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Abstract. SPARQL property path queries provide a concise way to
write complex navigational queries over RDF knowledge graphs. How-
ever, the evaluation of these queries over online knowledge graphs such
as DBPedia or Wikidata are often interrupted by quotas, returning no
results or partial results. Decomposing SPARQL property path queries
into triple pattern subqueries allows to get complete results. However,
such decomposition generates a high number of subqueries, a large data
transfer and finally delivers poor performances. In this paper, we pro-
pose an algorithm able to decompose SPARQL property path queries into
Basic Graph Pattern (BGP) subqueries. As BGP queries are guaranteed
to terminate on preemptable SPARQL servers, property path queries
always deliver complete results. Experimental results demonstrate that
our approach outperforms existing approaches in terms of HTTP calls,
data transfer and query execution time.

1 Introduction

Context and motivation: Property path queries provide a concise way to
write sophisticated navigational queries in Knowledge Graphs (KGs). SPARQL
queries with property paths are largely used. They represent a total of 38% of
the entire log of wikidata [7]. However, executing these complex queries against
online public SPARQL services is challenging, mainly due to quotas enforcement
that prevent queries to deliver complete results as pointed out in [18, 11, 16]. This
raises the main issue of the paper: How to execute SPARQL property path queries
online and get complete results?

Related Works: The decomposition of SPARQL property path queries into
subqueries that may terminate under quotas allows to get complete results.
However, ensuring the termination of any query under quotas is challenging [2].
Another option is to rely on restricted SPARQL servers that ensure the termi-
nation of supported SPARQL queries such as Triple Pattern Fragment (TPF)
servers [24] or Preemptable servers [16] such as SaGe 1. The granularity of the
decomposition strongly impacts the execution time of the initial query, i.e. a
decomposition of a property path query into triple patterns generates more sub-
queries than a decomposition into Basic Graph Patterns (BGPs) where a BGP is

1 http://sage.univ-nantes.fr
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s e l e c t ? oeuv re ? i n s p i r a t i o n
where {

? oeuv re wdt : P144 ? i n s p i r a t i o n .
? oeuv re wdt : P31/wdt : P279∗ wd : Q17537576 .
? i n s p i r a t i o n wdt : P136 wd : Q8253

}

(a) Q1: Creative works and the list
of fiction works that inspired it on
Wikidata

@p r e f i x owl : <ht tp : //www. w3 . org /2002/07/ owl#>
@p r e f i x f o a f : <ht tp :// xmlns . com/ f o a f /0.1/>
s e l e c t ?x ?o where {

?x f o a f : name ?n .
?x owl : sameAs∗ ?o .

}

(b) Q2: list of similar entities on
DBPedia

Fig. 1: Property path queries on online KGs

a set of triple patterns. Unlike TPF servers, Preemptable servers support BGPs.
Unfortunately, there is currently no algorithm to decompose a property path
query into BGP subqueries.

Approach and Contributions: In this paper, we propose an algorithm able to
decompose a SPARQL property path query into BGP subqueries with filters and
unions. As the generated subqueries are guaranteed to terminate when processed
by a preemptable SPARQL server, the property path queries are executed online
and always return complete results.

The contributions of the paper are the following: (i) We define an algorithm
that computes a compressed automaton for SPARQL property path queries.
The algorithm allows to decompose the SPARQL property path queries into
BGP subqueries. (ii) We compare the performance of our approach with existing
approaches (TPF and SaGe). Experimental results demonstrate that the com-
pressed automata approach outperforms existing approaches by several orders
of magnitude in terms of HTTP calls, execution time and data transfer.

This paper is organized as follows. Section 2 reviews related works. Section 3
introduces SPARQL property path queries and automata as property path ex-
pressions models. Sections 4 presents the automata compression approach in
the context of the web preemption. Section 5 presents our experimental results.
Finally, the conclusion is outlined in Section 6.

2 Related Works

Property paths were introduced in SPARQL 1.1 2 to add extensive navigational
capabilities to the SPARQL query language. Property paths closely correspond
to regular expressions and are crucial to perform non-trivial navigation in knowl-
edge graphs. Regular expressions involve operators such as ’ * ’ (zero or more
occurrences-kleene star), ’ | ’ (OR operator), ’ / ’ (sequence operator), ’ ∧ ’
(inverse operator), ’ ! ’ (NOT operator) that allow to describe complex paths of
arbitrary length. For instance, the query SELECT ?x ?y WHERE ?x foaf:knows*
?y require to compute the transitive closure of the relation foaf : knows over
all pairs x, y present in the KG. Many techniques [19, 6] proposed to compute
such queries but, computing transitive closure over large graphs remains costly.

