
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).

A Knowledge-Based Approach for Structuring Cyclic
Workflows

Rafael Brandão1, Vitor Lourenço1, Marcelo Machado1, Leonardo Azevedo1, Marcelo
Cardoso1, Renan Souza1, Guilherme Lima1, Renato Cerqueira1, Marcio Moreno1

1 IBM Research, Rio de Janeiro, RJ, Brazil

Abstract. This paper showcases the Cycle Orchestrator, a microservices infra-
structure designed to structure and manage workflows related to heterogeneous
data, through a knowledge-based perspective. It aims at leveraging reasoning,
explainability and collaboration among users over experiments that comprise
workflow executions. We briefly discuss about design and implementation as-
pects to support the lifecycle of workflows (i.e., modeling, configuration, execu-
tion, provenance tracking and querying), exploring a holistic representation
called Hyperknowledge that is amenable to be consumed and reasoned upon.

Keywords: Knowledge-based Workflow Orchestration, Workflow Manage-
ment Systems, Hyperknowledge Representation.

1 Introduction

Processing massive amounts of data through different techniques while enabling stake-
holders to collaborate and consume experiments’ results is a crosscutting challenge
tackled by many industries and technical domains. In the natural resources domain,
particularly in the oil and gas (O&G) industry, a motivating use case is seismic data
interpretation, which is key in exploration processes that analyze geological structures
in the subsurface. Experts, supported by specialized tools and domain knowledge, iden-
tify patterns and correlate geological factors by exploring different data sources. This
practice aims at detecting geological structures, enhancing information, correcting po-
tential inconsistencies in the data acquisition process, and so on. An increasing number
of works in the literature have been proposed to apply Machine Learning (ML) work-
flows to support aspects of such processing. To systematically model complex data
processing pipelines, such as the ML workflows of this motivating use case, while pro-
moting collaboration and knowledge curation, a holistic perspective is required.

In this sense, we conceptualized and developed the Cycle Orchestrator, a
knowledge-based workflow management system (WfMS) to support and operationalize
the whole lifecycle of ML and general-purpose workflows. Including specification,
setup, execution and provenance data management of such workflows. In the motivat-
ing use case, it was conceived primarily to support O&G exploration use cases that
apply cyclic ML workflows. That is, streams of ML tasks that can yield improved re-

sults through a chain of execution iterations. These workflows are associated to partic-
ular types of data sources, e.g. pre-stack and post-stack seismic data. The initially con-
sidered use cases comprised unsupervised ML pipelines that train new models and re-
use pre-trained models and weights against new datasets for improving the quality by
cyclic evolution. In this context, orchestration involves the definition of what model
and version should be applied to analyze specific data sources in exploration processes.

2 Knowledge-based Workflow Modeling

The Cycle Orchestrator draws on the Hyperknowledge [2] conceptual model for relat-
ing knowledge specifications aligned through a domain ontology to segments of multi-
modal content. In this model, the relation between nodes is done through links and
connectors. Nodes’ fragments can be referenced to with the anchor mechanism, making
the structuring of data segments explicit. In addition, the use of nested contexts as a
structuring mechanism promotes the overall organization of the knowledge base, al-
lowing the clustering of information through different perspectives or dimensions.

The modeling process considers different moments of the workflow lifecycle,
namely specification, setup, execution and analysis. In the workflow specification, the
tasks are defined with their input data types, expected output data types and execution
ordering. Then, in the setup step references to actual data are connected to the tasks’
specifications. After these definitions, the execution stage may take place, followed by
a fourth moment where users inspect workflows’ output, querying and reasoning over
experiments’ results.

The specification and configuration of workflows rely on the Hyperknowledge Spec-
ification Language (HSL), a JSON-based definition scheme. Following the principles
of a glue language, it does not constrain any modeling aspects, nor define supported
data formats or specific content structuring. The language allows any modeling design
that makes sense for interested parts (users and systems) who produce and consume
information from the knowledge base. Assuming of course there is a previously agreed
ontology with well-defined terms and relations. The Cycle Orchestrator’s basic ontol-
ogy defines handy entities and connectors for specifying and configuring tasks, execu-
tion strategies (sequential, cyclic, parallel, map-reduce like), ordering and other aspects.

To illustrate modeling decisions, consider the following “hello world” example to
model a basic Python function that takes two integer numbers passed as parameters
factor_a and factor_b and writes the resulting multiplication value in a text file. In the
specification step, the basics of the task are specified, i.e. its input data types (two num-
bers) and output data types (a file). No execution ordering is needed, since we have a
single task. For each input parameter identifier of the executable Python function, it
should be an anchor in the media node with the same identifier.

Listing 1 depicts the HSL modeling with the specification for this executable node’s
input and output to entities representing their compatible data types. Afterwards, List-
ing 2 shows the setup of the task. Following the same rationale, it connects the entities
representing actual data sources, numbers (10 and 25 as input parameters) and file
(mult_result.txt as output data) to the task specification.

Listing 1. HSL example for the specification of a multiplication task.

Listing. 2. HSL example for the setup of a multiplication task.

