIn Texas.

?city metro ?metro.}

MATCH

(x:City)-[:locatedIn]->(y:State)

WHERE y.name = "Texas" AND

(x:City)-[:metro]->(z:Population)

RETURN x

g.V(‘Texas’)

.in(‘locatedIn’)

.and(out(‘metro’))

P1
UNION
P2

?city

?metro

Texas

metro population

located in

UNION

SELECT ?city WHERE {
?city locatedIn Texas.}
UNION

{?city metro ?metro.}

MATCH

(x1:CITY)-[:locatedIn]->(y:State)

WHERE y.name = "Texas"

RETURN x1 UNION MATCH

(x2:CITY)-[:metro]->(z:Population)

RETURN x2

g.V(‘Texas’)

.in(‘locatedIn’)

.or(out(‘metro’))

P1
OPT
P2

?city

?metro

Texas

metro population

located in

OPT

SELECT * WHERE {
?city locatedIn Texas.

OPTIONAL{
?city metro ?metro.}}

MATCH

(x:CITY)-[:locatedIn]->(y:State)

OPTIONAL MATCH

(x:CITY)-[:metroPopul]->(m:Population)

WHERE y.name = "Texas"

RETURN x, m

g.V(‘Texas’)

.in(‘locatedIn’)

.or(out(‘metro’))

nion) are in the right-click context menu. As shown in Fig. 2, GPVQL not only
supports keyword queries, but also type-based queries as the starting point. The
process starts with a blank visual query editor. A user can choose keyword or
type as the starting point for queries. For example, as shown in Fig. 2, after the
user adds a new node 1©, and input “Bob” as a keyword 2©, the related entities
will be automatically displayed. Once “Bob Black” is chosen, the thumbnail 3©
will be displayed automatically. Further, the user can find people who have in-

Fig. 2. Example visual query finding people who influenced both Bob Black and people
influenced by Bob Black.

fluenced both Bob Black and people influenced by Bob Black (the corresponding
query pattern is marked with red arrows). Users can select the Expand opera-
tion in the context menu to expand a result. The expanded results are pointed
to with blue arrows. When users are interested in some query result, deep ex-
ploration to query additional information is supported. For example, users can
find the birth year and death year of Peter Kropotkin, or people who influenced
Marshall Sahlins (pointed to with green arrows).



3 User Study and Evaluation

We conducted a user study to assess how accurate and effective our new visual
query language GPVQL 3 is in comparison to the current semantic query lan-
guage SPARQL, a visual query language QueryVowl [1], and RDF Explorer [3].
We used the same SPARQL endpoint 4 of the DBpedia knowledge graph to en-
sure the fairness of the study. We created five tasks, shown in Table 2, based
on an informal survey of interesting patterns that people formed when exploring
prior graph query research works. We recruited 20 participants in total and di-
vided them into four groups evenly. Each group uses a different tool, e.g., Group
A + GPVQL, Group B + SPARQL, Group C + QueryVOWL, and Group D +
RDF Explorer.

Table 2. Tasks of the user study.

Task 1 Task 2 Task 3

Description
Find philosophers influenced
by Bob Black.

Find people influenced Bob
Black and Karl Marx.

Find people who influenced both
Bob Black and people influenced
by Bob Black.

Query
pattern

?philosopher Bob Black
influencedBy

Bob Black

Karl Marx

?xinfluencedBy

influencedBy

Bob Black

?x

?yinfluencedBy

influencedBy

influenced

Task 4 Task 5

Description
Find year of birth and death of people who
influenced both Bob Black and people influenced
by Bob Black.

Find people whose birth date is after 1750
and influenced philosophers that influenced both
Bob Black and people influenced by Bob Black.

Query
pattern

Bob Black

?x

?y

?m

?n

influencedBy

influenced

influencedBy

birthYear

deathYear

Bob Black

?x

?y ?z

FILTER:
?birthDate>1750

influencedBy

influenced

influencedBy

influencedBy

We ranked the difficulty of each task based on the number of nodes, edges,
and constraints needed. As can be seen in Table 2, the tasks are related to each
other, and that later task can be built incrementally from previous tasks. This
design is intended to simulate the actual workflow in a real-world setting, where
an end-user typically writes related and incrementally more complex queries,
but not unrelated random ones.

From Fig. 3, we can obtain the following conclusions: (1) Among the five
tasks, the query completion times of GPVQL are the shortest; (2) As the tasks
become more difficult, the query completion times (resp. accuracy) of SPARQL
are gradually increasing (resp. reducing). However, GPVQL outperforms all the
other systems: SPARQL, QueryVOWL, and RDF Explorer, and the accuracy of
GPVQL remains above 60%. As shown in Fig. 3(b), GPVQL moderately out-
performs QueryVOWL on accuracy for all tasks, and significantly outperforms
QueryVOWL for the more complex ones, i.e., Task 4 and Task 5. Compared

3 http://gpvql.gq/
4 http://dbpedia.org/sparql/



 0

 20

 40

 60

 80

 100

 120

 140

 160

Task1 Task2 Task3 Task4 Task5

Ti
m

e(
in

 s
)

GPVQL
SPARQL
QueryVOWL
RDF Explorer

(a) Mean completion time for each tool
per task.

 0

 20

 40

 60

 80

 100

Task1 Task2 Task3 Task4 Task5

M
ea

n 
Ac

cu
ra

cy
(%

)

GPVQL
SPARQL

QueryVOWL
RDF Explorer

(b) Mean accuracy for each tool per
task.

Fig. 3. Experiment results on completion time and accuracy.

with RDF Explorer, GPVQL reduces the completion time by approx. 15%, and
increases the accuracy by about 10%. In summary, our evaluation demonstrates
the superiority of GPVQL in both aspects of completion time and accuracy. We
believe that the main reasons of GPVQL’s superiority are bidirectional transfor-
mation and the deep exploration it facilitates. For changes of the query tasks,
traditional query languages requires users to construct new queries from scratch,
which reduces the speed, usability, and user-friendliness. With the bidirectional
transformation in GPVQL, users can use query results of the previous query
pattern as the input of the next query pattern, which reduces the difficulty and
time used of creating queries.

4 Conclusion

In this paper, we propose a general-purpose visual query language. The main
advantage of GPVQL is the flexible bidirectional transformation between query
patterns and graph results, which is a useful method for end-users to gain insights
of large-scale knowledge graphs, and eliminates the boundary between query
patterns and graph results. We experimentally validated the accurateness and
effectiveness of GPVQL and its associated interface, showing its superiority over
other visual query languages.

References

1. Haag, F., Lohmann, S., Siek, S., Ertl, T.: Queryvowl: A visual query notation
for linked data. In: International Semantic Web Conference. pp. 387–402. Springer
(2015)

2. Jayaram, N., Khan, A., Li, C., Yan, X., Elmasri, R.: Querying knowledge graphs
by example entity tuples. IEEE Transactions on Knowledge and Data Engineering
27(10), 2797–2811 (2015)

3. Vargas, H., Buil-Aranda, C., Hogan, A., López, C.: Rdf explorer: A visual sparql
query builder. In: International Semantic Web Conference. pp. 647–663. Springer
(2019)


	A General-Purpose Visual Query Language for Knowledge Graphs with Bidirectional Transformations