2 https://www.w3.org/TR/sparql11-property-paths/



Breadth First Search or Depth First Search algorithms compute transitive clo-
sures with a time complexity in O(|E|+ |V |) and a space complexity in O(|V |2),
with E and V the finite set of KG edges and vertices, respectively. Even if differ-
ent optimisations have been proposed [25, 12] that greatly improve performances,
a simple property path query evaluation over a large graph may require a large
amount of CPU and memory to complete.

This makes the evaluation of property path queries challenging on online Knowl-
edge Graphs such as DBPedia or Wikidata. To ensure a fair usage policy of
resources, public SPARQL endpoints enforce quotas [9] in time and ressources
for executing queries. As queries are stopped by quotas, many queries return no
results or partial results. For instance, the query Q1 Figure 1 returns no result
on Wikidata because it has been stopped after running more than 60s. The Q2
3 on DBPedia returns partial results because it has been killed after delivering
the first 10000 results.

To overcome quotas limitations, KG providers publish dumps of their data. How-
ever, re-ingesting billions of triples on local resources to compute SPARQL prop-
erty path queries is extremely costly and raises issues with freshness. Moreover,
it is an offline approach, and in this paper we want to execute property path
queries online and get complete results.

To overcome quota limitations, it is also possible to decompose SPARQL queries
into subqueries that may terminate under quotas [2]. However, finding such
decomposition is hard in the general case, as quotas can be different from one
server to another, both in terms of values and nature [2]. Consequently, there is
no guarantee that subqueries terminate. Another option is to rely on restricted
server interfaces to ensure that the execution of subqueries terminate, e.g. the
Triple Pattern Fragments approach (TPF) [10, 24] or the preemptable server
SaGe [16]. However, the granularity of the decomposition strongly impact the
execution time of the initial query. Relying on the TPF interface, a property path
query has to be decomposed into sequences of multiple triple pattern queries,
while a preemptable server allows to decompose property path queries into BGP
queries with union and filters.

The TPF client [10, 24] decomposes SPARQL queries into sequences of paginated
triple pattern queries. As paginated triple patterns queries can be executed in
bounded times, the server does not need quotas, i.e. all queries executed by
the server have nearly the same duration. However, as the TPF server only
processes triple pattern queries, property paths have to be decomposed into
sequences of triple pattern queries. This requires to compute several joins on
the client, especially to compute transitive closure expressions, which require
a high number of HTTP calls and a large data transfer leading to poor query
performance.

3 Q1 and Q2 are executed at the public SPARQL endpoints of Wikidata, and DBPedia,
respectively, at August 5 2020.



SaGe implements the web preemption [16] model. A preemptable server inter-
rupts a SPARQL query execution after a quantum of time, returning partial
results and the state of the SPARQL query (the query execution plan). The
client can continue the query execution by sending the state of SPARQL query
back to the preemptable server. Following the web preemption model, many
queries may be virtually suspended, but the server remains stateless. As queries
are suspended after a quantum, the server only processes queries of nearly the
same duration and there is no need for quotas. SaGe server implements the eval-
uation of triple patterns, BGPs, filters and unions. Although, web preemption
allows processing BGPs, property paths are still decomposed into sequences of
triple pattern queries leading to poor query performance.

A BGP decomposition is much more efficient than a triple pattern decompo-
sition, as it generates less subqueries and transfers less intermediate results.
Unfortunately, there is no algorithm able to decompose property path into BGP
queries. In this paper, we propose an algorithm of decomposition based on au-
tomaton compression. Similar automaton compression techniques have been al-
ready used in other domains, but not related to query processing [26].

3 Property Path Expressions and Automata

We recall briefly definitions related to the proposal of the paper.