3 System implementation

Information in the Cycle Orchestrator is represented in the Hyperknowledge Base, a
hybrid storage solution that uses a direct hyperlinked knowledge graph to maintain all
information about workflow execution plans and provenance data stored in the
knowledge base. The proposed modeling adheres to the MLWfM ontology [1] to struc-
ture basic aspects of ML and the PROV-ML [4] as provenance data model.

["context", "BasicOntology", {"subconceptOf":"Ontology"}, [
 ["concept", "Number", {"subconceptOf": "Attribute"}],
 ["concept", "SystemPath", {"subconceptOf": "Attribute"}]]
],
],
["node", "MultiplicationTask", {"instanceOf": "DataTransformation", "mimeType": "applica-

tion/wf_task", "uri": "multiply.py"}, [
 ["property", {"package": "my_package", "function": "multiply"}],
 ["anchor", "factor_a", {"type": "data", "description": "Parameter A to be multiplied"}],
 ["anchor", "factor_b", {"type": "data", "description": "Parameter B to be multiplied"}],
],
["link", null, {"connector": "consumes"}, [
 ["bind", {"task": "MultiplicationTask#factor_a"}],
 ["bind", {"data": "Number"}]]
],
["link", null, {"connector": "consumes"}, [
 ["bind", {"task": "MultiplicationTask#factor_b"}],
 ["bind", {"data": "Number"}]]
],
["link", null, {"connector": "produces"}, [
 ["bind", {"task": "MultiplicationTask"}],
 ["bind", {"data": "SystemPath"}]]
]

["node", "number_10", {"instanceOf": "Number", "value": 10}, []],
["node", "number_25", {"instanceOf": "Number", "value": 25}, []],
["node", "result_file", {"instanceOf": "SystemPath", "src": "./mult_result.txt"}, []],

["link", null, {"connector": "consumes"}, [
 ["bind", {"task": "MultiplicationTask#factor_a"}],
 ["bind", {"data": " number_10"}]]
],
["link", null, {"connector": "consumes"}, [
 ["bind", {"task": "MultiplicationTask#factor_b"}],
 ["bind", {"data": " number_25"}]]
],
["link", null, {"connector": "produces"}, [
 ["bind", {"task": "MultiplicationTask"}],
 ["bind", {"data": " result_file"}]]
]

Users interact with the system through a REST API and a web UI for curating and
querying information, named Knowledge Explorer System (KES) [3]. The REST API
has three endpoint sets for workflow specification, execution, and lineage retrieval. The
specification endpoints provide basic operations for workflow plans. HSL files with
workflow definitions are parsed, producing both a Hyperknowledge representation and
a directed acyclic graph (DAG) data structure. The Execution endpoint interfaces with
the execution engine’s API (Apache Airflow1) to maintain and command workflows.
The execution handler captures provenance data, structuring according to the prove-
nance data model that can be queried through the Lineage endpoint. Figure 1 shows
the architectural overview of the system.

Fig. 1. Cycle Orchestrator's infrastructure overview.

4 Demo

The main goal of this demo is to showcase the Cycle Orchestrator’s approach in action,
presenting how workflows modeled with HSL definitions can be posted to the provided
API with a command-line tool, and inspected through the KES dashboard UI. For that
end, we explore a simple example for a parallel matrix multiplication workflow.
Short video: https://ibm.box.com/s/byg4wb6beo632f0d68tqg5f5jh0o8k4f
Long video: https://ibm.box.com/s/g3kupho1pn3gv3zupl2xcf1samqdfs98

References

1. Moreno, M. et al.: Managing Machine Learning Workflow Components. In: 14th IEEE
Conference on Semantic Computing, ICSC. pp. 25–30 (2020).

2. Moreno, M.F. et al.: Extending Hypermedia Conceptual Models to Support Hyper-
knowledge Specifications. Int. J. Semantic Computing. 11, 01, 43–64 (2017).

3. Moreno, M.F. et al.: KES: The Knowledge Explorer System. In: 2018 International Seman-
tic Web Conference (P&D/Industry/BlueSky), ISWC. (2018).

4. Souza, R. et al.: Provenance Data in the Machine Learning Lifecycle in Computational Sci-
ence and Engineering. In: 2019 IEEE/ACM Workflows in Support of Large-Scale Science,
WORKS. pp. 1–10 (2019).

1 https://airflow.apache.org/

Workflow Specification API Execution Control API Lineage API

Orchestrator
Specification Controller Workflow Builder Orchestrator Execution

Controller
Provenance Collector

Service

Execution Engine
(Apache Airflow)

Orchestrator
Lineage Controller

Provenance
Manager Service

Knowledge Explorer
SystemOutput Data

and Logs
Provenance

Data

Hyperknowledge Base

Specification
Parser Setup Parser

Workflow
Representation

Workflow
DAGs

User

Cycle Orchestrator
API

W
or

kf
lo

w
 S

pe
ci

fic
at

io
n

H
an

dl
er

W
or

kf
lo

w
 E

xe
cu

tio
n

H
an

dl
er

W
or

kf
lo

w
 L

in
ea

ge
H

an
dl

er