3.1 SPARQL property path queries

SPARQL Queries : We follow the notation from [17, 20] and consider three
disjoint sets I (IRIs), L (literals) and B (blank nodes) and denote the set T
of RDF terms I ∪ L ∪ B. An RDF triple (s, p, o) ∈ (I ∪ B) × I × T connects
subject s through predicate p to object o. An RDF graph G (called also RDF
dataset) is a finite set of RDF triples. We assume the existence of an infinite set
V of variables, disjoint with previous sets. A mapping µ from V to T is a partial
function µ : V → T , the domain of µ, denoted dom(µ) is the subset of V where
µ is defined.

A SPARQL graph pattern expression P is defined recursively as follows.

1. A tuple from (I ∪ L ∪ V )× (I ∪ V )× (I ∪ L ∪ V ) is a triple pattern.
2. If P1 and P2 are graph patterns, then expressions (P1 AND P2), (P1 OPT

P2), and (P1 UNION P2) are graph patterns (a conjunction graph pattern,
an optional graph pattern, and a union graph pattern, respectively).

3. If P is a graph pattern and R is a SPARQL built-in condition, then the
expression (P FILTER R) is a graph pattern (a filter graph pattern).

SPARQL Property Path Queries: The SPARQL 1.1 language [21] introduces
property paths. We adopt the same syntax as [14] to define operator property
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Fig. 2: For the path expression P = ((a · b · c) + (d · e))+: (a) mono-predicate
automaton of P ; (b) minimal multi-predicate automaton of P ; (c) graph G1

path expressions, i.e. the inverse path is denoted by e− and alternative path
e1 + e2

4.

Definition 1 (Property Path Expressions [14]).

Property path expressions are defined by the grammar:

e := a | e− | e1 · e2 | e1 + e2 | e+ | e∗ | e? | !a1, . . . , ak | !a−1 , . . . , a
−
k ,

where a, a1, . . . , ak are properties, i.e. IRIs in I. A single property is called
a predicate path expression. It is the smallest path expression and it can
only match paths of length one, i.e. triple patterns. Expressions of the forms
(e1 ·e2), (e1+e2), (e+∗) and (e?) are respectively called sequence, alternative,
transitive and optional path expressions. Expressions of the last two forms
(i.e. starting with !) are called negated property sets. The set of all property paths
expressions is denoted by PP .

Definition 2 (Property Path [14]). A property path pattern is a triple in
(I ∪ L ∪ V )× PP × (I ∪ L ∪ V ).

Property path patterns are incompatible with triple patterns, because they allow
property path expressions in predicate positions but forbid variables in these
positions.

3.2 Modeling property path expressions via automata

A finite automaton is often used to represent a property path expression [6, 8].
For example, the property path P = ((a·b·c)+(d·e))+ can be represented by the
4 SPARQL 1.1 uses symbols ^e and e1|e2 for inverse and alternative path, respectively



automaton described in Figure 2a. We call such automaton a mono-predicate
automaton.

To evaluate the query Q=select * where {:A P ?y} over the graph G1 in
Figure 2c, an automaton-based approach [6, 5] processes as follows:

1. A search is initialized from the configuration c0=(q0, :A), where q0 is the
initial state of the automaton, and :A is the subject of the property path
pattern of Q .

2. From the configuration c0, states q1 and q4 could be reached. q1 is reached
as the evaluation of J:A a ?yKG1

= {?y → :B}. Therefore, the configuration
c1 = (q1, :B) is built. q4 is not reached as J:A d ?yKG1 = ∅.

3. From the configuration c1, the state q2 is reached as J:B b ?yKG1 = {?y →
:C}, the configuration c2 = (q2, :C) is built.

4. From the configuration c2, q3 is reached with J:C c ?yKG1
= {?y → :D},

c3 = (q3, :D) is built. As q3 is a final state, {?y → :D} is a solution to the
query Q.

5. The process continues from c3, but no more solutions can be found. The
algorithm terminates when all the configurations have been found.

As we can see, all evaluations performed on G1 correspond to triple pattern
queries. By this way, the automaton-based approach decomposes the property
path expressions into triple pattern subqueries. We call such automaton a mono-
predicate automaton.

4 Compression of Property Path Automata

The mono-predicate automaton in Figure 2a is equivalent to the automaton
presented in Figure 2b, i.e. they both recognize the same language. Compared to
the mono-predicate automaton, transitions in the second automaton are labeled
with more complex expressions such as sequences and alternatives. We call this
automaton a multi-predicate automaton.

If both automata are equivalent, evaluating the path expression with the multi-
predicate automaton generates BGP subqueries with union, which is much more
efficient than evaluating triple pattern subqueries. Obviously, the second automa-
ton is a compressed version of the first one. The scientific problem is to write an
algorithm able to transform any mono-predicate automaton into an equivalent
minimal multi-predicate automaton according to servers capabilities.

A multi-predicate automaton is said to be minimal if it does not exist another
equivalent multi-predicate automaton with less states and transitions, according
to a set of operators supported by a server, i.e. server capabilities.

For example, a mono-predicate automaton is a minimal multi-predicate automa-
ton for a TPF server, as TPF only supports triple pattern queries. For a server



supporting BGP and union such as SaGe, the multi-predicate automaton of Fig-
ure 2b is minimal, while the multi-predicate automaton presented in Figure 3d
is not.

In this paper, we only consider predicate, sequence, alternative and transitive path
expressions. Optionals are ignored as they are naturally rewritten as alternatives
when a property path expression is converted into a finite automaton. Concerning
negated property sets and inverse path expressions, they can be treated as special
cases of predicate path expressions. An inverse path expression can be rewritten
as a triple pattern whose subject and object have been reversed, while a negated
property set can be rewritten as a triple pattern whose predicate is a variable that
is associated to a "not in" filter condition to exclude unwanted properties.

4.1 Algorithm for compressing path expression automata

In this section, we describe an algorithm to transform a mono-predicate au-
tomaton into a multi-predicate automaton. The algorithm is composed of two
parts:

1. We first build an automaton for sequence path expressions, i.e. not consid-
ering alternatives. This produces a first compressed automaton that may be
not minimal.

2. Second, we compress the automaton produced by the previous step consid-
ering alternatives to produce a minimal compressed automaton.

4.1.1 Processing sequence path expressions

When a property path expression is converted into a mono-predicate automaton,
sequences without transitive closures are converted into paths of mono-predicate
transitions, such that (1) consecutive transitions are connected together by an
intermediate state, (2) paths start from a non-intermediate state, (3) paths
go to a non-intermediate state.

Definition 3 (Intermediate state). A state is called an intermediate state if
and only if (1) it is not a start state, (2) it is not a final state, (3) it has no self
transition.

For example, in the mono-predicate automaton of the property path P = ((a · b ·
c)+(d·e))+, the sequence (a·b·c) corresponds to the paths <(q0, a, q1), (q1, b, q2),
(q2, c, q3)>, <(q3, a, q1), (q1, b, q2), (q2, c, q3)>, <(q5, a, q1), (q1, b, q2), (q2, c, q3)>
where q0, q3 and q5 are non-intermediate states, while q1 and q2 are intermediate
states.

Consequently, the first step to build a minimal multi-predicate automaton is to
replace these paths by single transitions that are labeled with the correspond-
ing sequence path expressions. As only paths extremities are non-intermediate
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(d) Result of replacing paths
between non-intermediate
states by the shortest paths

Fig. 3: Running Algorithm 1 on the automaton depicted in Figure 2a

states, a simple solution to achieve this is to compute the shortest paths be-
tween the non-intermediate states, before removing the intermediate states and
all transitions that are connected to one of them. Algorithm 1 follows this pro-
cedure by using a Floyd-Warshall based approach to compute the shortest paths
between the non-intermediate states.

To illustrate, consider the automaton in Figure 2a. Algorithm 1 starts by con-
sidering all intermediate states. In this example q1, q2 and q4. For each of them,
the algorithm searches all pairs of transitions that are consecutive through it.
Two consecutive transitions can be seen as the two operands of a join operator,
where the label of the first transition is the right operand, while the label of the
second transition is the left operand. Consequently, the two transitions can be
merged together into a new transition, labeled with the concatenation of the two
operands. A delimiter (/) is used to be able to parse the expression, in order to
convert it into a BGP query, during the evaluation of the property path expres-
sion. Figure 3a presents the automaton obtained after considering the intermedi-



Algorithm 1: Compression sequence of path expressions
Input: A mono-predicate automaton
Output: A multi-predicate automaton that defines BGP decomposition

1 begin
2 foreach k ∈ intermediate state do
3 foreach i ∈ state and ∃ transition(i,k) do
4 foreach j ∈ state and ∃ transition(k,j) do
5 create new transition (i,j)
6 l = concat(label (i,k),label(k,j))
7 addLabel(l, transition (i,j))
8 add transition (i,j)
9 end

10 end
11 end
12 remove the original transitions for which the source or the destination is

an intermediate state
13 remove intermediate states
14 end

ate state q1. At this step, paths that go through state q1 are found and replaced.
For example, the two consecutive transitions (q0, a, q1), (q1, b, q2), where predi-
cate path expressions a and b are the operands of the sequence (a·b), are replaced
by the transition (q0, a/b, q2). In Figure 3b it is paths that go through state q2
that are found and replaced. Of course, transitions introduced in the previous
steps are considered. Thus, the two consecutive transitions (q0, a/b, q2), (q2, c, q3)
are replaced by the transition (q0, a/b/c, q3). At this step, we can see that the
expression (a · b · c) is now complete. No more transition is labeled with a subex-
pression of (a · b · c). Finally, Figure 3c presents the automaton obtained after
considering the last intermediate state q4. At the end, all paths that go through
states q1, q2 or q4 have been found and replaced by single transitions labeled
with the corresponding sequence expressions. After removing the intermediate
states, we obtain the automaton described in Figure 3d. This multi-predicate
automaton is minimal if we consider a server that only supports triple patterns
and BGPs.

4.1.2 Processing alternative path expressions

Although, evaluating alternative expressions on the server-side does not improve
the data transfer, it can significantly reduce the number of subqueries. To illus-
trate, if the property path P = (a1 + ...+ an) is evaluated on the client, then it
requires to send n subqueries to the server. However, only one call is required to
evaluate this expression on the server.

Definition 4 (Equivalent states). Two states in a finite automaton M are
equivalent if and only if for every string x, if M is started in either state with x
as input, it either accepts in both cases or rejects in both cases.
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Fig. 4: Compressing alternative expressions on the automaton depicted in Fig-
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When sequences have been processed, the n clauses of a same alternative ex-
pression are represented by n transitions, such as they start from the same state
and go to the same or equivalent states. For example, in Figure 3d the two
transitions (q0, a/b/c, q3) and (q0, d/e, q3) are the two clauses of the expression
(a · b · c) + (d · e). Consequently, the last step to build a multi-predicate au-
tomaton is just to merge transitions that share the same sources and equivalent
destinations. This also requires to merge equivalent states. A simple solution
is to merge equivalent states by using a minimization algorithm such as [13].
Then, transitions that are part of the same alternative expression can be safely
merged, knowing that in a minimized automaton, n transitions represent the
n clauses of a same alternative expression if they share the same source and
destination.

To illustrate, consider the automaton in Figure 2a and imagine that sequences
have already been processed, resulting in the automaton in Figure 3d. To perform
the second transformation, i.e. merge the equivalent states, first, the automaton
should be minimized. In Figure 4a, the two equivalent states q3 and q5 are
merged into a new state q35. Then, transitions that share the same sources and
destinations are merged together. For example, the two transitions (q0, abc, q35),
(q0, de, q35) are part of the same alternative expression ((a · b · c) + (d · e)),
consequently, they are merged into a new transition (q0, (a/b/c+d/e), q35). Here,
we use the delimiter (+) to be able to rewrite this expression as an union of BGPs.
Finally, the resulting automaton in Figure 4b is the corresponding minimal multi-
predicate automaton of the property path ((a ·b ·c)+(d ·e))+. The decomposition
defines by this automaton is effectively minimal in the context of a server that
supports triple patterns, joins and unions.

5 Experimental Study

We want to empirically answer the following questions: Does compressed au-
tomata approach follow the W3C semantics of SPARQL property paths? Does
compressed automata approach outperform mono-predicate automata approach
in terms of query execution time, number of HTTP calls and data transfer? Does
compressed automata approach outperform existing client-side approaches in
terms of query execution time, number of HTTP calls and data transfer?



We implemented our multi-predicate automata compression approach as an ex-
tension of the SaGe query engine framework. All extensions and experimental
results are available at https://github.com/JulienDavat.

5.1 Experimental setup

Dataset and Queries: We used BeSEPPI benchmark and gMark framework.
We used BeSEPPI benchmark to study the compliance of our approach with
the W3C semantics. BeSEPPI [1] is a benchmark designed to test the differ-
ent semantics aspects of SPARQL property path expressions. BeSEPPI has 236
queries (73 ASK queries and 163 SELECT queries) and a dataset of 29 triples.
The dataset is kept small in order to make the verification and the creation of
new queries simple. According to [1], an approach follows the W3C semantics
if each of the 236 queries returns a complete and correct result. In 2012, for
complexity reasons [15, 3], the evaluation of transitive closure expressions has
changed from a multi-set semantics to a set semantics. Because none of the 236
queries allow to check if this change has been taken into account, we added 6
new SELECT queries and 30 new triples.These queries are designed around the
clique test introduced in [3]. We used gMark framework [4] to compare our
approach with SaGe-Jena and Comunica. We generate a workload of 30 prop-
erty path queries with complex path expressions on a dataset of 1M triples using
the default "Shop" scenario of the framework.

Approaches: We compare the following approaches: (1) SaGe-AC : implements
the automata compression approach on the SaGe smart client. (2) SaGe-A: for
comparison, implements a traditional automaton-based approach with a mono-
predicate automaton on the SaGe smart client. (3) SaGe-Jena: is implemented
as an extension of Apache Jena5, consequently, property path expressions are
evaluated as defined in Jena, i.e. property path expressions are decomposed into
sequences of triple patterns. (4) Comunica: a TPF smart client.

Servers configurations: We run the experimentations on a machine with a
Processor Intel® Core™ i7-6700HQ CPU @ 2.60GHz x 8 and 16GB of RAM.
To be able to run SaGe-Jena and our approach, we run a SaGe server with a
time quantum of 75ms, a page-size of 2000 mappings and HDT files as backend.
For Communica (version 1.12.1), we run a TPF server (version 2.2.5) with HDT
files as backend and the same settings as SaGe.

Evaluation Metrics: (1) Compliance with W3C semantics: check whether the
236 return complete and correct results as defined in [1], i.e. produce the same
results. We also checked manually the compliance of the results of our six defined
queries. (2) Data transfer : is the total number of bytes transferred to the client
when executing a query. (3) Number of http calls: is the total number of HTTP
calls issued by the client when executing a query. (4) Execution time: is the total
5 https://jena.apache.org/



Table 1: Number of queries that returned incomplete, incorrect, incomplete and
incorrect or complete and correct result sets, or threw an error
Property path expression Comunica SaGe-Jena SaGe-AC
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Inverse 0 0 0 20 0 0 0 0 20 0 0 0 0 20 0 20
Sequence 0 0 0 24 0 0 0 0 24 0 0 0 0 24 0 24
Alternative 0 0 0 23 0 0 0 0 23 0 0 0 0 23 0 23
Existential 0 2 0 19 3 0 0 0 24 0 0 0 0 24 0 24
Transitive Reflexive-Closure 11 0 0 10 22 0 0 0 43 0 0 0 0 43 0 43
Reflexive-Closure 11 0 0 14 10 0 0 0 35 0 0 0 0 35 0 35
Negated Property Set 0 0 2 19 0 0 0 0 21 0 0 0 0 21 0 21
Inverse Negated Property Set 0 0 2 19 0 0 0 0 21 0 0 0 0 21 0 21
Negated and Inverse Property Set 0 0 5 26 0 0 0 0 31 0 0 0 0 31 0 31
Total 22 2 9 174 35 0 0 0 242 0 0 0 0 242 0 242

time between starting query execution and the production of the final results by
the client.

5.2 Experimental results

Presented results correspond to the average obtained of three successive execu-
tion of the queries workloads. We fixed a time out of 30 minutes.

Does compressed automata approach follow the W3C semantics? We run the
BeSEPPI benchmark with SaGe-AC, Comunica and SaGe-Jena clients. Table 1
presents the results for the different approaches.

SaGe-AC follows the W3C semantics of SPARQL property paths, it returns
complete and correct results for the 242 queries. SaGe-Jena is just as compliant
as Jena, i.e. it follows the semantics. However, Comunica is unable to compute
the transitive path expressions when paths have longer more than one, or reflex-
ive closure must be computed.

Does compressed automata approach outperform mono-predicate automata? We
run the 30 queries of gMark workload with the SaGe-A and SaGe-AC ap-
proaches. Figure 5 shows the execution time, the number of HTTP calls and
the data transfer for each query in the workload for both approaches. Dashed
lines represent incomplete queries after an execution time of 30 minutes. As
expected, when it is possible to improve the decomposition of property path



Fig. 5: gMark queries using SaGe-A and SaGe-AC (logarithmic scale).

queries, SaGe-AC outperforms SaGe-A in terms of HTTP calls, data transfer
and execution time. However, when mono-predicate automata cannot be com-
pressed, then both approaches are equivalent. Queries 12 and 20 are examples of
property path queries for which mono-predicate automata and multi-predicate
automat have similar performance.

Does compressed automata approach existing client-side approaches We run the
30 queries of gMark workload with the SaGe-AC, communica and SaGe-Jena
clients. Figure 6 shows the execution time, the number of HTTP calls and the
data transfer for each query in the workload for three approaches.

As Comunica does not support gMark transitive queries, we split the query
workloads into two groups: transitive queries and non-transitive queries. The
transitive queries regroupes queries that have at least one transitive closure
expression. The non-transitive queries regroupes other queries.

Figure 6b presents the results of transitive queries with only SaGe-AC and
SaGe-Jena, as these queries cannot be executed by Communica. As we can see,
SaGe-AC outperforms SaGe-Jena in terms of execution time, number of HTTP
calls and data transfer for all queries. Moreover, SaGe-AC provides complete re-
sult for all queries (20 queries) except the query Q30, while SaGe-Jena provides
complete results for only three queries (Q12, Q20 and Q22).

Figure 6a presents results for the non-transitive queries with SaGe-AC, SaGe-
Jena and Comunica. SaGe-AC outperforms SaGe-Jena and Comunica in term
of the execution time, the number of HTTP calls and the data transfer. These
results demonstrate empirically the performance of automata compression ap-
proach compared to Communica and SaGe-Jena decomposition of property path



(a) Queries without transitive
closure expressions

(b) Queries with at least one transitive closure
expression

Fig. 6: gMark queries using SaGe-A, SaGe-AC, SaGe-Jena (logarithmic scale).

queries. These results demonstrate also the advantage of using the web preemp-
tion instead of TPF. The web preemption ensures queries completeness, as TPF,
while providing a more expressive interface. Therefore, operations that could be
costly to compute on the client-side are supported directly by the server-side.
Consequently, communication costs are significantly decreased and only final re-
sults are transferred to the client. Obviously, the more operators supported by
the server, the better the performance will be.

Of course, it is possible to optimize queries evaluation with TPF [23]. Using a
better join ordering could also improve queries performance [22]. This explains
why Comunica offers better performance than SaGe-Jena on the non-transitive
queries. However, even if these optimizations could decrease the number of HTTP
calls sent to the server and execution times, they do not change the data transfer
for client-side operators.

6 Conclusion

In this paper, we proposed an algorithm to decompose property path queries
into BGPs subqueries. As BGP subqueries are guaranteed to terminate under
the web preemption model, this ensures that property path queries are processed
online and return complete answers. Compared to the state of art, decompos-
ing into BGPs subqueries is much more efficient than decomposing into Triple
Pattern queries. It finally achieves better execution time. We modeled property
path expressions as an automaton, and we demonstrated that generating BGPs
subqueries instead of triple pattern subqueries can be seen as compressing of



the automaton. We implemented our approach in smart client for a preemptable
SPARQL server. We demonstrated that our approach outperforms existing ap-
proach in term of generated subqueries, data transfer and execution time while
supporting full SPARQL 1.1 property path expressions.

The current approach has several limitations. First, in case of simple transi-
tive closure such as ?x sameas* ?y, then there is no room for BGP optimisa-
tion. Second, when property path expressions are included inside a BGP, i.e.
?x rdf:type Person . ?x sameas* ?y, then joins have to processed in the
smart client, generating high data transfer. Such limitations are the consequences
of the lack of support for property path expressions on restricted SPARQL
servers. Improving performances for property path expressions requires to find
a way to process fairly property path expressions on server-side. This is clearly
challenging as property paths may explore a large part of the knowledge graph
while remembering visited nodes.
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